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EVOLUTION OF PLASTIC ANISOTROPY FOR THE POLYCRYSTALLINE
MATERIALS IN LARGE DEFORMATION PROCESSES
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Model of evolution of plastic anisotropy due to crystallographic texture development in
metals subjected to large deformation processes is presented. The rigid-plastic model of sin-
gle grain with regularized Schmid law proposed by Gambin is used. Phenomenological and
physical descriptions of plastic flow of polycrystals are discussed. Properties of any yield func-
tion for orthotropic material subjected to the plane stress state are outlined. Yield conditions
of degree m proposed by Hill and Barlat with Lian are analyzed. Finally, phenomenological
texture-dependent yield surface is proposed. Evolution of this yield surface is compared with
phenomenological yield conditions for two processes: rolling and pure shear.

1. INTRODUCTION

Metal forming processes are associated with large plastic deformation. Large
plastic deformation induces evolution of plastic anisotropy of elements. For met-
als which are polycrystalline materials, induced anisotropy can be caused by
several factors such as the change of grain shape and size or crystallographic lat-
tice reorientation. The first factor is called morphological texture development
and the second one - crystallographic texture development. Plastic anisotropy
caused by crystallographic texture dominates up to moderately large strains [34].
Consequently, to follow evolution of plastic anisotropy in the deformation process
texture development should be taken into account in the constitutive equations
describing the polycrystal. It is important because evolution of plastic anisotropy
can cause many phenomena that influence advantageously or disadvantageously
the properties of a metal element. One of the disadvantageous phenomena is for
example “earing” observed during deep drawing. Increasing corrosion resistance
the gas turbines or {ncreasine faticue streneth of gprinegs used inin, the blades of
precision equipment belong to advantageous phenomena.
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In this paper, the texture development for the initially isotropic grain ag-
gregate will be computed. Rigid-plastic model with isotropic hardening and the
regularized Schmid law proposed by GAMBIN in [15, 16], is assumed for the sin-
gle grain. Anisotropy induced by plastic deformation will be analyzed using a
proposed initial yield surface for the polycrystal. In this yield surface, orienta-
tion of each grain in the polycrystalline aggregate is taken into account. The
proposed texture-dependent yield surface will be compared with the well-known
Hill yield surface proposed in 1990 and the Barlat-Lian yield surface proposed
in 1989. Principal directions of plastic strain rate will be also obtained from the
flow rules associated with the above yield conditions.

2. THE SINGLE GRAIN MODEL

The constitutive model of the single grain presented below is based on the
works [28, 29, 1, 2, 16] and [17]. It was applied in the computational program
that simulates the change of lattice orientation in the grain in a uniform plastic
deformation process.

2.1. Kinematics

Description of kinematical behaviour of the single grain subjected to large
elastic-plastic deformation was formulated in the work [28]. It is based on Lee as-
sumption about multiplicative decomposition of the total deformation gradient
into the elastic part and the plastic one [37]. Let us distinguish four crystalline
solid configurations (Fig. 1): an initial configuration Cp, an intermediate con-
figuration Cp, a reference configuration C, and a current configuration C;. The
reference configuration is chosen in such a way that the crystallographic reference
frame {a;},i = 1,2, 3 is identical with the global reference frame {e;}.

Deformation of the body from the initial configuration to the current config-
uration is described by the total deformation gradient F':

(2.1) F = F*FP,

where F* and FP are the elastic part and the plastic part of deformation, respec-
tively. F* is given in the configuration C, and FP is given in the configuration
Co. A deformation gradient that describes mapping of the reference configuration
onto the initial configuration can be obtained using a rotation tensor as follows:

™ = qf.

Qo denotes also the initial orientation of the crystallographic lattice in the global
reference frame. Mapping of the reference configuration onto the current config-
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F1G6. 1. Decomposition of the deformation gradient F for the elasto-plastic single crystal.

uration is described by the following deformation gradient:
F=FQ7.

All quantities introduced above depend on the time variable except the ten-
sor Qo.

It is customary for the single crystal model to assume the global reference
frame in such a way that the configurations C, and Co are identical (see [1]
and [2]). Describing crystallographic texture development in some aggregate of
the grains we must associate the global reference frame with the polycrystalline
sample. This kind of description was also used in [46].

Now, we apply the polar decomposition of the second-rank tensor to the
elastic and the plastic parts of the deformation gradient (2.1):

F* =R*U*, FP=RPUP,

where R* and RP tensors are rigid rotation tensors while U* and UP tensors
are symmetric and positive defined. The last two tensors are called right stretch
tensors.

We limit our considerations to the rigid-plastic model of the single crystal
with hardening. In this model we assume that the right elastic stretch tensor
U* is equal to the identity tensor. This is an appropriate assumption for small
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elastic and large plastic strains. We also assume that material flows through
the motionless lattice in the plastic regime. Therefore lattice rotation from the
reference configuration to the current configuration can be described as follows:

Q" =R*Qg,
while the deformation of the material is given by the formula:
(2.2) F=R'RPURQT.
Now let us introduce the velocity gradient L:
(2.3) L = grad(v) = FF~1 = FF *.
When we put the Eq. (2.2) into (2.3), we obtain:
24) L=R'R'T+R'FP(F?)'RT = Q*Q*T + R*FP(FP)R*T.

The above equation allows us to decompose the velocity gradient into the part
associated with the rigid rotation L* and the plastic part LP:

L=L"+1LP,
where
(2.5)  FAC L e - it
(2.6) LP = R'FP(FP)'R*T = R*LPR*T.

Let us now express L, L* and LP tensors as follows:
L=D+Q.

Tensor D is the symmetric part of L and it is called the strain rate tensor. Tensor
(2 is the anti-symmetric part of L and it is called the spin tensor. We can also
decompose D and € into the part associated with the rigid rotation and the
plastic one:

(2.7) D = DP=%R*1§PR*T,
(2.8) Q@ = I+,

(2.9) P> 2 g gt

(2.10) ar = %R*QPR*T.
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In the formulas (2.7)-(2.10), by DP and € we denote symmetric and anti-
symmetric parts of LP tensor (Eq. (2.6)).

