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In the paper we present the identification problem arising in modelling the processes of
nucleation and growth of voids in the elastic-plastic media. Identification is carried out on the
basis of Fisher’s data measured on the cylindrical steel specimens subjected to the uniaxial
tension. The identification problem is formulated as the standard nonlinear regression problem.
Our aim was to select appropriate formulae of the material functions appearing in the poros-
ity model in the right-hand side of the differential equation, and to identify their unknown
parameters. The resulting nonlinear regression problem was solved by means of the global op-
timization method of Boender et al. As the local minimizer we have implemented the modified
famous BFGS quasi-Newton method. Modifications were necessary to take into account box
constraints posed on the parameters. As the directional minimizer we have prepared a special
procedure joining quadratic and cubic approximations and including a new switching condi-
tion. We have tested two variants of the porosity model; in the first one with variable shape
of the material function g, and the second one — with constant g. The results suggest that the
model with material function g = 1 describes well the nucleation and growth of voids. However,
our attempt to identify that constant has brought an unexpected value smaller than 1, and
approximately equal to 0.84.

Keywords: plastic flow of porous media, material functions identification, global optimization,
nonlinear regression, nonlinear programming.”

1. INTRODUCTION

The model of the nucleation and growth phenomenon is assumed in the form
of an ordinary differential equation connecting total porosity with the equivalent
plastic strain. The right-hand side of the equation is the sum of two terms. The
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first one represents the nucleation of voids and contains the material function h
while the second represents the growth of voids and contains the material func-
tion g. Our aim was to select appropriate formulae of those material functions
and identify their unknown parameters.

The identification problem is formulated as the standard nonlinear regression
problem where we minimize the sum of squares of the differences between the
calculated and measured porosity values, i.e. the mean squares function (see for
details Sec. 2).

The resulting nonlinear regression problem was solved by means of the global
optimization method of Boender et al. (see Subsec. 6.1). As the local minimizer
we have implemented the modified, famous BFGS quasi-Newton method (see
Subsec. 6.2). Modifications were necessary to take into account the box con-
straints posed on the parameters. As the directional minimizer we have elab-
orated a special procedure combining the quadratic and cubic approximations
and including a new switching condition (see Subsec. 6.3).

We have tested two variants of the porosity model. The first one with variable
shape of the material function g and the second one with constant g. In the
second case we have assumed first ¢ = 1 and afterwards tried to identify the
constant. To obtain the calculated porosity parameter, £, we had to solve the
poorly conditioned differential evolution equation. Finally we have decided to
solve it by means of the Rosenbrock method for stiff differential equations (see
Subsec. 6.4).

The resulting least squares problem is introduced in Sec. 2. The material
functions formulae are described in Subsec. 4. The data used for parameter
estimation are presented in Sec. 5. The computational results are shown and
discussed in Sec. 7. Some conclusions and observations are also stated.

In Tables 1a, 2a, 3a the “best” minima found for each interval are collected.
The presentation of the whole set of local minima is restricted to three due to the
lack of space (see Tables 1a, 2a and 3a). Finally, Sec. 8 contains some concluding
remarks.

2. FORMULATION OF THE IDENTIFICATION PROBLEM

Our nonlinear regression problem is formulated as usual. We minimize the
sum of squares of the differences between the calculated and measured porosity
values, i.e. the mean squares function

(2.1) min||Y - Y|,

where V' C IR™ denotes the set of admissible parameters values (n is the num-
ber of the unknown parameters to be identified). Substitution of the formula
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Y; = F(&,z) into (2.1) yields

M
. - - 2
(2.2) ;%1‘1/1;{}’, F(&y,z)}".

Usually the LEVENBERG-MARQUARDT method (cf. LEVENBERG [11], MAR-
QUARDT [12]) is used to minimize the mean squares function with respect to
the unknown parameters to be estimated.

3. POROSITY MODEL

3.1. Porosity evolution at the neck

In the following considerations the uniaxial test is assumed for room tem-
perature. We assume, following HILL [10], that after a neck has been formed in
a cylindrical tensile specimen, the distribution of the stress across a transverse
section is not uniform. Our analysis is based on the constitutive relation for the
porous plastic solids. We put it into the form introduced by RUDNICKI and RICE
[18].

