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RELIABILITY-BASED STRUCTURAL OPTIMIZATION ACCOUNTING
FOR MANUFACTURING AND MATERIAL QUALITY
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The reliability-based optimization problem in which the structural material and manufac-
turing quality is assumed to be uncertain is considered. Moreover, the quality cost is appropri-
ately taken into consideration in the formula determining the total cost of the structure. Some
parameters describing the quality, namely the means and variances of the material properties
and the variances of the precision of assembling of the structure are considered as the design
parameters in the optimization procedure, in which the required structural reliability level
determines some constrains to be satisfied in searching for the minimum structural cost.
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1. INTRODUCTION

Advances in reliability methods and development of numerical algorithms together
with the computational power and computer availability allow us to approach the prob-
lems of structural safety in a more rational way than before. It is well known that
deterministic optimization may lead to optimal structures that are very sensitive to
changes of the values of design parameters. Since many of the design parameters are
of random nature, it is extremely important to take into account this feature in the
design process and, eventually, to apply the reliability analysis to assure an appropriate
safety level of the optimal structure. Such an approach should be especially preferred for
structures subject to stability loss when even small geometrical imperfections can dra-
matically change the structural reliability. The imperfection influence can be reduced by
more precise manufacturing and assembling and by using the materials of better quality.
All of these, however, increase the cost of the structure. In order to minimize the cost
and to preserve a required reliability level of the structure while both the imperfection
and material properties are random, some parameters characterizing the imperfection
intensity and material quality are considered as design variables in the optimization
procedure, called the reliability-based structural optimization (RBSO).
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2. STRUCTURAL RELIABILITY PROBLEM

It is fairly typical in civil and mechanical engineering that some quantities
which describe a structural system and applied loads should be modeled as ran-
dom variables, X1, Xo,..., X,,. They are called the basic variables and constitute
a random vector X whose samples ¢ = [z1,22,...,2,)T belong to the Euclidian
space. In the space X the probability measure is defined by the joint probability
density function fx(x) of the random vector X. Depending on the sample values
of the basic variables, the structural system will satisfy the required work condi-
tions and be safe and intact or not. The criterion of structural failure is usually
expressed by the equality g(x) = 0 that defines a hypersurface, called the limit
state surface, in the space X. It divides the space X into two regions: the failure
domain Qf = {z : g(x) < 0} and the safe domain , = {x : g(x) > 0}. Hence,
the failure probability of the structural system is determined by the following
integral:

(2.1) P =PX €] =Flg(X) <0 = [ fx(e)ds,
f

where P[A] means the probability of the random event A. In application, where
the number n of basic variables X; can be great, the integral domain § 7 complex
and the calculation of the limit state function g(z) cumbersome, e.g. involving a
finite element numerical procedure, the direct integration appears to be imprac-
tical. Therefore, some approximate methods have been developed that allow us
to effectively involve the reliability assessment in structural analysis.

In the approach that is most commonly used in application, the problem
of the reliability calculation is appropriately transformed, U = T(X) (see e.g.
[1,2,3]), into the space U where the probability measure is defined by probability
density function fy(u) = [T, ¢(u;) being the product of the n one-dimensional
standard normal probability density functions of random variables U; = Ti(X).
Since the limit state condition is also transformed into I/ ,9(x) =0 > h(u) =
g[T ™ (u)] = 0, the failure probability can be calculated as follows:

(22) B=PhO)<0= [ jofw)du.