It is assumed that plastic deformation occurs by dislocation slip on the given
crystallographic plane called slip plane in given crystallographic direction called
slip direction and they build together the r-th slip system. Pair of the orthogonal
vectors {m",n"}, where n” is a unit vector normal to the slip plane and m" is a
unit vector parallel to the slip direction, describes therefore the r-th slip system.
Depending on the type of crystalographic lattice, the total number of possible
slip systems M is different, for example: for f.c.c. crystals M is equal to 12 and
for b.c.c. it is equal to 24. In this paper we consider f.c.c. crystals. We can define a
plastic part LP of velocity gradient as a sum of simple shears on all slip systems.
When they propagate with the rates 4", for r = 1,2, ..., M, we obtain:

M M
IP=% 4mi@n" = 5 Al 0 %
r=1 r=l

Decomposition of LP into symmetric and anti-symmetric parts looks then as
follows:

: M M
(2.11) LP=DP+QP =3 "4yP +3 "W,
=1 r=1
where P" and W" are symmetric and anti-symmetric parts of m" @ n" diad, re-
spectively. It is worth noting that because of orthogonality of m”" and n" vectors,
tensor DP is deviator.

P" and W tensors change during the deformation process due to rotation of
the lattice directions m" and n". Evolution of these directions can be described
by the formulas:

m =M., n=tn,
When we want to calculate the texture evolution, we look for the lattice orien-
tation at the time ¢ 4+ At having its orientation at the time ¢. We describe the
lattice orientation by three Euler angles {w:} that define the rotation tensor Q*.
Evolution of these angles can be calculated from the equations:

(pf'*'At — (p:f + ('b,;At, = e S

To find the rates of the Euler angles ¢; we apply the rule obtained by Clement
[12]. This rule uses the formula (2.9) in the form:

Q* = Q*Q*.

When we express the rotation tensor Q* by the Euler angles !, we can obtain
their rates ¢t ’
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; 1 bt t
(2.12) P1 = wip— M(Sm Plwy3 — COS PjWi3),
(2.13) $2 = singpjwi; + cos piwss,

¢ ¢
_cospf , | singt
w1ig 7 W3,

2.14 it
(2.14) @3 Jind

sin ¢}

where w{j are the components of the spin tensor Q*. These equations are well
defined when @} # 0. When % = 0 we must apply the following equations:

(215) ¢ = wip, where = ! + i,

*
w23~ where ¢; = arctan ﬂig for wys #0
(2.16) 9. = Cos 1 po Wes
wi3 where ¢ = 3 for w33 =0

In this case the Euler angles at the time ¢ + At can be calculated as follows:

(pt+At = ¢1+¢At7

1
0 = g,
057 = @3, where @3 =1v- .

The lattice spin ©* that occurs in the above equations can be determined as
a difference between the total spin € and the plastic spin 2P. Assuming that
the total spin is given by the boundary conditions, the plastic spin has to be
calculated from additional constitutive equation.

2.2. Constitutive laws

In the models of single crystal plasticity the Schmid law is used. It says that
the plastic flow on the r-th slip system begins when the resolved shear stress
7" on this system reaches the critical value 77 which is the material constant.
Therefore

(2.17) g SR

The resolved shear stress 7" is calculated as a projection of the Kirchhoff stress
tensor T on the slip plane and the slip direction:

(2.18) 1" =k sy Al oea DL

where ”” denotes the full product of tensors. The set of slip systems in which the
total work done during slipping is minimal, is chosen from all possible combina-
tions. In the models that use the Schmid law as a yield condition, the problem
of non-unique selection of active slip systems exists.
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To overcome this difficulty GAMBIN [16, 17] has proposed the model of inter-
acting slip systems. The shear rate 4" can be associated with the resolved shear
stress 77 by the empirical relationship between the mean velocity of dislocation
on the r-th slip system and the resolved shear stress as well as between the shear
rate and the mean velocity of dislocation [31]. Finally, these relationships lead
to the equation:

e 9 (Tr)2n—1
The coefficient A is identical for all slip system. Slips with different rates 4"
described by the formula (2.19) appear on all slip systems simultaneously. It is
worth noting that when the exponent n increases, the perceptible slip occurs
only on those systems for which the Schmid condition (2.17) is satisfied.
Putting the Eq. (2.19) into the formula (2.11) that describe DP and QP we

obtain:
M e clank 2n—1
oy : o
VA IS W (F)

QP = ,\Z— 5 W',
TISN T

The above equations can be treated as flow rules associated with the following
plastic potential:

s 902
(2.20) P ) = Z (—) —m |, where 7" =7:D".
1

n A
= 3

A dimensionless constant m is a lattice orientation independent quantity. A
smooth yield condition is connected with the potential (2.20). It has the form:

M Tr 2n
> (%) =m
P 1 FSTRC
where the exponent n > 1 is some dimensionless material parameter.
We can assume that the critical shear stress 7] is constant during the defor-

mation process or we can introduce a hardening rule that specifies the evolution
of 77. In our calculations we use the following hardening law [1]:

M
SN jet
1L = Zhrq'y .
g=1
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Coefficients h,q are the components of the matrix of hardening moduli H and:

S hy {00 7=
kb hiifor..r A g

In this case we have the latent hardening (he > h;) for non-active slip systems
for which 7" < 7.

Model of texture development due to the plastic flow in the aggregate of the
grains presented in this paper is based on the described constitutive model for
the single grain.

3. YIELD SURFACES FOR POLYCRYSTALS

We can divide the yield conditions for the metal polycrystals into: phe-
nomenological that are based on the classical theory of plasticity, and physical
ones that use the knowledge about microstructure of the polycrystals. The first
conditions are proposed with the assumption that the polycrystalline material
is homogeneous at the macro-level and a yield surface depends on macroscopic
stress and strain measures as well as their rates. The second ones use the infor-
mation about yielding of the grains that build the polycrystalline aggregate.

3.1. Phenomenological yield conditions for metals

Usually phenomenological yield conditions are given by the scalar function
of the stress tensor, the strain tensor or its plastic part as well as the material
derivatives of those tensors and the parameters that describe anisotropy of the
material. In most of the theories it is assumed that this function depends only
on the stress tensor and the material parameters, which means that f = f(o)
and the yield condition takes the form:

(3.1) flo) = (00)™.

