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The subject of this work is to elucidate the significance of rheological processes taking
place in a bone-implant system when the implanted joint is bearing a load. The processes
of mathematical modelling (by variational formulation and finite element approach) and
computer - aided strength analysis of a human hip joint endoprosthesis-femoral bone system,
taking into account the rheological properties of bone tissue, are presented. The three distinct
types of material that are present in the system (cortical bone, trabecular bone and implant)
exhibit significant differences in their elastic and rheological properties. The analysis is carried
out using the finite element method. Consideration of the rheological properties of bone tissue
during the analysis makes it possible to observe, under conditions of fixed loads, the changes
in the fields of stresses, strains and strain energy density in the bone — implant system.
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1. INTRODUCTION

Alloplasty currently plays an important role in the treatment of various kinds
of joint injuries and degeneration. Alloplasty of the hip joint is of particular
significance in this field. This joint performs a key function in the human skeletal
system, ensuring an adequate range of movement of the lower limbs as well as
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providing support for the upper body. Damage to the joint may cause permanent
lameness or even, in some cases, death. Alloplasty is often the only method of
treating a damaged joint. Despite continued improvement in the construction of
endoprostheses, their period of correct functioning remains too short, up to the
current maximum of less than twenty years. Among the main causes of this are
the following engineering problems: inappropriate stiffness of the prosthesis stem,
insufficient bond of the implant to the bone, premature wearing out of friction
pairs (prosthesis head-acetabulum).

It is generally acknowledged that a significant increase in the longevity of
artificial joints can be achieved through optimal correspondence of the stiffness
of the prosthesis stem and that of the bone into which it is to be fixed. Yet, it
is necessary to recognise that this optimal stiffness is not to be understood as a
simple correspondence between the mechanical parameters of the prosthesis stem
and those of bone tissue. An essential problem is that the mechanical properties
of bone tissue are not static. They undergo continual changes related to at least
three factors: changes in the age of the patient, functional adaptation of the
bone tissue and rheological processes taking place in the bone. KEAVENY and
HAYES [4] set forth the data from which it results that the modulus of elasticity
for trabecular bone decreases from age 20 at a rate of about 17% per decade.
NATALI and MEROI [7] obtained the results indicating that changes in the Young
modulus for human coritcal bone after age 20 reach about 20 — 25%. The process
of functional adaptation of bone tissue is related to its structural adaptation to
changing conditions of load. In accordance with Wolff’s law, tissue not subjected
to load atrophies, and conversely, bone under excessive load tend to increase their
density and geometric dimensions. This problem has been the subject of many
investigations in recent years. RIETBERGEN et al. [9] have shown that as a result
of implantation of an endoprosthesis into a joint, after two years (in experiments
on animals), changes in the cross-sectional area of cortical bone reached 20—23%.

The above changes in the mechanical and geometrical properties of bone
occur over a long period of time. Adaptational processes appear after several
months, and changes related to age continue for decades. Decidedly shorter
is the period of change in the mechanical properties of bone tissue related to
rheological processes taking place within the bone. DELIGIANNI et al. [1] have
presented the rheological characteristics of trabecular bone. He asserts that the
process of relaxation of stress diminishes in this type of tissue over the course of
one hour, but up to 95% of the fall in stress occurs within the first 100 seconds.
The average change in mechanical parameters obtained on the basis of relaxation
experiments reached, in the tests referred to, 20 — 25%. SASAKI and ENYO [10],
LAKES et al. [6] as well as KNETS [5] have investigated the rheological properties
of cortical bone. All these studies have demonstrated a change in the mechanical
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properties of this type of tissue of a similar range to that of trabecular bone
(approx. 20%), but these changes take place in times of the order of some scores
of hours.

It follows from the above-cited data, the range of change in the mechanical
properties of bone tissue occurring as a result of rheological processes is compa-
rable to the changes due to ageing of the bone, and to the functional adapation
of bone tissue, but these rheological processes occur significantly faster, and are
cyclically repeated. It is necessary, therefore, to take them into account when
analysing the strength of the bone-implant system.

Until now, researchers have neglected the rheological processes occurring in
the bone - implant system. This paper presents an attempt to analyse the
influence of the viscoelasticity of bone tissue on functioning of the implanted hip
joint.