. {w:h(u)<0}
The axial symmetry of the probability density function fy(u) assures for any
linear function I(u) = 8 — aTu = 0, the following equality to be true

2.3) B SO)= [ o) du = 8(-5),

where the coefficients, —a;, 1 = 1, 2,...,n, are the components of the normalized
gradient of the hyperplane I(u) = 0, i.e. aTa = 1, B = sign[l(0)]d is the signed
distance § between the hyperplane and the origin in U and ®(-) is the standard
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normal distribution. Thus, the linear approximation of the transformed limit
state surface A(u) = 0 in the point closest to the origin provides a simple estimate
of the probability of structural system

(2.4) Py = B[h(U) < 0] = PUUU) < 0] = B(~H),

where £ is called the reliability index. The approach based on the linear approx-
imation of the transformed limit state surface is called the first order reliability
method (FORM). The reliability index is determined as a solution of the follow-
ing optimization problem:

B = sign[h(0)]6”

(2.5)
§* = ||u*|| = min|lu]| subject to: h(u) < 0.

This problem can be solved by any nonlinear optimization algorithm (cf. [4]
for comparison of various methods) but two algorithms, namely the Rackwitz-
Fiessler algorithm [5] and NLPQL algorithm [6] are considered to be the most
efficient ones. In the paper the Rackwitz-Fiessler algorithm is used.

3. RBSO PROBLEM FORMULATION

Before formulating the RBSO problem it is necessary to realize the variety
of parameters that enter the problem (see e.g. [7]). Size, shape and loading
parameters defining a structural model can be considered either deterministic or
random. Design parameters can be assigned to deterministic parameters, denoted
by z¢, or to the mean values or standard deviations of the random variables z*
or x7, respectively.

The RBO problem can be formulated in many ways [8, 9, 10]. In this paper
the so-called componental formulation of the problem will be used which is the
minimization of the cost function subjected to constraints imposed on the values
of componental reliability indices

(3.1) minimize Cr(z®) a={d,po},
(3.2) subject to: Bi(x®) > pmin i=1,...,m,
(3.3) ¢j(xz®*) >0 j=1,...,mq,
(3.4) b2 < 2% < k=1,...,n,

where Ct represents the total cost, B, i = 1,...,m;, are the reliability indices
corresponding to the elemental failure modes, ,B{“i“ are the minimal admissible
B-values, chosen according to the required safety level, ¢;, i = 1,...,mgq are deter-
ministic constraints, m, is the number of reliability constraints, n is the number
of design variables and lw;?‘, Ur® are the lower and upper bounds, respectively,
imposed on design variables.
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To solve the RBSO problem (3.1)-(3.4) by the most efficient iterative gra-
dient methods, values of the cost function and reliability constraints as well as
their gradients with respect to the design parameters are needed. Because the
computation of reliability index itself is the optimization problem (cf. (2.5)), the
RBSO problem is sometimes called nested optimization problem. Since the most
computationally demanding tasks of failure function evaluation (involving e.g.
finite element analysis) and the parametric sensitivity analysis are performed in
the inner optimization loop (design point search problem), it is crucial to im-
plement in the RBSO system the most efficient analytical sensitivity methods
(see. [11]). The other methods of improving the efficiency of the RBSO process
can be found in [10].

The total cost function (3.1) that combines the initial costs of the structure
and the costs of failures is given as

my
(3.5) Cp(z®) = Ci(z®) + Y Cf &(-Bi(=*)),
=1
where C7 is the initial cost, C’If;, 1 =1,...,m,, are the cost coefficients associated

with elemental failures, ®(-) is the standard normal distribution function and
®(—pB;(x*)) are the failure probabilities. The values of coefficients C& can only
be estimated with some uncertainty since, apart from the direct economical con-
sequences, they have to take into account hardly measurable, social and ethical
aspects of the structural failure. On the other hand, due to the very small values
of probabilities of failure (usually 10~7 + 10™) it is important to consider only
these failure modes, for which the corresponding Cﬁl are by orders of magnitude
greater than C7. Typically the initial cost is associated with structural weight.
However, in the framework of RBSO, it is also possible to account for manu-
facturing as well as material quality. For the case of truss type structures, the
extended initial cost function has the form (cf. [10])