Equation (3.1) describes a surface that encloses the class of stress states in
the stress space for which deformation of the polycrystal is only elastic. This
class is given by the inequality:

(3:2) flo) < (o0)™,

where 0, and the exponent m are some material parametrs. This surface is called
the yield surface. According to the basic theory of the constitutive Eqgs. [28, 29],
the yield surface should be convex and in the large strain theory the strain rate
tensor DP or in the small strain theory the tensor &P should be normal to this
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surface. Moreover, it is often assumed that the yield function f is homogeneous.
Thus we can write the following relationships (see [27]):

Ol
(3.3) DP = A5>

for some positive scalar A due to normality of the flow rule, and

(3.4 fo) = i i(o), o+ X —my(o)

for any scalar 1 > 0 due to homogeneity of degree m of the yield function f.

In most cases it is also assumed for metals that plastic flow does not occur
for any hydrostatic stress state. Moreover, the value of the yield stress is equal
for the stress states that differ from each other only by their signs.

One of the first yield conditions for any anisotropic material is the von Mises
criterion proposed in 1928. It is defined by the quadratic function of the stress
components [39]. A special case of this yield function is the well-known Hill con-
dition for the orthotropic materials proposed in 1948 [22, 23]. Thorough analysis
of this yield surface can be found in the paper [33]. Energetic interpretation of
the quadratic yield conditions for the anisotropic materials was given in [40, 41]
and [43].

Observations of metal forming processes and phenomena that took place dur-
ing utilization of the formed elements proved that the quadratic yield function
was insufficient to describe a lot of aspects related with the plastic flow of the
material such as “earing” that took place during sheet drawing, increasing cor-
rosion resistance in the blades of the gas turbines or increasing fatigue strength
of springs used in the precision equipment. The yield surfaces of higher degree
were searched. The Gotoh criterion proposed in 1977 using the tensorial polyno-
mial of degree four was among them [20]. This yield condition was formulated
for the orthotropic material subjected to the plane stress state. The other one
was the Hill yield condition of degree m formulated in 1979 [26]. It could be
used for the stress states that were co-axial with the main axes of orthotropy.
The yield function was described by seven material parameters that should be
derived from experiments, which was rather troublesome. The author suggested
that one could assume some of these parameters to be equal to zero, without
loosing the ability to describe the phenomena that could not be taken into ac-
count by his quadratic yield condition. Hill outlined four special cases of his new
yield function in the case of plane isotropy (the sheet is isotropic in its plane)
and plane stress state. In 1990 one of these special cases was re-formulated to
encompass any orthotropic sheet subjected to the plane stress state [27]. An-
other orthotropic yield surface of degree m, widely used nowadays for the metal
sheets, was given by BARLAT and LIAN in 1989 [5]. At first it was formulated
for the plane stress state and in 1991 it was extended to any stress state [6].
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As it has been already mentioned, in the majority of cases, the yield function
depends on the tensor o and the material parameters. In order to describe the
change of the yield surface due to plastic deformation one must use the yield
function that depends on the plastic strain or the plastic strain rate apart from
the stress tensor. It can be done in two ways: one can use the function that
depends on these quantities directly, which means that f = f(o, DP) or one can
use the function where the material parameters depend on these quantities.

Below we will consider the Hill yield condition proposed in 1990 and the
Barlat-Lian yield condition formulated in 1989. They both refer to the plane
stress state, so now we outline general properties of the function describing the
yield condition for the orthotropic material in two-dimensional space.

The form of the yield function that does not depend on the choice of the
reference system is useful in the analysis. Such a form of yield function one
can find using the theory of representation of the anisotropic tensor functions
formulated by BOEHLER [9, 10] (see also [32]). According to this theory, the
orthotropic scalar function of the tensor o in two-dimensional space has the
form:

(3.5) f(o) = filtro,tro?, tr Mo),

where “tr” denotes trace of the tensor and M = m ® m and m is the unit vector
co-axial with one of the main directions of orthotropy. The three invariants in
the Eq. (3.5) can be expressed by components o,p of the plane stress tensor in
the basis co-axial with orthotropy as follows:

(3.6) tro =01 +09, tro’= 0%1 -+ 032 - 20%2, tr Mo = o1;.

Three invariants from the Eq. (3.5) can be replaced by another equivalent set
of invariants, for example: {tro, trs?, trMs}, where s is the plane stress deviator:
s=0— %(tra)l and I is the identity tensor in two-dimensional space. In this
case, function f takes the form:

(3.7) f(o) = fo(tr o, trs?, tr Ms)
and the invariants of the stress deviator s are expressed by the components o,
as follows:

1 1
(38) tI‘82 = 5(0'11 T 0'22)2 s 20'%2’ trMs = 5(0'11 e 0‘22).

The plane components of the plastic strain rate tensor can be obtained using
the invariant form of the yield function f (3.7) in the flow rule (3.3). The Eq.
(3.3) takes the form:

(3.9) B i L 5 06k o (e (B %1) :
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where functions g;(o) are the scalar orthotropic functions of the stress tensor

such as:
of of of
- y 2= 5=, 93 = m——.

otro otrs Otr Ms
The functions g; and g3 are homogeneous of degree m — 1, and the function go is
homogeneous of degree m — 2. Moreover, additional non-zero component of the
tensor DP in three-dimensional space can be obtained from the assumption that
DP tensor is deviatoric:

g1

(3.10) D3, = —(DY, + D5,).

Note that because the yield function f is homogeneous of degree m (Eq. (3.4)),
the following equation is fulfilled:

(3.11) gitr o + 2gotrs? + gstr Ms = moy".

The tensile (or compression) yield stress at any orientation ¢ to one of the
orthotropy axes, for example co-axial with the vector m (see Fig. 2), is often used
in the analysis of material anisotropy. Then the stress tensor can be expressed

P}

as follows:

¢
[

m
E pisiiaecs
Ay D3 lIPemy)ie
7 Eiiiiniil
¢
bA A-A TD§3

F1G. 2. Uniaxial tension of the sample for the orthotropic material.

\A
A~

/V

O =0gey ey =04sWy,

where ey is the unit vector that describes the tensile direction. When we substi-
tute the stress tensor into the Eqgs. (3.5) or (3.7) we obtain:

f(0s W) = 07 1(Wo) = o fi(L,1,005% §) = o (1, 7, - cos 29).

DN =

Together with the yield condition (3.1) it gives the following expression:

(2)" = na o0 = 10,3, Eeon2e)
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Formulas (3.9), (3.10) and (3.11) enable us to determine the dependence that
describe the Lankford coefficient Ry for the orthotropic material under tension
in the direction established by the angle ¢ to the versor m. This coefficient is
defined as a ratio: (in-plane transverse rate of plastic deformation)/(through-
thickness rate of plastic deformation), so

Db m oy
.- *T DR T 21(Wy) \ oy

Metal forming is limited by the strain localization phenomena. The stress
states, which give eigenvalues of the tensor DP in three-dimensional space equal
to zero, can cause strain localization ([27, 4, 38]). At least one eigenvalue of DP
tensor is equal to zero when:

DYD3 =D or D} + D% =0.