We have assumed an augmented version of GURSON’S porous material model
[9] with the following porosity evolution

(3.1) E=h tr(eDP) + g(1 — £)tr(DP),

1
1-¢
where h, g are the material functions, €, is the equivalent plastic strain, o is the
Cauchy stress tensor, DP denotes the plastic rate of the deformation tensor.

We have simplified our set of differential equations assuming the Bridgman

solution. As the result, to obtain the calculated porosity parameter we had to
solve only one poorly conditioned differential evolution equation.

é 1 Ozz Tyy 1
3.2 == |h—— [ M=+ = +1 1- A A 1 —
( ) gp 1—'5 1(7.?,2:_'_ 20'zz+ +g( 5)( 1+ 2+ ) A
where
s B Bl X = 2[00)? + (0)? + 1)
! Efz’ 2 Egz 3 ' ’ .

We assume that h and g are functions depending on plastic strain and un-
known parameters.
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3.2. Stress state at the neck

Further changes in the porosity model are introduced assuming the Bridgman
solution for the stress state at the minimum section of the tensile specimen.
Equation (3.2) is valid everywhere in the neck of the tensile cylindrical specimen.
Therefore it suffices to identify material functions parameters in the central point
of the neck. In what follows we shall restrict our considerations to that central
point (with z = y = z = 0). According to Bridgman, the analytical expression
for the stress depends on the matrix flow stress & and the geometry of the neck -
R/pr, where R is the radius of the minimum section, and pg is the neck contour
radius

2
Ogx = Oyy =7oln (R 2+‘20§ R)
2
o= (1 (g 2))

In general, the stress state in the minimum section in the neck, according to
Bridgman, depends on the distance to the z axis. The distance to the z-axis
does not appear in formulae (3.3) because we consider exclusively the central
point of the neck.

We have assumed furthermore as in SAJE, PAN and NEEDLEMAN [19] that

(3.3) for z,y, z=0.

/—'% = 0‘833(51, —0.2), for & >0.2,
(3.4)

R _ -

PR = 0.0, for € <0.2.

Taking Eq. (3.4) into account in the Bridgman solution, we obtain for ax-
isymmetric tension

(3.5) Ozz — Iyy =\
T2z Oz2
where
R? +2Rpr R? 4+ 2Rpp
3.6 A=In| ———— 1 _— .
(36) " ( 2kpr ) T 2Rpn

Furthermore, we have assumed the constitutive relation for the porous plastic
solids introduced by GURSON [9]. This constitutive relation can be put into the

form introduced by RUDNICKI and RICE [18], EZ = ';TPiijl gkl, where & is
the Jaumann rate-of-change of the Cauchy stress. If we assume that the porous
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material yields in accordance with the GURSON [9] criterion, the constitutive
relation can be expressed as

. 1 /35;
(3.7) Efj=ﬁ<a2w - )lea ;
where S,‘j =035 — %O'kk(si]‘ and
kk
(3.8) a = £sinh ( L ) :
Therefore finally for our coordinate system we obtain
(3.9) Eg’?:,\l:é"gy: , = Sz oo
' E?, E%, 35S, +da

Precise calculation of H and Qy; is not necessary because these quantities are
eliminated from the above formulae.

4. MATERIAL FUNCTIONS

We have investigated many forms of the material functions h and g and their
combinations. There exist certain requirements on the shape of the h function. As
the first function satisfying them we have used the Gauss normal distribution
function as proposed by CHU and NEEDLEMAN [4]. Usually in the literature,
the material function g is taken to be equal to 1 also in models containing the
nucleation part. We have allowed varying shape of the material function g as
proposed in PERZYNA and NOWAK [15]. We have used the following formulae
for the material function h:

e Gauss normal distribution function

_ 2

_ ay 1 ep—cl]
4.1 hi1(ép,a1,b1,¢1) = ——=—¢e —— .
(4.1) (& anbu ) biv2r xp( 2[ b )

All parameters of function h have their mechanical meaning in that case.
Namely, a; denotes the maximum value of the porosity parameter, b; is the
width of the voids distribution region, and ¢; represents the value of the
equivalent plastic strain €, at the moment when the porosity parameter
reaches its maximal value.

e Power exponent function

(4.2) he = a; (ép)bl exp(ci1&p).
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¢ Shifted hyperbolic tangent
(4.3) hy = 0,1[1 + tanh(blgp + Cl)].