Te
(3'6) Cl(wa) = Cnat Z Ai(w“a wd) li(mu7 md)[l + “i(w&at)] + Cmaﬂg(xfnan) >
i=1

where ne is the number of truss elements, 4; and I;, i = 1,...,n,, are the
element cross-sectional area and length, respectively, Cina, is the cost of unit
material volume and k;(xf,,,) are the non-dimensional functions of standard
deviations of yield stress that is taken as a measure of material quality. Since
the space coordinates of the structural joints are modeled as normally distributed
random variables, the standard deviation of the joint position may be used as a
measure of manufacturing and assembling precision. Assuming that the standard
deviations of random nodal coordinates are the same and equal to 27, the non-
dimensional function 6(z7,,,) is introduced in the equation (3.6) to account for
the manufacturing quality costs. Cpan is the respective cost coefficient.
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4. NUMERICAL EXAMPLES

4.1. FEzample 1

F1G. 1. Snap-through failure of the cylindrically shaped truss

In this example the RBSO of cylindrically shaped truss is carried out. As it
is shown in Fig. 1, the possible failure of such a structure may be due to the
snap-through effect. Since the geometrical imperfections arising from the man-
ufacturing of structural elements as well as the assembly process may lead to
the reduction of critical load, it is desirable that the manufacturing and assem-
bly quality should be high. This certainly results in increasing the cost of the
structure, and that is why the RBSO employing the extended cost function (3.6)
may give the designer some knowledge about how much it is worth to invest in
improving the quality.

The structure consists of 474 steel tubular elements connected at 167 nodes.
It is reinforced from the two sides by two three-hinged arches. The elements
are divided into 7 groups. They are shown in Fig. 2. The external uniformly
distributed load acting on the structure is shown in Fig. 3. The load intensity,
p, given per unit surface equals 0.18 kN/m?.



Group 3 Group 4

F1G. 2. Groups of elements

[628]
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ARSI

R=12.72m

Fi1c. 3. Dimensions and load

Large displacement theory is employed. The limit state function corresponding
to the snap-through failure has the following form:

(41) g(Acr(Xama)) = AC!‘(X’ma) - 17

where ). is the critical load factor, X is the vector of random variables and ¢
is the vector of design variables. The total number of 444 parameters describing
the analyzed structure and load were considered to be random. They are listed in
Tab. 1, where their respective distribution types mean values and standard devi-
ations are presented. Besides the size, material and load type random variables,
the coordinates of 145 nodes were chosen as random.

For the optimization problem, 8 design variables were selected. They are as
follows: variables xfc‘ , k= 1,...,7 are the mean values of the random cross-
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Table 1. Cylindrically shaped truss: random variables

| Var. ] Distribution | Mean value | Std.dev. ] Description ]

X1 log-normal 20.0 cm? 1.0 cm? cross sec. - gr. of elems no. 1
Xy log-normal 20.0 cm? 1.0cm? cross sec. - gr. of elems no. 2
X log-normal 20.0 cm? 1.0cm? cross sec. - gr. of elems no. 3
Xa log-normal 20.0 cm? 1.0cm? cross sec. - gr. of elems no. 4
Xs log-normal 20.0 cm? 1.0cm? cross sec. - gr. of elems no. 5
Xe log-normal 20.0 cm? 1.0cm? cross sec. - gr. of elems no. 6
X7 log-normal 20.0 cm? 1.0 cm? cross sec. - gr. of elems no. 7
Xs log-normal | 21000.0 kN/cm® | 500.0 kN/cm® | Young modulus of material
Xo Gumbel 1.0 0.1 load factor

X1o normal 0.0m 1.0cm Z coor. - first unconstr. node
X1 normal —11.26 m 1.0cm y coor. - first unconstr. node
X12 normal 0.92m 1.0cm z coor. - first unconstr. node
Xy normal 26.09m 1.0cm z coor, - last unconstr. node
Xaa3 normal 11.26 m 1.0cm y coor. - last unconstr. node
X444 normal 0.92m 1.0cm z coor. - last unconstr. node

sections of groups of elements and z§ is the standard deviation of the nodal
coordinates. =g is assumed to be the same for all the random variables from X 10
to X444. The RBSO problem can be defined as