These conditions can be formulated by the invariants of DP in two-dimensional
space as follows:

(3.13) DD =0 <= (trDP)?—tr(DP)? =0,
(3.14) DP+DE=0 <> trDP=0.

Using the flow rule (3.9) we can express the Eqgs. (3.13) and (3.14) by the plane
stress state invariants:

1
(3.15) (trDP)? — tr (DP)? = 0 <= 2¢? — 4g2trs? — g3(4gotr Ms + 393) =0,
(3.16) trDP = 0 <= g; = 0.

We will use these two expressions in the next part of this paper to explore the
anisotropy evolution for the prescribed path of plastic deformation.

8.1.1. The Hill yield condition 1990. The Hill yield condition was proposed
in 1990 [27] in the following form:

m m 2 1
(3.17)  fu(o) = |o11 + o92|™ + ( ) (011 — 022)? + 40%,]%
+ (0} +0%,+20%) 2 " [~2a (07, —032) + b(011 —099) ]=(20)™

where 0,4 are the stress tensor o components in the basis {mg, 0 = 1,2} as-
sociated with the main directions of orthotropy in the sheet plane. Note that
the function fy is homogeneous of degree m. In the criterion (3.17), o, 7,a,b,m
are the material parameters that have to be identified in experiments. They do
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not change their value during the whole plastic deformation process for the rigid
ideally plastic material. In the case of isotropic hardening it is assumed that the
parameter o is a function of plastic strain while the ratio of this parameter to
the other remains constant during the process. The yield surface preserves its
shape and varies only in its size. If we introduce a different evolution law for
each material parameter, we will be able to obtain anisotropic hardening and
describe the evolution of plastic anisotropy of given material. Author suggests
the exponent m to be less than 2. If m = 2, then from the Eq. (3.17) we will
obtain the Hill yield condition proposed in 1948.
Using the Eq. (3.6) in (3.17), the Hill yield function takes the form:

(318) fi' = tra|™+ (g)m [2tro? — (tro) %

Al ) (e = %(tra))[b(tr Mo — é(tra’)) Latral= ga),

while in the basis of the deviator invariants (3.8):

(3.19) fH=|tro™ + (;)m [2trs?] 3

1 m
+ 4(trs® + E(tr o)?) 2 ~Ltr (Ms)[b(tr (Ms) — atro] = (20)™.
To find the values of material parameters for the given polycrystal, four
experiments have to be done, for example:
e pure shear in the sheet plane 1-2

(320) o — [ 2 ’8 ] in the basis {m,}, where k — value of the yield stress;
e equibiaxial tension in the sheet plane 1-2

(321) o— [ }g’ )(/). ] in the basis {m,}, where Y}, — value of the yield stress;
P

e uniaxial tension along the m; direction

0

Xy
(3.22) a—)[ K

] in the basis {mg}, where Y; — value of the yield stress;

e uniaxial tension along the my direction

0

(3.23) 0'——)[0 ¥,

] in the basis {m,}, where Y, — value of the yield stress.
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F1G. 3. Experiments proposed to establish material parameters that define the Hill yield
condition: a) pure shear, b) equi-biaxial tension, c) uniaxial tension in m; direction, d)
uniaxial tension in my direction.

Scheme of these experiments is presented in the Fig. 3. When we substitute
values of the yield stresses (3.20)-(3.23) in the Egs. (3.18) or (3.19), we have
the following expressions for the parameters that define the Hill yield condi-
tion (3.17):

oz = HEE -G o= (3" ()] - (9)"

o =Y, 7=k

Hill gives other possible tests that can serve to find the value of the parameter
b: uniaxial tension or pure shear at ¢ = 45° to the m; axis in the sheet plane.
Denoting the values of the yield stresses in these tests by Y45 and 745, respectively,
we obtain the following expressions for the parameter b:

o -3 () (2] ()= [(2)"- (']

Let us consider the form taken by the discussed yield function in special cases
of orthotropy. For cubic symmetry we have:

Yi =Yo=¥ =q=0

and the yield condition in the invariant form (3.19) is reduced to:

jtra|m+(§)"’ [2trs?])% + 4(tr sz—l-%(tr 0)2) T [btr (Ms)? = (20)™.

If the material is isotropic in the sheet plane, material properties do not depend
on tensor M, so b = 0 and therefore:

(3.26) |tra'|m+<g)m [2trs?] % = (20)™.

If we express the invariants appearing in this equation by the principal compo-
nents of plane stress tensor o, we obtain one of the four special cases of the Hill
yield criterion proposed in 1979 [26].
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The tensile (or compression) yield stress in the sheet plane at the angle ¢
to one of the orthotropy axis, for example m;, predicted by the analyzed yield
criterion is given by the formula:

(20)™ ;
1+ (%)m + cos 2¢(bcos 2¢ — 2a)

(3.27) g ==

In the case of Hill yield function fy(o) we obtain the following expressions
that define the functions g; appearing in the flow rule (3.9):

(3.28) g1 = mitro|™ !sgn(tr o)
+2(trs? + %(tr o)) 7 2r Ms|[b(m — 2)tr Mstr o
—a((m - 1)(tro)? + 2trs?)),

(329) g =m(Z)"(2trs?) %!

1 m
+ (2m—4)(trs? + E(tr 0)%) 2 ~%tr Ms(btrMs — a tr o),

(3.30) g3 = 4(trs? + %(tra)Q)%'l(zbtr Ms — atro).