2. METHODS

The basic techniques applied in the research presented here is that of com-
puter simulation using the finite element method (FEM). This method makes it
possible to effectively determine the fields of displacements, strains and stresses
resulting from a load acting on the system under study. The foundation of the
analysis is however, the elaboration of an appropriate physical and mathematical
model.

2.1. Physical model of the femur — hip joint endoprosthesis system

Among the most important elements in the phys1cal modelling of the bone -
implant system are:

- construction of a geometrical model of the femur and endoprosthesis,

— description of the mechanical properties of the particular materials present
in the system (cortical bone, trabecular bone, implant),

- modelling of boundary conditions (loads and constraints of the system, the
connection between the endoprosthesis and the bone surrounding it).

A three-dimensional geometrical model of the femur has been obtained based
on the Standardised Femur (VICECONTI et al. [11]). The stem shape was taken
from OSTEONICS Omnifit implant (size No. 8). FEM model (Fig. 1) has been
build up in ANSYS by applying 20-nodal VISCO 89 elements.

The elaborated material model takes into account the heterogeneity of bone
tissue. It is important to note that both bone tissue types (cortical and trabec-
ular) exhibit anisotropy of their mechanical properties (NATALI and MEROI [7],
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- Cortical bone

Implant

F1G. 1. Geometrical model of the femur — hip joint endoprosthesis system: solid model; b) and
¢) FEM model.

KEAVENY and HAYES [4]). Most often the Young modulus is more or less twice as
high in one direction as it is in the two others. Taking into consideration, however,
the obvious difficulties concerning the anisotropy measurement of the rheological
properties of bone tissue, the authors were forced to accept a simplified model
based on isotropy of the material. The elastic parameters of the bone tissue were
taken from the literature (NATALI and MEROI [7], KEAVENY and HAYEs [4]),
at the following levels: cortical bone E = 17 GPa, v = 0.36; trabecular bone
E =1GPa, v=04.

From the studies of LAKES et al. [6], SASAKI and ENYO [10] or DELIGIANNI et
al. [1] it can be stated that bone tissue displays nonlinear viscoelasticity. Yet, for
certain ranges of load, it is acceptable to employ a simplified model using linear
viscoelasticity for both cortical and trabecular tissue. Such a model has been em-
ployed in the research presented here. In describing the time-variable properties
of the material, Maxwell’s generalised model equations have been applied:

(2.1) G(¢) = ﬁj G;el=¢/%) 4 G(o0)

=1

where: G — material parameter (e.g. Young modulus, shear modulus or bulk
modulus), G(co) — value of the parameter G in infinity, N — number of Maxwell’s
element used in approximation of material properties, G; — initial value of param-
eter G for the i-th Maxwell’s element, \; — relaxation time for the i-th Maxwell’s
element, £ — runninig time of the process.
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It is necessary to emphasise that there are significant differences in the vis-
coelastic properties of cortical and trabecular tissue. Rheological processes in
trabecular bone take place in much shorter times (to 100 sec, DELIGIANNI et
al. [1]) than they do in cortical bone (an equivalent range of change in times of
10° sec, LAKES et al. [6]). The rheological characteristics of bone tissue applied
in the analysis are shown in Tables 1 and 2.

Table 1. Changes through time of strength parameters for a viscoelastic model

of cortical bone.

time ¢t [s] 0 1 10 100 1000 | 10000 | 40000 |70000 [100000| oo

G(t) [GPa]"| 6.25 | 6.230 | 6.181 | 6.042 | 5.798 | 5.446 | 5.154 | 5.048 | 4.987 | 4.875
K(t) [GPa]"| 20.24 |20.175 |20.016 |19.565 | 18.777 | 17.638 | 16.691 | 16.346 | 16.150 | 15.878
G(t)/G(10) | 1.011 | 1.008 1 0.977 | 0.938 | 0.881 | 0.834 | 0.817 | 0.807 | 0.788
K(t)/K(10)| 1.011 | 1.008 1 0.977 | 0.938 | 0.881 | 0.834 | 0.817 | 0.807 | 0.788