The second material function g describing the growth of microvoids must be
uniformly equal to 1 when initial void or voids are isolated in an unbounded
matrix. It means that voids do not interact, no nucleation of new voids and no
coalescence of voids in the growth process are considered. Those three phenom-
ena are closely interrelated and can occur simultaneously. Unfortunately, the
mechanical interpretation of the parameters is not so clear for that function.

We have tested two general functions g:

e exponential function

(4.4) 91(Ep, ag, by, c2) = azexp [ba (&,)7],

e square form of function g

(4.5) g2 = a2 \/(Ep)2 + b2 (&) + c2,

¢ hyperbolic function

a2

4. =

e constant function with constant equal to 1
(4.7) g4 =1,

e constant function with the identified constant
(4.8) gs = az,

o linear function
(4.9) g6 = a2 + by * &p.

In the formulae introduced above ay, by, c1, a2, ba, co are the unknown parame-
ters.

We have tested all possible combinations of functions h and g. The meaning
of particular cases is summarized in Table 1.

This means that for instance, Case Al corresponds to the identification with
the Gauss normal distribution function used as the nucleation material function
h and exponential function used as the material growth function g.
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Table 1. Summary of cases notation

g-function
gL | 92 | 93 | 94 | 95 | Y6
hi | A1 | A2 | A3 | Ad | A5 | A6
ho | B1 | B2 | B3 | B4 | B5 | B6
hy3 | C1|C2|C3|C4|Ch|Cb6

5. BRIEF DESCRIPTION OF FISHER'S DATA USED FOR ESTIMATION

Our identification is based on the data prepared by FISHER [6]. In J.R.Fisher’s
experimental investigation, two carbon steels with 0.17 (type B) and 0.44 (type W)
weight percent carbon, respectively, were used for the quantitative studies of mi-
crovoid nucleation and growth. The samples were subjected to the following
sequence of heat treating operations. Rod sections of approximately 0.0826m in
length were austenitized at 50°C above the A3 temperature for 1.5 hours. The
austenitized specimens were then rapidly quenched in ice water in order to obtain
fine bainitic or martensitic structures. The quenched rods were then tempered
at 700°C for a) 1 hour b) 24 hours and c) 120 hours, in order to obtain differ-
ent particle size distributions in specimens of the same type. The heat-treated
rods were machined into standard tensile specimens of 0.0254 m gage length and
0.0064 m diameter. All testing was done at room temperature. Metallographic
observations were made on undeformed and deformed specimens using both the
optical and electron microscopy. For each specimen, a series of transverse sec-
tions was prepared corresponding to successively smaller axial distances from
the minimum cross-section. Each new section was obtained by grinding to the
next premarked position and thus the previous sections were destroyed. There-
fore, all data required from a given section had to be obtained before prepara-
tion of the succeeding one. Each section was carefully polished and etched after
preliminary use of various grades of abrasive papers. The microstructural pa-
rameters were determined in both the deformed and undeformed specimens. For
the deformed specimens the areal density of voids, na, and the volume fraction
of voids, £, were obtained from transverse sections by standard metallographic
techniques performed on scanning electron micrographs taken at a magnifica-
tion of 2000 times. It is observed in Fisher’s experiment that the voids tended
to have elliptical cross-sections similar to those of the particles, as might be ex-
pected since the particles were nucleation sites for these voids. The total volume
fraction of voids, £, and the nucleation part of volume fraction of voids, {7, ob-
tained by FISHER [6] are plotted as the function of equivalent plastic strain €,
in Fig. 1.
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Total, nucleation and growth void volume fractions, Fisher's data [13]
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1. Total void volume fraction, ¢ (data from FiSHER [6] for the Bl-type steel) and the

calculated void volume fraction due to nucleation, £", and due to growth, &9, as a function of

equivalent plastic strain, &,.