Substituting the Egs. (3.27) and (3.28) into (3.12) we can determine formulas
that give the Lankford coefficient R, for the material that is described by the
considered yield condition:

D 1+ (2)" + Abfeon2yy

331 R :
S ¢ DY 2 —2acos2¢ + T=2b(cos 2¢)>

3.1.2. The Barlat-Lian yield condition 1989. In 1989 Barlat and Lian pro-
posed another yield condition of degree m for the polycrystalline materials and
the plane stress state [5]. It has the following form in the stress & components
in the basis {m,} associated with the axes of orthotropy:

(3.32) fB(o) =a|Ky + Ko™ + a|K1 — K2|™ + (2 — @)|2K2|™ = 26™,

h B s v
where K, = Zuthon Kz:\/<&2ﬂ2_) + 68

Coefficients a, h, p, 5, m are material parameters established in experiments. For
f.c.c. crystals the exponent m = 8 is suggested and for b.c.c crystals m = 6. The
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function fg is homogeneous of degree m. According to the authors, this yield
condition agrees with the Taylor-Bishop-Hill yield surface (7, 8]. The last yield
surface is specified by the microstructure of the polycrystalline aggregate.
Now we calculate a invariant form of the condition (3.32). Functions K; and
K, we can express by the invariants of the plane stress tensor as follows:
(14 h)tro + 2(1 — h)tr Ms

@3 K = = :

T \/((1—h)tra+2(1+h)trMs>2+P§(trSZ_2(trMS)2)_

4

Substituting into these expressions the values of yield stresses obtained in
the tests (3.20)-(3.21), we obtain the following equations defining material pa-
rameters:

o=X, h= é, for h>il
(3.35) .
= 2V = Ahe- A )Y 2 m Y,
S yairmm—Gon P |mre-arm| k

For the special cases of orthotropy we have
e for cubic symmetry:

1 9
hed 25 Ko Etrcr, K = \/(trMs)2 + %—(trs2 — 2(tr Ms)?),

e for plane isotropy:

1 1 1
(3.36) =k p=1:>K1=§tra', K2=\/§trs2=ﬁ|ls||,

where ||s|| denotes the norm of the stress deviator in a two-dimensional space.
To find the invariant form of the Barlat-Lian criterion using the stress invari-
ants from the Eq. (3.5), we have to apply the expressions:

1 i)
(3.37) trMs = tr Mo — 3 tro, trs’®=tro? - -2-(tr ke

As for the Hill yield condition, we outline now the tensile yield stress at the
angle ¢ to the m; axis:

2 m
3.38 oy =0 .
Sk : (alk‘f +K§|™ +alkf — KSIm + (2 - a>|zk;’|m)



EVOLUTION OF PLASTIC ANISOTROPY 553

where

1
kf = -2—(cos¢2+hsin¢2),

kg’ o -;—\/(cos @? — hsin ¢?)? + p?(sin 2¢)2.

Functions g; from the general flow rule (3.9) for the case of the Barlat-Lian
criterion take the form:

339) o = lo) 5 + 222

(1-h)tro+ %(1 - hz)trMs] .

4
(.40) 0= 22,

(3.41) g3 = fl(a)% + f:;g) B(l — h¥)tro +[(1 + k)2 — 4p?tr Ms] :
where

file) = g‘g{% " am[|K1‘|‘K2|m_2(K1+K2)+|K1—K2|m"2(K1—K2)] ,
falo) = gLKBz = am[|K1+Ks |2 (K1 +K>2) — | K1—Ko| ™" (K 1—K>)]

+2m(2—a)(2Kq)™ L.

Using the flow rule we can find the expression which gives the Lankford
coefficient Ry. Thus

¢
22 (sin?¢? + hcos?¢) + j—} lsin?2<¢>[(1+h)2—4192] ok
2

(342)  Ry= et
—[20+h)f? + £—2¢(c032¢ + sin® ph? — h)]
2

Functions ff’ and fg5 from the Eq. (3.42) are equal to fi(Wy) and fo(Wy),
respectively.

The Egs. (3.13),(3.14) or (3.15),(3.16) that describe the condition of strain
localization are also applicable to the flow rule associated with the Barlat-Lian
yield surface where the functions g; are defined by (3.39)-(3.41).

3.2. The proposed yield surface for polycrystals

Polycrystal models based on the microstructure of the grain aggregate use
the constitutive model of the single grain presented in the Sec. 2. Unlike phe-
nomenological models, they allow to follow crystallographic texture development
due to deformation process.
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Starting-point of these theories are definitions of a grain aggregate and a
representative volume element. As a grain aggregate we consider the set of grains
which have identical elastic-plastic properties and differ only in crystallographic
lattice orientation. As a representative volume element we consider the set of
grains to which we can refer averaged macroscopic stress and strain measures.
Usually we can assume that there are about 1000 grains in the material point
at the macro-scale defined in such a way. These grains have diameters of about
100 pm [21].

One of the oldest computational models of this kind for polycrystals is the
Sachs model proposed in 1928 [44]. It describes initial yielding of grain aggregates
assuming that each grain in the representative volume element is subjected to
the same stress state. In this model the condition of kinematic compatibility on
the grain boundaries is not satisfied. The Taylor model from 1938 [45] assumes
that the same macroscopic plastic strain rate is imposed on each grain. Using
this assumption Taylor obtained the macroscopic yield stress in tension for the
polycrystal. The condition of uniform deformation for the polycrystal element
imposes strong constrains on the Taylor model. In this model the equilibrium
equations for grain boundaries are not satisfied. There are also relaxed Taylor
models which assume that only some components of the plastic strain rate tensor
in the grain are equal to the components of the macroscopic plastic strain rate
tensor.

By means of the Taylor assumption, Bishop and Hill searched in their works
published in 1951 7, 8] for the global yield surface of the polycrystal. On the
level of the single grain they assumed the Schmid yield condition. In their calcu-
lation such a set of slip systems was active that minimized the total work done
during slipping. To construct the global yield surface they used also the condi-
tion of convexity of the yield surface for the single grain and the Hill consistency
condition for the global and local fields of stress and strains:

W = (o8 : (DP)E) = & : DP,

where quantities (DP)& and o® denoted the local plastic strain rate tensor and
the local Cauchy stress tensor in the grain g respectively, & and DP - the global
strain rate tensor and the global Cauchy stress tensor, (.) — averaging over the
representative volume element, and w — the rate of plastic work. It is evident
that (DP)8 = DP because of the Taylor assumption. The rate of plastic work
can also be expressed as a product of the effective rate of plastic deformation
(DP)°f and the effective stress oF which is the strength measure of the material
when the plastic flow begins:

th = (D),
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Graphic interpretation of the effective stress o®f is presented in the Fig. 4. The
yield surface F(&) is the inner envelope of all the hyperplanes IT orthogonal
to the DP direction for which the distance to the point & = 0 is equal to the
effective stress o®ff.

F1G. 4. Global yield surface for the polycrystal-construction.