Table 2. Changes through time of strength parameters for a viscoelastic

model of trabecular bone

time t [s] 0 1 2 3 4 5 6 8 10 40 100

G(t) [MPa]" | 357 [336.5|324.6|316.9 | 311.3 | 307.1 | 303.7 | 300.9 | 294.8 | 278.0 | 260.9
K(t) [GPa]" [ 1.667 | 1.571{1.516 | 1.480| 1.454 | 1.434 | 1.418 | 1.405 | 1.376 | 1.298 | 1.218
G(t)/G(0) 1 10.942]0.909 0.887 | 0.872 | 0.860 | 0.851 | 0.843 { 0.826 | 0.779 | 0.731
K(t)/K(0) 1 [0.942]0.909 | 0.887 | 0.872 | 0.860 | 0.851 | 0.843 | 0.826 | 0.779 | 0.731

* G ~ shear modulus, K — bulk modulus

Pure elastic model of the implant has been employed (E = 1.1 x 10! Pa, v = 0.3
~ Ti6Al4V alloy or E = 2.0 x 10! Pa, v = 0.3 - CoCrMo alloy).

The model of hip joint loads (Fig. 2) employed in this research takes into
account the force acting on the endoprosthesis head (R = 1730 N) as well as the
resultant muscular forces acting on the major trochanter (M = 1270 N). These
values correspond to the load conditions on the hip joint of a patient of about 60
kg body mass.

A rigid constraint of the modelled femoral fragment was assumed (distal end).
It was assumed that the prosthesis is fully bonded (continuity of displacements
and normal stresses) with the bone along approximately 40% of the length of
the stem (proximal side) and no contact apears between the remaining part of
the stem and femur. Two ways of fixing the implant were considered. The first,
in the area of bonding the prosthesis stem with the bone, only trabecular tissue
surrounds the implant (Fig. 3a, model M1). In order to take into account the local
point of direct contact between the prosthesis and cortical bone (such support



380 S. PISZCZATOWSKI, K. SKALSKI

does sometimes occur in reality), in model M2 (Fig. 3b) the properties of the
bone tissue adjoining the stem were changed in the lower region of the contact
zone. Instead of the parameters of trabecular bone, suitable data for cortical
bone were applied.

F1G. 2. Scheme of the loads acting on the femur - endoprosthesis system.

a)

- Trabecular bone
- Cortical bone

Implant

m
T

F1G. 3. Support of the endoprosthesis stem by: a) trabecular bone only —~ model M1, b) partly,
by the cortical and trabecular bone — model M2.
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2.2. Mathematical model of the femur - endoprosthesis system with regard to
the viscoelastic properties of bone tissue

In such a model (P1SzZCZATOWSKI et al. [8]) one uses the viscoelastic mod-
elling of the bone material properties. The implant is treated as a pure elastic
material. Let us denote (Fig. 4):

F1G. 4. Scheme of the hip joint endoprosthesis — femoral bone system: 1) Vz, Vi; — domains of

bone I and implant II respectively; I — viscoelastic, II - elastic; 2) Sz, S — boundaries of the

domains V; and Vi1; 3) Sc - curve (surface) dividing the domains V; and Vir; 4) Sp,, Sr,

Sr;; — boundaries subsets of the domains V7 and Vi1 on which the boundary displacement (D)
and stress (F') conditions are defined.

The problem consists in determining following functions: displacements
ul(t,z) and u'! (¢, z), strains e/ (¢, ) and e!(t,z), stresses o/ (t,z) and o!!(t, z)
satisfying the given boundary conditions on Sp, and Sg,, Sf,,.

The constitutive equation of viscoelastic and elastic material has the following
form:

i
(2.2) O’ij(t, )= / éijkl(t -7, x)%em(n z)dr, z€V.
—00

where the generalized tensor of material is elastic and viscoelastic properties are
defined below:
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0,t<0
(2.2a) Gijii(z,t) = ¢ Diju(z),t >0, z€Vpy
Gijkl(ta "B)at > 07 TE ‘/I

The equilibrium equation for the quasi-static state can be expressed by:
filax € VI
(2'3) Ul.]aj(t3 x) + fl(t’x) = 0’ Where : f'l = { fi”,g; e 1/11

The compatibility equations for the small deformations model are as follows:
(2.4) €ij(t, ) = 0.5[u; (¢, z) + uji(t,z)], zeV=V,uV.