In Fisher’s experimental work in the summary it was observed that:

Voids are generally associated with particles of greater than average size.
They are rarely formed at very small, isolated particles, even for the severe
state of deformation which exists in the neck of a tensile specimen.
Particles situated on ferrite grain boundaries are favored sites for the nu-
cleation of voids.

Voids often form by decohesion of the interfaces of particles which are
closely spaced along the tensile axis.

The maximum gradient in the void nucleation profile occurs at strains of
é = 1.15 and €, = 0.80 for B and W-type specimens, respectively.

Voids elongate in the tensile direction but maintain elliptical cross-sections,
indicating that plastic hole growth, and not the ferrite grain boundary
separation, dictates the final void geometry.

Non-equiaxial or irregularly shaped cementite particles are often subject
to internal fracture. The resulting cracks tend to be oriented normally to
the tensile direction and may sometimes be associated with boundaries
between contiguous particles.
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6. NUMERICAL METHODS

We have used the traditional least squares formulation of our identification
problem. We minimize the mean squares error between the calculated and ob-
served porosity values Eq. (2.2). Our earlier experience with the total porosity
model [14] has presented the existence of many local minima in our problem.
Therefore we have used for calculations our own implementation (standard ANSI
C language) of the global minimization method of BOENDER, RINNOY KAN,
TIMMER and STROUGIE in the form presented in TORN and ZILINSKAS [21].
The details of the method are presented in [14]. In this paper we shall restrict it
to the necessary minimum.

Locally we have used the BFGS quasi-Newton method with the numeri-
cal gradient estimation. The BFGS method is an unconstrained optimization
method; however, in our implementation we have introduced box constraints on
the parameters.

Our local minimizer makes use of a directional minimization method com-
bining three different approaches — via the quadratic approximations along the
search direction, cubic approximations and bisection. Paper [14] does not present
its details. Therefore it is included here. Specific properties of the nonconvex uni-
directional function has forced us to prepare a new switching condition between
the three aforementioned approaches.

The third computational aspect is connected with the ordinary differential
equation to be solved. It contains singularity in its right-hand side and it has
led to difficulties with its numerical integration. The Runge-Kutta methods with
automatic step-size selection has locked themeselves in a kind of cycle. Therefore
we have decided to choose the Rosenbrock method for stiff differential equations.

6.1. Global optimization method of Boender et al.

Global optimization method of BOENDER, RINNOY KAN, TIMMER and STRO-
UGIE [2] was selected by us as the tool for solving our identification problem. To
simplify the presentation let us assume that we consider the following optimiza-
tion problem

6.1 i
( ) xGI‘I/uCnR" f(X)

where: vector xT=(ay, by, ¢1, a2, by, c2)(xT - denotes the transposition of the

column vector x), n=6 (sometimes 3 or 5), and V denotes the set of feasible
values of parameters.

The global optimization method implemented by us belongs to the group of
the so-called clustering methods and is a combination of sampling, clustering
and local search.
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Detailed structure of the algorithm:

Step 0. Select N — number of sample points generated in one phase and 7~y
— fraction of the sample points with the smallest function values. X+ -
the set of all local minima found so far; X(!) — the set of sample points
leading to a minimum z € X*. Choose parameter ec; > 0 used in the
clusterization.

Step 1. Select N randomly generated points x!,x2,...,xV € V. Let fi = f(x?)
fort=1,...,N.

Step 2. Construct the transformed sample by taking the fraction -y lowest points
of the current sample (their number is equal to NT), performing one step
of the steepest descent method and replacing those points by the resulting
points. Drop the rest of the points.

Step 3. Apply the clustering procedure to the transformed sample. The elements
of X (set of global points — local minima found up till now) are first chosen
as seed points followed by the elements of X (1) (set of sample points leading
to a minimum z € X 7).

If all points x!,x2,...,xN" are classified then STOP, otherwise go to the
next step.