7
(4.2) minimize  Ct(*) = Crmar Y _ 22 li + Cinanf (),

i=1
(4.3) subject to:  f(z%) > 3.7,
(4.4) 5.0cm? <z < 33.18cm?, E=1,...,7,
(4.5) 0.5cm < z§ <4.0cm,

where the reliability constraint (4.3) corresponds to the limit state function (4.1),
li is the total length (in cm) of elements belonging to the i-th group and the cost
coefficients Cras and Cran are equal to 1.0 and 2-106, respectively. The definition
of function #(z§) making use of the simple bounds (4.5) together with its graph
are shown in Fig. 4. The initial values of the cost function, design parameters
and the reliability index are given in Tab. 2. The values of cost coefficients
were calibrated in order to make the manufacturing and assembling quality cost
corresponding to the lower bound of z§ to be around 75% of the initial cost of
material.

Using the interactive RBSO system POLSAP-RBO [7, 12] and the sequential
quadratic programming algorithm NLPQL [6], the optimal design was obtained
after 21 iterations. The optimization results are presented in Tab. 2. It is inter-
esting to observe that the optimal value of the design variable zg is even smaller
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Table 2. Cylindrically shaped truss: RBSO results

| [ Initial design [ Optimal design |

Cost 3740761 3525681
x4 20 cm? 8.92 cm?
zh 20 cm?® 30.52 cm?
zh 20 cm? 18.79 cm®
zh 20 cm? 12.43 cm?
z¥ 20 cm?® 11.51 cm?
zh 20 cm?® 5.0 cm®
z4 20 cm® 8.83 cm?
zg
B8 3.10 3.70

than its initial value and close to the lower bound. It gives the clear information
that the optimal design can only be accepted provided the manufacturing and
assembling quality is very high.

4.2. Ezample 2

To show the influence of the material quality cost (as defined in (3.6)) on the
initial cost of the structure, the RBSO of the truss structure shown in Fig. 5 was
considered. It consists of 17 tubular elements divided into 5 groups: 1st group
- elements 1...5, 2nd group - elements 5...8, 3rd - element 9, 4th - elements
10...13 and 5th - elements 14...17. The stochastic description of the structure is
given in Tab. 3 and as the design variables, the following distribution parameters
were selected: ! ...z% - mean values of the cross-sectional areas of the groups
of elements, zg ... zJ, - standard deviations of the yield stresses of the material
of element groups and z{; - standard deviation of shape type random variables

(X13- .. Xa1).
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P = 200kN, [ = 2m

F1G. 5. Hanging truss structure

Table 3. Hanging truss: random variables

| Var. [ Distribution | Mean value | Std. dev. | Description ]
X1 log-normal 10.0 cm? 0.5 cm? cross sec. - gr. of elems no. 1
X, log-normal 10.0 cm? 0.5 cm” cross sec. - gr. of elems no. 2
X3 log-normal 5.0 cm® 0.25 cm? cross sec. - gr. of elems no. 3
X4 log-normal 10.0 cm? 0.5 cm? cross sec. - gr. of elems no. 4
Xs log-normal 5.0 cm? 0.25 cm? cross sec. - gr. of elems no. 5
Xe log-normal | 21000.0 kN/cm?® | 1050.0 kN/cm® | Young modulus of material
X7 Gumbel 1.0 0.2 load factor
Xs log-normal 30.0kN/cm’ 3.0kN/cm? yield stress - gr. of elems no. 1
Xo log-normal 30.0kN/cm? 3.0kN/cm” yield stress - gr. of elems no. 2
X0 | log-normal 30.0kN/cm? 3.0 kN/cm® yield stress - gr. of elems no. 3
X11 | log-normal 30.0kN/cm? 3.0kN/cm® yield stress - gr. of elems no. 4
Xi12 | log-normal 30.0 kN /cm? 3.0kN/cm?® yield stress - gr. of elems no. 5
X13 normal 0.0cm 2.0cm z coor. - node no. 1
X14 normal 0.0cm 2.0cm y coor. - node no. 1
Xis normal 0.0cm 2.0cm z coor. - node no. 1
Xas normal 26.09 m " 2.0cm Z coor. - node no. 5
Xas normal 11.26 m 2.0cm y coor. - node no. 5
Xor normal 0.92m 2.0cm 2 coor. - node no. 5
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To introduce the reliability constraints, 5 stress/local buckling limit state functions
are considered. They can be expressed as
. |0ki (q(X7 wa), Xa wa)l