Boundary conditions with the given displacement function ¢; (displacement
boundary conditions) and with the given load distribution function ); (stress
boundary conditions) have the forms:

(2.5) ui(t,z) = pi(t,x), where: ¢; =¢f, z¢€8Sp,,

iI’ e SF[
26)  ounit,a) = dilba),  where: =\ g

nj-being the j-th component of the external normal unit vector.
Finally, reaction conditions occurring between the domains V7 and V;r on the
surface S¢ have the form:

(2.7) ul(t,z) = ull(t,x), for z€ Sc
(2.8) 0,{jﬂ{ﬂ§(t,$) = a{fnfln;-[(t,z), for z¢€ Sc.

Actually, the presented problem by the system of Eqs. (2.2) — (2.8) cannot be
analytically solved. However, some of general approaches for quasi-static vis-
coelasticity are known (see GIORGI and MARZOCCHI {3], FABRIZIO {2]).

2.8. Variational functional for quasi-static boundary value problems and ap-
prozimation of variatonal equation by using finite element method

The defined quasi-static boundary value problems (QSBVP) can be effectively
solved by using the variational formulations and next the FEM approximation.
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The formulated variational functional is treated jointly for viscoelastic and elas-
tic bodies. For the sake of simplicity let us introduce the following additional
notation:

Sp = 8p,USp,;, Sr=8pUSp,, V=V,UVy

(2.9)
V=VX.R+, SD:SDXR+, SF=SFXR+, S=SXR_|.,

where R, - real time - space.
The Washizu-Reissner hybrid, potential energy functional Jy with the La-
grange multipliers has the form (WAsHIzU [12]):

(2.10) Jv(’u,&,O’) = /[0.5@,;]'“ * dE,;j x deg — Tjj * de,-j — (O‘ij,j + fi) * dui]dV
A%
+ /(O'ij’n,j * dp;)dS + /(aijnj — ;) * du;dS, V[’U,, g0 €U X E x S]
SD SF

and yields the solution of the QSBVP.

The main idea of an approximation accepted in the presented paper
(P1SZCZATOWSKI et al. [8]) has been realized by approximation of the V space
by the functions placed in an area of finite elements dividing this space, and
next by approximation of those functions on the nodes of elements. A significant
complicating factor in the formulation is the approximation of the three fields
u,€,0 by up, €, op in the joined functional space U x E x §. It is necessary to
note that approximation includes space V (boundary S) in RV as well as time ¢
in space R.

Let us consider Ex(V) as a finite element of space V and W}, as an approx-
imation of the space W (V, W} (R..)). Joined functional space of displacement
(1 x N), strain (N x N), stress (N x N) fields are approximated by:

Wi o= {[Wa]" x W] V<N 5 (V<]
Let us introduce ,(z) - approximating pollynomial on space variables z =

(z1,2,73) and ay(t) - approximating polynomial on time variable. Approxi-
mate fields u;, €5, 035 of the functional (2.9) can be written as follows:

Uz(.'L‘,t) = Z Qipq’)'p(x)aq(t)a
(pyq)EQh

(2.11) &ij(z,t) = Z EijpgTp(T) g (t),
(r.9)€Qn

aij(xa t) = Z Qiqu’\fp(m)aq(t),
(p$q)th
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where: u, g, g — expansion coefficients, p, ¢ € Qp, — set of the node coefficients
of the meshed area and time coefficients in approximate space such as
ui(z = Tp, t = tg) = Uy, (similarly for ;; and o05). Set Qp is a Cartesian
product , i.e.: Qp = [1...3 Ep] X [0...Np], where p € [1,... 3 Ex], ¢ € [0,...Np]
however Y Ej — number of nodes digitized area and (N, + 1) number of nodes
of digitized time.

The introduced polynomials -y, and a4 define the basis of approximated func-
tional spaces [Wi]", [W;]V*¥, which could be written as follows:

T
(2.12) {7paqei}(p,q)th,z’e{l,...,N}> {’Ypaqeiej }(p,q)EQh,i,jG{l,...,N}’

where: e; = (81, ...,0in)7, 8ix — Kronecker symbol.
All we have to do now is to define the approximation of the given function
and boundary condition in the considered variational functional (2.9), i.e.:

fi(z,t) = Z iipq’)'p(m)aq(t)?