Step4. Fori=1,...,Nt do
if x* is classified neither to Xt nor to X() then

a) apply the local search procedure starting from x* to obtain x**,

b) if x** € X* then add x* to X() (new seed point leading to an existing
minimum),

c) if x!* ¢ X+ (x** is a new local minimum) then add x** to X+ and x* to
xW,

Step 5. Return to Step 1.

The described global optimization method characterizes convergence with
probability one. It is typical for all methods involving stochasticity. Generally,
involving stochastic elements, one sacrifices the possibility of an absolute guar-
antee of success. One can only get a result where the probability of sampling a
point in the neighbourhood of the global optimum x* tends to 1 if the number of
sample points in the global phase is increased. Under the notion “neighbourhood”
we understand here the following set of points:

(6.2) Af(x*) ={x e V;||x—x"||< e} forsome e¢> 0.
This result can be proved under mild assumptions on the minimized function

and the sampling distribution. If the sampling distribution is uniform over V' and
function f is continuous, then the result is even stronger. Namely, the sample
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point with the lowest function value tends to a point with minimal function value
with probability 1.

Hence, the global phase could asymptotically guarantee the success. How-
ever, any method restricted only to sampling could be very time-consuming and
would lack in efficiency. To increase the efficiency while maintaining the asymp-
totic guarantee of success is one of the challenges in the global optimization. In
clustering methods one tries to increase efficiency by including the local search
phase.

For clustering, a kind of a nearest neighbor method was used. The unclustered
points are added to a cluster, initiated by a seed point either in X+ or n X1 if
the distance to some point in the cluster is less than an & priori given distance eg).
Hence, accordingly, statements x € X+ and x € X(!) should be understood in
this way. As the result, we are storing local minimizers (X ) and points leading
to a minimizing point in X (1),

As the stopping criterion we require the fulfillment of one of the following
conditions:

e all points from the transformed sample could be classified;

e either the number of local minima found or the number of points leading
to a minimum is greater than their maximal permitted number;

e either the number of global minima found or the number of global seed
points (i.e. sampling points leading towards a global minimum) is greater
than the user-defined maximal value.

6.2. Local minimization method

As the local minimizer we have applied a specialized variant of the BFGS
(Broyden, Fletcher, Goldfarb, Shanno) method for unconstrained optimization.
It belongs to the class of the so-called quasi-Newton methods (see for instance
FLETCHER [7], FINDEISEN et al. 5] or STACHURSKI and WIERZBICKI [20]).

The implemented algorithm is as follows:

Step 0. Specify bounds x” and xY on variables. Select a feasible starting point
x0 satisfying the box constraints. Choose accuracy parameters — egrgs > 0,
w € (0,1). Calculate values of gradient p° and function fO at the starting
point x%. Take H? = I where I is the identity matrix, k := 0.

Step 1. Calculate the current search direction according to the following for-
mula:

d* = —Hp*.
Step 2. Find 7 < 0 such that the Armijo step-size rule is satisfied, i.e.

(V5 (xk + 7)) Td¥|
—(VIGETdE =Y
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Step 3. Calculate the next point
xFH1 = xk 4 7k dk,

and the gradient p*+! at the new point.

Step 4. Check the stopping criterion (the Kuhn-Tucker conditions). If the stop-
ping criteria are satisfied then STOP.

Step 5. Compute the gradient r* = p¥*! — p* and independent variables s* =
x*+1 — xF differences. Update the approximation of the inverse Hessian
using formula (6.4).

Step 6. Set x*¥*1 = x* pk*tl = p*. Increase the iteration index k by one.
Calculate f(x*). Return to Step 1.

The original BFGS method starts from a given starting point 2° and realizes
typical for the gradient unconstrained optimization steps of the form

(6.3) xFl = xF 4 7%« gk,

where d¥* = —H*V f(x*) is the search direction and 7 is the stepsize coefficient
selected in the directional minimization function. It utilizes the gradient and
independent variables differences to update the approximation H¥ of the inverse

of the second-order derivative (V2 f (x’“))—1 of the minimized function according
to the following formula:

(6.4) H*!=HF+ (1 + (rk)THkrk> ()

(k) Tsk ) (ek)T gk
sk (r%)" HF + HErk (s5)7

(rk) T sk

where r¥ = pFt! — p¥ g% = xk+1 _ x* and pk = Vf(x*).