The first self-consistent model for polycrystal (it satisfies the equilibrium
equations as well as the condition of kinematic compatibility on the grain bound-
aries) was the Kroner model proposed in 1961 [36] and extended in the work [3)].
It used the solution of the Eshelby problem for the spherical inclusion [14]. In
this model, re-orientation of the grains during deformation process was not taken
into account. Another self-consistent model was proposed by Hill in 1965 [24].

The general theory of constitutive models for the polycrystalline materials
was also developed in [25] and [28, 29]

In this paper we propose the initial yield surface for polycrystals which is
given by the formula (see also [13 19, 35]):

(3.43) = Z Z [" Pr'g] i,
g=

where 78 denotes the volume fraction (or probability of finding) of the grains
with orientation g in the grain aggregate, and N is the total number of considered
orientations. Quantity & denotes the macroscopic stress tensor in the polycrystal.
We assume that when the plastic flow begins, the stress state is uniform in
the polycrystal element, so the Sachs assumption is satisfied. Parameter K is
established in the experiment carried out on the macro-level, for example uniaxial
tension in e; direction, thus:

M

Y P&
5 R
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where P[£ is the component of the tensor P™# in the orthonormal basis {e;},i =
1,2,3 joined with the sample, and Y is the initial yield stress. The quantities
P"€ and 7¢°® are defined as in the Sec. 2, so P™8 is the symmetric part of the diad
which defined the r-th slip system in the grain g, and 7¢’® denotes corresponding
critical resolved shear stress. M is the number of all possible slip systems for the
grain g.

This yield condition is formulated in three-dimensional space. It is worth
mentioning that the polycrystal aggregate does not yield for any hydrostatic
stress state and it is insensitive to the sign of stress state due to the form of the
exponent. The kind of material symmetry is not imposed a priori.

The yield stress in tension (or compression) at any angle ¢ to the direction
e; in the plane defined by the normal vector es is given by the expression:

NGR

(3.44) o0y = [K (% Z &

g=1

y T e
M. [ P cos? ¢ + PiEsin? ¢ + Plfsin2¢ .

where the coefficients Pz—rj’g are the components of the tensor P™8 in the basis {e;}.
The following flow rule is associated with the yield condition (3.43):

LR R
(3.45) DP =) 48y — [——g— P8,
g=1 r=1 - Te

Using the equation (3.45) we can find the Lankford coefficient:

D?
(3.46) Ry=—2,
D33
where for the proposed yield surface:
N M n=1
Dgz = Z & Z o ;_% (P[#sin® ¢ + Pysf cos® ¢ — P sin2¢),
g=1 r=1 ¢ L'¢ |
N M 8] 2n-1
¢ — ¢ b1
Tk v i e 5 = 4 G
Pt e e

and
758 = P[ cos? ¢ + Py sin® ¢ + P sin 2¢.
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In the next section we will compare the proposed yield surface with the Hill
yield condition (3.17) and the Barlat-Lian yield condition (3.32). We will also
compute plastic anisotropy development in the polycrystalline aggregate due
to evolution of crystallographic texture in large deformation processes (see also
[18]).We will obtain the material parameters (3.24) and (3.35) defining the phe-
nomenological conditions proposed by Hill and Barlat from the criterion (3.43)
using the expressions:

(3.47) g
ey
1 Pl M ripaey e -
3.48 Yo = Kin {— g 22
( ) 2 2 om Z’Y Z LTg,g] )

)
Il
—
s
Il
A

-1
2n
roprgi2n
2PlZ ]
)

£
| 78

(3.49) k = K

)=
M=
Q(N
M=

)
Il
R
=
Il
—

=1

.

1
3.50 Y. = Ko
( ) » ] 2n

M rprg 7,87 2n
g Pii° + Py
g g
Tc

M=

i B

0
Il
—

In the above formulas e3 defines the considered plane, and e; and e are assumed
to be co-axial with the main directions of orthotropy m; and mjy in this plane.

4. COMPARISON OF THE PHENOMENOLOGICAL YIELD SURFACES WITH THE
PROPOSED YIELD SURFACE

In this section will we compare the shape of the phenomenological yield
surfaces discussed in the Sec. 3.1 with the shape of the proposed yield surface
given by the formula (3.43). In the beginning we will consider the case of plane
isotropy. Later on we will focus on the evolution of anisotropy due to two specific
large plastic deformation processes — the texture development in the sheet rolling
and pure shear in the sheet plane. For these two cases we will assume that the
sheet is plastically isotropic at the beginning of the process.

4.1. Plane isotropy

Now we will consider a sheet which is isotropic in its plane defined by the
normal vector e3 and which can be anisotropic in its section orthogonal to the
sheet plane (see Fig. 5). This kind of sheet symmetry is called plane isotropy.

If we use the Hill yield condition (3.17) to describe plastic flow of this sheet
then this condition takes the form (3.26). In the case of the Barlat-Lian yield
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e3
e2 ,

F1G. 5. Sheet geometry.

surface (3.18) we will use the form (3.36) of it. Note that, in order to describe
behaviour of the material in both cases, we have to establish two material pa-
rameters: o and 7 for the Hill criterion, and @ and & for the Barlat-Lian criterion.
These parameters are often expressed by the yield stresses obtained in uniaxial
tension (3.22) and equi-biaxial tension (3.21):

I
Il
<)

o=%, (2)'=@m-1, &=y,

where

Y,
4. < 3

Because of the requirement of convexity for the yield surface, the following
conditions imposed on the ratio ¢ and the exponent m must be satisfied (see [26]
and [5]):

(4.2) g>0.5 for the Hill condition,
(4.3) ¢~ ™ < 2 for the Barlat-Lian condition.

Using the value of the Lankford coefficient Ry we can evaluate anisotropy of
the sheet in its cross-section. In the case of plane isotropy this coefficient has a
constant value R and for the Hill condition it takes the form:

(4.4) A e |
while for the Barlat-Lian surface:
(4.5) Rp =2¢™ - 1.