(p$Q)€Qh

(213) "pi(x,t) = Z _"kipq')’p(-’ﬁ)aq(t)a

(P,9)EQR

pi(z,t) = Z f_ipq’)’p(m)aq(t)a
(P,9)€EQn

When we substitude (2.11) and (2.13) to functional (2.10), we obtain their
approximate form:

(2.14)  J(up,en,0n) = Z E [0.5 / éijklékzrséiqu’)’p% * dos * doagdV
(p>q)th ('I‘,S)EQh Vv

- /iirsy-‘ipq’y""ypas * dogdV — /Qijrsiiqu'Yr'Ypas * dagdV
v \%

+ /Qijrsuipq')'rf)'p,jas * daqdv + / TijrsTty (Qipq -9 )'77‘7pas * dagdS

Lipq
\' Sp
- /Z/iirs-@ipq%')'pas * dagdS.
Sp

On the basis of the stationary condition §J = 0 we can write the following,
equivalent system of equations:
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1. Z /'yp,j'yras * dagdV — /nj'yp'yras * do,dS Tijrs
(r,8)€EQn |V Sp

= Z / f irs P YrQs * dagdV + / Qirs'yp'yras * dogdS
(r,s)€Qn |V Sp

2. Z [/ Gijkiyryp * dog * daqu} Ekirs
(T’S)EQ’I Vv

(2.15) - Z [/ P YrQls * daqu] Gijrs =0
(T’s)th vV

3. Z —/'yp’j'y,as * dogdV + /nj’yr'ypas * dogdS | Ui,
(p)Q)th Vv Sp

+ Z [/7,,%013 * daqu] Eijpq
(P9)EQn v

= Y /"J'_‘&pq'YT'YPO‘S * dagdS
(P.9)EQRS,

It is possible to observe that the above system of equations possess the fol-
lowing form:

KUy 4 U2 4 g3 = f1),
(2.16) K@Dy + k22 4 K@3)g = 7,
KGOy 4 gkG2e 4 gBI5 — §O),

K1) k12 g13)

where matrix K = | K& K@2) K@3) | complies with the stiffness ma-
KGL K32 g(33)

trix of the structure determined by submatrices K(7), (1,5 = 1,2,3); (K9 =
(~KGI)T),
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Vectors (in general tensors):
{ }i=1,2,3 { %,7=1,2,3 £,7=1,2,3
U=y £={&j } g={g~ } :
] (p,g)eQn’ P2 (p.g)eQn’ P9] (p,g)eQn
are the sought approximate solutions of the corresponding fields of displacements,
strains and stresses.

From the system of Egs. (2.15) it is possible to deduce formulae for the compo-
nents of submatrices K (/) and also components of generalized forces vector, i.e.:

KU =0}, K ={0],

K13 — /’)’p,j’}'ras * dagdV — /nj'ypfy,as * dogdS| ,
A% Sp

K(2’1) — [0], K(2,2) —_

/ Gijkiyeyp * das * dagdV } :
Vv

(2.17) K23 — !/ YoYr s * daqu} ,
vV
K(3;1) —_ _/"Yp,]"YTaS *daqdv+ / 'n/j')’r’)’pas *daqu )
\% Sp

vV

f(l) — Z /iirsfypfy,.as*daqu—i— /Qirsfyp'yras*daqu ,
(rs)€Qn |V Sk

(2.18)  f@ =,

F® = > /gipq%fypnjas*daqu.
(P9)€EQRS

Let us consider, finally, a case of variational formulation, which is most fre-
quently encountered in FEM analysis, i.e. the formulation in the conditions of
only one field, namely, the displacement field u. The functional of potential
energy that corresponds to the formulation has a much simpler form:

(2.19) J(u) = l Gi ikl * dskl * d&‘i dV — .fz * du,—dV - O;iN4 * du,-dS.
2 J J 777
A% A\ Sr
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Performing discretisation similarly to the Washizu-Reissner case, one formulates
the approximating functions ~,(z) and ay4(t). Thus, the corresponding approxi-
mate values of the vector fields may be expressed in the following way:

U (:L'a t) = Z y’.’ipq’)’p(x)aq (t)a
(paq)th

Eij(x’t) = Z §iqu7p($)aQ(t) = Z @ipq7p,j($)QQ(t)v
(P.9)EQn (P.9)EQR

(220)  ojj(z,t) = Z TipgVp(T) g (t),
(pwq)th

flmt) = Y f wl@agl),

(P,9)EQn

pi(l‘at) = Z Bipq'Yp(w)aq(t)’
(P.9)EQn

After inserting Eq. (2.20) into Eq. (2.19) we obtain the following form of the
approximation functional:

221) Juw)= D Y !