Iterations of the local minimizer are stopped when the norm of the gradient
(derivative) of function f is smaller than a given accuracy egrgs > 0. In the
directional minimization we have used successive quadratic approximations of
function f(7) = f(x* + 7 * d¥). Search along the direction is stopped when the
so-called Armijo step-size rule is satisfied, i.e.

ldf (r*)] _ |(Vf(x" + 7°d"))" d"| < w, for some w € (0,1).

T R IO

Parameters egrgs and w are specified by the user.
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We have modified this general scheme of the minimizer to take into account
the box constraints on variables. This is in accordance with the modern optimiza-
tion routines which are usually implemented so that they minimize a function
subject to box constraints, i.e. solve the problem

Minyegr f(x)
(6.6) x{‘leU, fori=1,...,n.

Our implementation is characterized by the following features:

e We maintain the inverse Hessian approximation in the whole space;

e Generate the descent direction in the whole space;

e Carry out the directional minimization in a specific way.

This differentiates substantially our approach from the typical active set
method for problems with linear constraints.

It was also necessary to modify the stopping criterion. The Kuhn-Tucker
necessary optimality conditions in the case of the box constraints take the form:

(i) The following inequalities should be satisfied on the boundaries

- k+1 _ L k+1
if ;7" =z; then p;™ >0,

o okl _ U k+1
if ;7" =zy then p;7" <0,
for i=1,...,n.
(i) The norm of the gradient in the subspace of variables that are not on their
bounds in the new point x**! should be equal to 0. Of course, in practice
we verify whether it is sufficiently small.

6.3. Directional minimization

As we have seen in the previous subsection, it is necessary to minimize func-
tion f along the the search direction d* at each iteration, i.e. to solve the fol-
lowing problem:

(6.7) min f(r) = f(P(x* + rd"))

where P represents the projection operator on the set of feasible points defined
by the box constraints.

Function f is not necessarily convex. Typical gradient directional minimiza-
tion algorithms make use either of the quadratic or the cubic approximations of
function f. They are usually based

e in the case of quadratic approximation — on function values at two points
and gradient value at one of them
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e in the case of cubic approximation — on function and gradient values in
two points.

They are numerically correct if they are not too close to the linear approximation.
If the second point 7 is very close to the tangent line to the f function graph
at the first point 77, then the best quadratic or cubic approximation is the
linear one. Furthermore, if f is convex for 7 > 71, close to 77 then, in our
opinion, quadratic approximation is the best one and in the opposite case — the
cubic approximation. Therefore we have decided to verify the placement of 7
and f(7) with respect to the above mentioned tangent line. We select quadratic
approximation when point 7, f(7) lies significantly above the tangent line, cubic
approximation if it lies significantly below, and bisection if none of those two
placements occurs.

Therefore, the choice depends on the mutual relation between the function
value in the new trial point 7 and value of the function linearization built in the
left-hand bound of the search interval 7y, calculated at the same point (7 > 71)

e Cubic approximation if

(6.8) Frn) + L+ p)7f'(11) > f(7).

o Bisection if

(6.9) Flre) + U+ p)7f" () < f(7) < Flre) + (1 = p)7f'(72).

e Quadratic approximation if

(6.10) Fr) > f(r) + (1 = p)rf' (1)

The introduced selection criterion is very similar in its geometrical interpretation
to the famous GOLDSTEIN conditions (cf. [5, 7, 8, 20]) used as the stopping
criterion in many directional search algorithms. However, in the GOLDSTEIN
tests the two linear cuts are above the tangent line and they serve a completely
different purpose — to stop the directional minimization.

As the stopping criterion in our directional minimization routine we have
used the so-called Armijo step-size rule. It has been formulated above (see for-
mula 6.5). Therefore let us omit it here.