Note that if the sheet is isotropic not only in its plane but also in its cross-
sections, then in uniaxial tension, the change of thickness of the sample is the
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same as the change of its width (see Fig. 5). The Lankford coefficient R is then
equal to one. In the case of the Barlat-Lian condition it occurs when ¢ = 1, and
in the case of the Hill surface — when ¢™ = 22-™,

Let us call “anomalous” such behaviour that cannot be described by the
quadratic yield condition proposed in 1948. In the case of “anomalous” be-
haviour, for the ratio ¢ < 1 we obtain the Lankford coefficient R > 1 and
for ¢ > 1 - the Lankford coefficient R < 1. If we look at the expressions (4.4)
and (4.5) we will find out that using the Hill condition, it is possible to describe
such a behaviour for some range of the exponent m. It is impossible to describe
such a behaviour by the Barlat-Lian yield surface.

In order to prevent the material from “non-physical” behaviour that means
increasing of sample thickness or width during uniaxial tension, the Lankford
coefficient has to be larger than zero for both the conditions. In the case of the
Hill yield surface it imposes, apart from the inequality (4.2), additional condition
on the ratio ¢ and the exponent m:

(4.6) b S iy

For the Barlat-Lian yield condition the Lankford coefficient R is greater than
zero if the inequality (4.3) is satisfied.

Stress states that satisfy the Eqs. (3.15) and (3.16) are essential for possible
strain localization. In the case of plane isotropy and the Hill yield surface, these
equations have the form:

(4.7) tro™ 2 tro = +£[(2¢9)™ — 1] (2trs?)™" or tro =0
and for the Barlat-Lian yield surface:

(48) Ui ol X5 o 2omiPii o of M BN T g2
: 2K, qm 2K, e

or K] =0,

where functions K; and K3 are described by the expressions (3.36). For the plane
stress tensors which satisfy these equations, the associated flow rule predicts a
plane strain state. In the case of the considered yield conditions, the Eq. (3.16)
is satisfied by the equal stress states and it does not depend on the ratio q. It
is apparent from this equation that for the plane stress deviator we have plane
strain state in the sheet plane. Solutions of the Eq. (3.15) depend on ¢ so they
must also depend on R.

In conclusion we can emphasize that knowing the Lankford coefficient R from
the experiments, we can propose the proper m value as well as the proper yield
function f for observed plastic flow process.
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Further we will compare the shape of the phenomenological yield surfaces
proposed by Hill and Barlat and Lian with the yield surface given by the formula
(3.43). Coefficient g = 0.9984 is computed from the Eqgs. (3.47), (3.50) and (4.1)
for 2n = 8. Plane isotropy close to the full isotropy of the sheet is obtained
by uniform distribution of 2000 orientations of the f.c.c. grains. The way in
which the Euler angle space is divided in order to obtain uniform distribution
of orientations can be found in [30] or [11]. For the Barlat-Lian yield condition
m = 8 is assumed, and for the Hill yield criterion m = 1.5 is assumed. We
also present the results obtained for the Hill yield condition where m = 8. The
restrictions (4.2) and (4.6) imposed on the ratio ¢ for the Hill yield surface are
satisfied. As far as the Barlat-Lian yield condition is considered, inequality (4.3)
gives the following limit for the ¢ value:

gem 2l 2 wehere;. 259149 o 0 G

The coefficient ¢ computed for 2000 grain orientations satisfies this condition.
Note that this bottom limit for ¢ value for m = 8 (recommended for f.c.c. crystals
by Barlat) composes a rather strong restriction. For b.c.c. crystals (m = 6 is
recommended by Barlat) this restriction is a bit weaker:

g>2"Y%  where 271/ ~0.891.

In the Fig. 6 four cross-sections of the considered yield surfaces are presented.
The best agreement is achieved between the proposed yield surface and the
Barlat-Lian yield condition for all the presented cross-sections. In the case of
the Hill yield condition for m = 1.5, good agreement with the proposed yield
surface is obtained for 012 = 0 and o1; = o9 cross-sections, while the shape
of the Hill yield surface differs significantly for the remaining cross-sections.
In the last case this yield surface predicts greater value of yield stresses than
the proposed yield surface. It is different for the Hill yield criterion for m = 8:
012 = 0 and 011 = 099 cross-sections differ here from those obtained for the other
yield surfaces. Moreover, it is worth mentioning that the yield surface given by
the formula (3.43) and the Barlat-Lian yield surface exhibit greater number of
rounded corners. Those corners do not appear for any considered yield surfaces
in the 092 = 0 and 011 = —o9y cross-sections.

The Eqgs. (4.7) and (4.8) are solved in the cross-sections presented in the
Fig. 6 in order to obtain such stress states for which strain localization is possible.
Moreover, such a stress states are calculated for the yield condition (3.43) using
the expressions (3.15) and (3.16) as well as the flow rule (3.45). The results are
collected in the Table 1.

Due to similarity of the shape of the yield surface for the Barlat-Lian yield
condition and the proposed yield condition (the Eq. (3.43)), the stress tensors



EVOLUTION OF PLASTIC ANISOTROPY 561

), - b) .
o ~‘~\
' i W e e v e
0 Py 06 e
1 £ e a..::
W | iy gt
/ P /, \\ & SOOI, J
/ o
“ A / Y
I w h\
i/ A 3
4 / \
*3 058 o os 1 18 .
o 02 04 0.6 o8 1
c) d)
- 08
B lpzmn Lo,
e —— % g o
e . e g S
04 N = 04 = ~\\& -
N ~N N
02 o NN \
NN \
\ ) \
LU AL
o [ R 1
0 02 04 06 08 1 12 14 16 b i3 H

o 02 04 06 08 1

Fi1G. 6. Cross-sections of the analyzed yield conditions for plane isotropy where q = 0.9984:
a) g12 = 0 b) 022 = 0 ¢) 011 = 022 d) 011 = —022. All values are related to the yield stress Y;.
Legend: ( ) — the yield surface given by the formula (3.43) where 2n = 8; (....... ) — the
Barlat-Lian yield condition m = 8; (— — —) — the Hill yield condition where m = 1.5, (= . —.)

- the Hill yield condition where m = 8.

that can cause strain localization for those conditions are the closest. Such stress
states predicted by the Hill yield surface are significantly different. For all the
considered yield conditions the Eq. (3.16) is satisfied for the same stress states
in the case of plane isotropy.