(paQ)th (T',S)EQh

Gijki Uy sUipg Vrlp,j * dos * dogdV

v

- /iirsﬁijq')’p’)'ras *daqu:I - /Eirsﬁipq')'p')'ras *daqu-
A" Sp

From the stationary condition §J(uy) = 0 we have the system of equations of the
form:

(2.22) Ku=F,

i.e.:

> [ / GijktYrs Ip,j * dos x doagdV } Ugrs
(T)s)th vV

Z /iir57p7ras * daqdv + /Birs7p7ras * daqu
(rs)eQn |v Sp
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where the stiffness matrix and the force vector are expressed as follows:

(2.23) K = {/ Gijktyrs byp,g * dos * daqu} ’
v

(224) E = Z /iirsvpvras * dogdV + /]_}irs'yp'yras * dagdS
(rs)EQn |V ]

Equation (2.22) is the fundamental expression used in the numerical FEM pack-
age that is used during the realisation of the numerical calculation, where the
generalized material tensor G describing the time-variable viscoelastic properties
takes the particular form as shown by (2.1).

3. RESULTS

The above model was subjected to computer-aided strength analysis using the
ANSYS system. Changes with time of the Huber — von Misses stresses (c%9"),
strains (¢°9) and strain energy density (A) were observed. The dimensionless
coefficients were employed in the description:

t t ¢
(3.1) =i /ety W0 =00y, A= A/Aw

to to ’

which represent the relation on of the value of a given parameter at time ¢ to its
value at time to. Strain energy density in ANSYS system is calculated from the
following relationship:

1 (1NNT o :
(3.2) A= Z {o}" {e*}vol; + EP

V0l

where: NINT - number of Gauss points in volume of a given finite element, vol;
— volume surrounding i-th Gauss point, vole; — volume of element, {0} - stress
vector, {e®} - elastic strain vector, EP! — plastic strain energy.

In such a system subjected to a fixed load, as time passes, a process of bone
creep occurs in both the cortical and trabecular bone, though with different
intensities in each of them. Trabecular bone creep occurs quickly and practically
stabilises after several minutes, whereas significant strain changes can be observed
in cortical bone for a much longer time of the order of several dozens of minutes or
even several hours. The distribution of dimensionless coefficients (as in Eq. (3.1))
for time t; = 160 sec is shown in Fig. 5 (the implant made of titanium alloy,
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support of the endoprosthesis through an intermediate layer of trabecular bone
- model M1).

During this period, trabecular bone creep dominates (Fig. 5a). The increase
of strain, however, in the major part of the volume of tissue, does not reach the
value resulting from the applied model, due to internal redistribution of stresses
in the implant — trabecular bone - cortical bone system (Fig. 5b).

a)

160 .eqv
0€

1,300

F1c. 5. Distribution of coefficients of equivalent strains (a), stresses (b) and strain energy
density (c) showing changes occurring in the femur - hip joint endoprosthesis system for the
first 160 sec of load (support only by trabecular bone — model M1, cross-section of the model).

The changes observed over longer periods of time occur much more slowly
than in the first two minutes. A comparison of strains, stresses, and strain energy
density at time 3 = 10000 sec (about 2 h 45’) with the state at time ¢; = 160 sec
is shown in Fig. 6.

During this period, the cortical bone creep phenomenon plays a decisive role.
Increase of strain in the area of cortical tissue reaches about 10%. The stress
redistribution in the implant — trabecular bone — cortical bone structure is a
result of the bone creep. However, this redistribution is of a different character.
In the cortical bone region, there is a decrease of stresses, these being taken over
by the interior layer of trabecular bone or implant.
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In the case of the change of the endoprosthesis stiffness (the Co-Cr-Mo alloy in
place of Ti6Al4V), significant changes in the distribution of elastic stresses and
strains in the bone implant system are observed. The stress shielding effect is
more evident. The decrease of strain in the upper regions of the femur reaches
20% in comparison with the system containing the titanium implant. Also, a
concentration of strains in the distal end of the zone of implant-bone contact is
visible. A comparison of the pure elastic behaviour of the system with an implant
made of Ti6Al4V alloy with the situation, wherein the prosthesis material was
changed to Co-Cr-Mo alloy, is presented in Fig. 7. Dimensionless coefficients,
analogous to (3.1), have been used but now place of different time points take
different materials. In both cases model M1 (supported only by cancellous bone)
has been used.