6.4. Integration of the ordinary differential equation

The considered model has the form of an ordinary differential equation. The

right-hand side of Eq. (3.1) contains a singularity. Presence of the term %

causes the right-hand side to vary rapidly when ¢ approaches 1. Generally, it
has appeared that our equation is stiff and standard Runge-Kutta methods with
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automatic selection of the step-size coefficients failed in our calculations. Obvi-
ously, we could apply a Runge-Kutta method with constant step-size, however
we have decided to postpone that possibility due to the difficulties with the
accuracy specification.

As a result, we have assumed that our equation is stiff and selected a Rosen-
brock method for solving stiff sets of ordinary differential equations (see Numer-
ical Recipes [17]).

7. NUMERICAL RESULTS

We did not know the precise range of material parameters. Therefore we have
assumed at the beginning a broad range of feasible parameters, e.g.:

Case

Al:  0.01 <ar < 005, 02 <h< 06, 09 << 13
1.0 <as < 1.5, 001 <bh < 03, 001 <e< 02

B1l:  0.0001 <a; < 0.1, 1.0 <b)< 15, 10 <¢< 14
0.01 <ay < 0.6, 0.1 <bh< 05 08 << 10

Cl: 0001 <a < 01, 25 << 50, 40 << 001
1.0 <ag < 2.5, 3.0 <bhh< 45

At the next steps we have used small intervals containing the previously
found optimal values of parameters as their new feasible ranges. The presented
approach is a final result of our long experience with older variants of the pro-
gram. We have encountered many computational difficulties during our exper-
iments. Numerical difficulties encountered in the integration of the differential
equation were the most serious problem in our calculations. Furthermore, at the
beginning we did not know the range of the identified parameters. We know only
some mechanical interpretation of the normal distribution A function. Such inter-
pretation does not exist with respect to other forms of h function and all forms
of the g function. In such situation it was also impossible to know in advance
the range of the parameters. The bounds presented above we have obtained via
a long process of computational attempts.

The results are collected in Tables 2 and 3 with all the tested cases A1-A6,
B1-B6 and C1-C6. We have included for each case only the information on the
three best minima found. Each line of Table 2 contains the following information
about a minimum:

e the functional values,
e the corresponding values of parameters.

We are dealing with a statistical information and the problem of finding the
best fitting model of the nucleation and voids growth phenomena. It is common
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in estimation problems to add some statistical indicators pointing whether the
model fits well the data from the statistical point of view.
Table 3 contains the corresponding, frequently used statistical information:
e Standard deviation s., where

(=M, - 73y
M

(7.1) St =

M  is the number of observations,
where: Y; are the observed values of the output,
Y; are the calculated values of the output

(7.2) Y; = F(y,x) fori=1,...,M.

e Weighted standard error sey

S
(7.3) Sew = 76 ,
where Y is the mean value of the observed output
M
[xH, vi]

e Correlation coefficient ry, ¢ between the observed and calculated output:

(7.5) vy = iAil i) (Z _ ?) )

1 =\ 2
M F\2| 2 M Y &
[ i:1(Yi"Y)] [ i:1(Yi—Y>}
where V is the mean value of the calculated output

(7.6) ?:Léﬁﬂ

[NE

Correlation close to 1 points that Y and Y are well correlated.
e Values of the t-criterion, i.e.

(7.7) ty = —/M—1,

z
Sz
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where
M
(7.8) Z= R
M b
(79) 2; = }/’L - }.}ia
and
Ziﬂi1 zi)z
xl, o - ()
(7.10) S2 =

? (M —-1)

This last value allows us to test the hypothesis that the expectation of the
error z =Y — Y is equal to zero under the assumption that the error distribu-
tion is normal and o2 is unknown (see AFIFT and AZEN, [1]). In such a case ts
determined by formula (7.7) has the Student t-distribution with M —1 degrees of
freedom. Let 8§ = E(z) be the expectation of z. We test the H, hypothesis that
the expectation 6 is equal to zero, i.e. Hy : 8 = 0. As the alternative hypothesis
H, : 0 #0 is used. Then the P-value is

(7.11) P =2p:(t(v) > [to]).