op (X, z2) ’

where gy, is the axial stresses in the k;-th element, o, 1s an admissible stress and q is the
vector of nodal displacements. The elements corresponding to the limit states g; ... gs
are 2, 5, 9, 11 and 15, respectively. For elements under tensile stress the value of oy, is
assumed constant and equal to the yield stress during the S—point search, while in the
compression case it is assumed to vary according to the current values of realizations
of the corresponding size and shape random variables; this allows to account for local
buckling. The RBSO problem is formulated as follows:

(46) gi(q(X,:Ba),X,$a):1 7:=1,...,5,

5
(47)  minimize  Ci(@*) = Cmar Y &% L[l + £:i(275)] + Cman8(27;)

=1

(4.8)  subject to: Bi(x*) > 4.2 j=1,...,5
(4.9) 2.0cm® < 7§ < 30.0cm?, k=1,...,5
(4.10) 1.0kN/em® < 27 < 5.0kN/cm? k=6,...,10
(4.11) 0.5cm < z§; <4.0cm

where [; is the total length (in cm) of the i-th group elements, and the cost coefficients
are Cmat = 1 and Cian = 4000. The proposed definitions of the functions x; and 6
are shown in Fig. 6. The minimal admissible 8-values equal to 4.2 correspond to failure
probability of 1.3 - 1075. Starting solution and the optimization results obtained after
23 iterations of NLPQL algorithm are presented in Tab. 4. Again, it shows that the
manufacturing quality should be high and that the elements belonging to the 1st and
4th group should be made of high quality steel.

Table 4. Hanging truss: RBSO results

[ | Initial design | Optimal design ]
Cost 34982 21299
¥ 10 cm? 5.93 cm?
xh 10 cm? 6.10 cm?
zé 5cm? 4.39 cm?
zh 10cm? 4.73 cm?
zt 5cm? 2.99 cm?
zg 3kN/cm? 1.59 kN /cm?
x5 3kN/cm? 5.0kN/cm?
zg 3kN/cm? 3.62kN/cm?
o 3kN/cm? 1.55 kN /cm?
x4, 3kN/cm? 4.61 kN/cm?
z9, 20 mm 15.3 mm
B1 5.84 4.2
B2 7.79 4.2
B3 5.56 4.2
Ba 6.69 4.2
Bs 7.00 4.2
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5. CONCLUSIONS

The imevitable randomness of material, loading and geometrical parameters
is always taken into account in design process of any structure. It is usually
done implicitly by application of some safety coefficients given in codes and
standard regulations. There are, however, some structures or types of structures
that should be considered individually owing to the consequences of their mal-
function or failure, their cost or importance for the society etc. In these cases the
most rational approach to assure a sufficient or required level of the structural
safety is the application of the reliability analysis that allows us to estimate the
failure probability of the designed structure. There are some parameters that can
be, to some extent, controlled and evidently reduce the probability of structural
failure, e.g. the quality of material and of the manufacturing and assembling
process. Better quality makes, however, the structure more expensive. The ques-
tion is what quality may be sufficient to assure the required structural reliability
level at minimum cost. The method that gives the answer to such a question
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is proposed in the paper in the framework of the Reliability-Based Structural
Optimization (RBSO) where the cost of quality is included in the total cost of
the structure. The quality is related to variances of the material parameters and
the precision of assembling procedure. The less variances are assumed, the more
expensive and reliable becomes the structure. The inclusion of moments of ran-
dom variables describing the quality as the design parameters in the structural
optimization procedure enabled us to minimize the total cost and to assure the
required reliability of the structure. The relations between the cost and the mo-
ments should be defined specifically to any individual case. They will depend not
only on the type of the structure but also on the local conditions. The functions x
and 8 assumed in the numerical examples reflect rather a general tendency of the
cost-quality relation than any actual design situation. The results of illustrative
examples clearly confirm that the savings due to material and manufacturing
quality do not necessarily lead to reduction of total structural cost.