An observation of the rheological processes allows us, however, to assert that
the viscoelastic processes taking place in the bone-implant system for both types
of prosthesis materials are similar. The intensification of the processes of strain
redistribution in the upper parts of the system can be observed, the cause of
which is a greater elastic disproportion between the stresses transmitted by the
bone and the implant, yet these differences are very small, not exceeding several
percent.

a)

160 .eqv
0€

0,990
1,003
1,015
1,028
1,040
1,053
1,065
1,078
1,090
1,103
1,115
1,127

_._;_.
(e NeNe]
W WN
@ OoON
H—l Bl
290 Oc
PR 0
c wo.

IIMRRRECCEEER

EENNEECT [

LEENNNRRRECEEEEE

] 0,948 1,140
1,094 0,965 1,153
1,102 0,981 1,165
1,110 0,998 1,178
1,118 = 101 1,190
1,126 o B 1,202
1134 HEEE g 1047 1,215
1,142 g 1064 1,228

1,240

Fic. 8. Distribution of coefficients of equivalent strains (a), stresses (b) and strain energy

density (c) showing changes occurring in the femur - hip joint endoprosthesis system for times

from 0 to 160 sec of load in the model with partial support by cortical bone (model M2 -
cross-section of the model).
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The course of rheological processes is influenced to a much greater extent by
the method of implant support. In the case of direct contact between the pros-
thesis stem and cortical bone, which may occur in practice, much lower elastic
stresses and strains appear in the upper part of the femur than in the case of
support through an intermediate layer of trabecular bone (the difference reaching
even 60 — 70%). With time, a redistribution of stresses between trabecular and
cortical bone takes place, and there is an increase in the significance of redis-
tribution in the bone-implant system. This increase of stress in the upper part
of the stem can reach 20%. If we consider that the initial proportions between
the load transmitted by the bone and the implant are disadvantageous, the later
increase in the role played by the stem must lead to a deepening of the stress
shielding phenomenon, which in the long term may result in the atrophying of the
bone tissue in the proximal region. Distribution of coefficients of effective strains
(a), stresses (b) and strain energy density (c) in the bone-implant system for an
implant partly supported by cortical bone (model M2) are given in Fig. 8 (short
time of observation: 0 — 160 sec) as well as in Fig. 9 (long time of observation:
160 — 10000 sec).
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Fi1G. 9. Distribution of coefficients of equivalent strains (a), stresses (b) and strain energy

density (c) showing changes occurring in the femur — hip joint endoprosthesis system for times

from 160 to 10 000 sec of load in the model with partial support by cortical bone (model M2 -
cross-section of the model).
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4. CONCLUSION

From the presented numerical results, it appears that the implant — femur sys-
tem, subjected to strength analysis taking into account the viscoelastic properties
of bone tissue, displays a series of differences from a system analysed exclusively
in terms of elastic deformations. In the case of quasi-static loads, as analysed
in this paper, the observed changes are related primarily to bone tissue creep,
which results in the redistribution of stresses within the system. Especially in
the proximal part of the system, the implant takes over the major part of the
load, and this is an undesirable phenomenon. It increases the so-called stress
shielding effect, resulting in the atrophy of bone tissue in regions of excessive
unload. Consideration of the viscoelasticity of bone tissue makes it possible not
only to estimate quantitatively the changes of stress and strain occurring during
the time of load, but also to analyse how the heterogeneous bone structure re-
acts to the applied loads and to describe the character of the processes taking
place in such conditions. This facilitates a more complete understanding of the
functioning of the implanted joint, and opens the way towards the improvement
of endoprosthesis construction. -

It is necessary to emphasise that the quasi-static analysis presented in this
paper is insufficient, and further work taking dynamic loads into consideration is
necessary. Another critical problem is the need to consider more realistically the
aspect of contact between the implant stem and the bone surrounding it.
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