Hypothesis H, is rejected if P < k, where x denotes the level of significance.

Instead of (7.8), one can check equivalently whether ¢5 belongs to the interval

(7.12) (—ti—w2(M = 1), )o(M ~ 1)),

where ¢;_, (M —1) denotes the critical value with the level of significance equal

k. For M = 30 and the level of significance k = 0.1, the critical value is
(7.13) t1-x/2(29) = 1.697.

We have depicted some of the results graphically in Figs. 2 and 3. Figure 2
presents the resulting dependence of the total porosity differences (observed mi-
nus the calculated values) with respect to the equivalent plastic strain €, for all
Cases A. Figures 3 (a — f) contain graphs of material functions h and g showing
the dependence of their values with respect to the equivalent plastic strain &,.
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x 107 Cases: A1, A2, A3, A4, AS and A6
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Fi1G. 2. Differences between the experimental and calculated total porosity versus equivalent
plastic strain ép.

Cases A1 - A6: h-normal distribution functions @ - growth functions
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FiG. 3. Graphs of the material functions values with respect to the equivalent plastic
strain &,.
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8. CONCLUSIONS AND COROLLARIES

Our computational experiment has proved the existence of many local min-
ima in our nonlinear regression problem. Many of them are acceptable with re-
spect to the mean squares error taken by us as the fitting measure of the model.
The best fitting error is of the order of 10~7 (see Table 2). Fitting error of order
10~7 we have observed in all cases assuming h equal to the Gauss distribution
function (Cases A1-A6). The best results were observed in Cases A3, B3 and
C3 (in all of them g was the hyperbolic function) — all best fitting errors were
of order 10~7. This leads to the corollary that hyperbola is the best choice for
the growth function g. Among them the nucleation function A in the form of the
Gauss distribution function seems to be the best selection.

We have found several other local minima of the least squares function which
are slightly worse with respect to the fitting error. This fitting error is also
relatively good (from 107 to 107°) and the parameters are reasonable from the
mechanical point of view. Table 2 contains three of them for each particular case.

Cases Al, A2, A3, B1, B2, B3, C1, C2 and C3 suggest (see Fig. 3) that
it would be good to try to identify the model using constant function g (see
Tables 2 and 3). In many cases function g was very flat. We have tried two
variants. First constant ¢ = 1 with an & priori specified value of the constant.
Value 1 has been suggested by many authors. Computational results indicate
that material function g =1 is also a relatively good choice - the fitting error is
only slightly worse (best error order is 107 in Case A4 and 107% in Cases B4
and C4). In the second variant we have decided to identify that constant, i.e. we
have used gs = as. The identification has led to slightly unexpected by us result
— constant value approximately equal to 0.84 smaller than 1. It is observed for all
forms of the h functions. Of course, we should remember that it concerns only
spheroidal mild steel used in Fisher’s experiment. Unfortunately, we were not
able to find similar data for other types of material. As the next step we plan to
investigate another model — separating the nucleation and growth phenomena.
However, they will also concern spheroidal steel materials.

We have investigated also the linear form of the growth function g. The trial
has been successful. Fitting error in Case A6 was very similar to Case Al. In
other cases the fitting error was only slightly worse. What is interesting, the mean
value of that linear growth material function g is almost equal to the estimated
constant value (see Cases A6 and A5, B6 and B5, C6 and C5).

Our identification results suggest also a kind of nonuniqeness in the parameter
determination problem in its current setting. An open question is which one of
the minima found should be accepted. At the present stage of research, only
mechanical interpretations and conditions may suggest the best choice.
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Another open question is the use of other measures of deviations of the cal-

culated output from the measured one.

One should remember that in our considerations we have accepted some

assumptions:

e The matrix material is plastically incompressible, p,, = 0 and the elastic
part of a strain rate tensor is neglected, D; = D).

e The shape of the material function A is in agreement with the material
function proposed by CHU and NEEDLEMAN [4]. However, the growth ma-
terial function g, as in PERZYNA and NOWAK [16], can be not constant
and has the form of an exponential function.
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