Moreover, the actual design would require much more comprehensive analy-
sis involving some important features that have been neglected in the examples
presented in the paper. It is however a specific property of a given structure what
the failure modes are important, which should be taken into consideration, how
they have to be combined in the analysis of the structure. It leads to the struc-
tural optimization with system reliability constrains. The approach presented
in the paper provides a basis to develop the more advanced method accounting
for manufacturing and material quality in structural analysis, optimization and,
eventually, in the structural design.

ACKNOWLEDGEMENTS

The partial support from the Polish Committee for Scientific Research grant
No. 7 TOTA 067 12 is gratefully acknowledged.

REFERENCES

1. H.O. MADSEN, S. KReENK, N.C. LIND, Methods of structural safety, Prentice-Hall, 1986.

2. K. DOLIRSKI, First-order second-moment approzimations in reliability of structural sys-
tems: critical review and alternative approach, Structural Safety, 1, 211-231, 1983.

3. R. E. MELCHERS, Structural reliability analysis and predictions, 2nd Ed., Wiley, 1999.

4. P.-L. Liu, A. DER KIUREGHIAN, Optimization algorithms for structural reliability, Struc-
tural Safety, 9, 161-177, 1991

5. T. ABpo, R. RackwiITz, A new beta-point algorithm for large time-invariant and time-
variant reliability problems, [in:] A. DER KIUREGHIAN and P. THOFT-CHRISTENSEN
[Eds.], Reliability and Optimization of Structural Systems ’90 Proc. §rd WG 7.5 IFIP
Conf. Berkeley 26-28 March 1990, 1-12, Berlin 1991.



636

6.

10.

11.

12.

K. DOLINSKI and R. STOCKI

K. Scurrtkowski, User’s guide for the nonlinear programming code NLPQL, Handbook
to optimization program package NLPQL, University of Stuttgart - Institute for Infor-
matics, Germany, 1985

R. Stocki, A. Siemaszko, M. KLEIBER, Interactive methodology for reliability-based
structural design and optimization, Comp. Assisted Mech. Eng. Sci. 6, 39-62, 1999.

H. O. Mapsen, P. Fris HANSEN, A comparison of some algorithms for reliability
based structural optimization and sensitivity analysis, [in:} R. Rackwitz, P. THOFT-
CHRISTENSEN [Eds.], Reliability and Optimization of Structural Systems '91, Proc. 4th
IFIP WG 7.5 Conf., Munich, 11-13 September 1991. 443-451, Springer-Verlag, 1992.

N. KuscHEL, R. RACKWITZ, Two basic problems in reliability-based structural optimiza-
tion, Mathematical Methods of Operations Research, 46, 309-333, 1997.

R. SToCKI, Reliability-based optimization of geometrically nonlinear truss structures -
theory and computer program [in Polish], IFTR Reports, 13, 1999.

M. KirEBER, H. ANTUNEZ, T. D. HiEN, P. KOWALCZYK, Parameter sensitivity in
nonlinear mechanics; Theory and finite element computations, Wiley 1997.

M. KLEIBER, A. SIEMASzKO, R. STOCKI, Interactive stability-oriented reliability-based
design optimization, Computer Methods in Applied Mechanics and Engineering, 168,
243-253, 1999.

Received October 21, 2000.