It is worth looking at the results placed in the Table 1 that concern the
Lankford coefficient R. Uniform distribution of grain orientations simulates full
isortopy of the sheet but of course, it is only an approximation. In the table the
average value of R is put for the proposed condition (3.43). This value is close
but not equal to one. For the Barlat-Lian yield condition it is also close to one
but as far as the Hill yield condition is concerned, a strong in-plane anisotropy is
observed. “Anomalous” behaviour of the material is predicted for the Hill yield
condition for m = 8. Moreover, the value of R suggests that the change of the
sample thickness is very small in comparison with the change of the sample width
in uniaxial tension. This is a rather artificial example. In the case of suggested
value (m < 2), the Lankford coefficient R does not exhibit anomaly. However in
this case the difference between the change of thickness and the change of width
is greater than that for the proposed yield surface (3.43) and the Barlat-Lian
yield surface.

4.2. Rolling texture

In this part, the evolution of plastic anisotropy due to development of rolling
texture will be presented. Evolution of this crystallographic texture is computed
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Table 1. The stress states that can cause strain localization for the considered
cross-sections of the yield surface determined for q = 0.9984.

Yield surface Cross-section Value
q= 0.9984, 012 =10 011 = 0929 099 = 0 J11 = —0922 R
Ul B i
Hill 0.5368 (2) | £3.3179 (2) [ 011 =0 any 0.4108
m.=.1.5 [0.5395] (2) [£3.3431] (2) (1) o12 (1) [0.4142]
1.8629 (2)
[1.8536] (2)
-1.0 (1) 0.0 (1)
Hill 0.3755 (2) | £2.2028 (2) | 011 =0 any 125:3
m =38 [0.3764] (2) |[+2.2069] (2) (1) o1z (1) [127]
2.6628 (2)
[2.6571] (2) g
-1.0 (1) 0.0 (1)
Barlat-Lian | 0.4990 (2) | +2.9925 (2)-}.011 =0 any 0.9740
m=3§ [0.5] (2) [£3.0] (2) (1) o12 (1) [1.0]
2.0038 (2)
2.0] (2)
-1.0 (1) 0.0 (1)
Barlat-Lian | 0.4984 (2) | +2.9870 (2) | 011 =0 any 0.9935
and Hill: [0.5] (2) [£3.0] (2) (1) o12 (1) [1.0]
=2 2.0066 (2)
20] (2)
-1.0 (1) 0.0 (1)
The yield 0.4913 (2) | £2.9314 (2) [ 011 =0 any ~ 1.0561
surface (3.43) | 2.0355 (2) 0.0 (1) (1) o12 (1)
2n = 8, -1.0 (1)
2000 grains

Values in the square brackets correspond to g = 1.

(1) - the Eq. (3.16) is satisfied (it does not depend on q);

(2) - the Eq. (3.15) is satisfied.
by the numerical program using the constitutive model discussed in the Sec. 2.
In this program, the crystallographic lattice re-orientation is calculated in every
f.c.c. grain that build the polycrystalline aggregate. The calculations are per-
formed for given velocity gradient LP which is assumed to be the same for every
grain. The direction of this tensor in the basis {ei} (see Fig. 5) is specified as
follows for rolling process:

Path(LP) = Path(DP) = diag[1.0,0.0, —1.0).
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There are 1024 grains with uniform distribution of orientation in the aggre-
gate which constitute the representative volume element of the polycrystal. The
sheet thickness changes 8 times during the process. In the Fig. 7 the pole figures
<111> are presented. They depict initial orientation distribution, distribution
obtained during the rolling and at the end of the process. We can observe that
after rolling, the sheet has some material symmetry and becomes anisotropic in
its plane. If we use the proposed initial yield surface (3.43) in the description of
the initial plastic flow of the sheet with the texture from the Figs. 7 a, b, ¢, then
in every case the coefficients Pi?g are different.

F1G. 7. Pole figures <111> for rolling process: the initial state (a), t/to = 0.25 (b) and
t/to = 0.5 (c); t/to denotes the ratio of the current sheet thickness to the initial sheet
thickness.

The proposed yield condition (2n = 8) for those three textures is compared
with the Barlat-Lian criterion (m = 8) and the Hill criterion (m = 1.5). In order
to do this, the material parameters defining the phenomenological conditions are
computed using the formulas (3.47)-(3.50). We assume as the main directions
of orthotropy: m; - the rolling direction, ms — the direction normal to the
sheet plane and mjy — the vector product of unit vectors m; and ms. Thus, the
main directions of orthotropy are in this case co-axial with the sample frame
{ei}. Values of the material parameters obtained in this way are collected in the
Table 2.

Values in the Table 2 indicate that the sheet has become orthotropic after
rolling. Evolution of plastic anisotropy can be observed from the diagrams pre-
senting the yield stress in tension (or compression) at any angle ¢ to the rolling
direction and the Lankford coefficient Ry (Fig. 8). The yield stress in tension
0g obtained for the Hill criterion (the formula (3.27)) is significantly different
from the other conditions when the parameter b is calculated from the expression
(3.24)2. Therefore, in order to obtain this parameter, formula (3.25)4 is used.

The revealed anisotropy in the yield stress in tension is not very strong for
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Table 2. Material parameters obtained from the proposed yield surface (3.43)
for crystallographic texture calculated for the specified range of rolling process.

Process range| ] | [] | [] | 3] | [%] | [4]

1.0 1.0 | 1.0 [0.999 [0.559 | 1.0

0.5 1.071 | 1.023 | 0.984 | 0.534 | 0.972

0.125 1.148 | 1.046 | 0.998 | 0.510 | 0.947
Oy
%
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09}
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08|

0.‘52 ¢ [rad] X.‘05 157
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F1G. 8. Yield stress in uniaxial tension 04/Y; (a) and the Lankford coefficient R, (b)
Legend: ( ) — yield surface given by the formula (3.43) where 2n = 8; (st ) — Barlat
yield condition where m = 8; (= — =) — Hill yield condition where m = 1.5. The increasing
line thickness relates to the increasing range of rolling process.

all considered conditions. For the most advanced case of rolling texture it does
not exceed 20%. The maximum value of the yield stress in tension is observed
for the rolling direction, and the minimum value for ¢ = 45° for all the presented
yield conditions. Rolling process raises the yield stress in tension at the rolling
direction and reduces for the angle ¢ = 45°. This statement is true for the
proposed yield condition as well as for the phenomenological yield conditions.
Diagram of the Lankford coefficient Ry, the formulas (3.31), (3.42) and (3.46),
can give information about anisotropy of the plastic flow process. We observe
here a significant difference between the behaviour of the material described
by the yield surface given by the formula (3.43) and the one described by the
phenomenological yield conditions proposed by Hill or Barlat and Lian. For the
proposed yield surface there are such sample orientations given by the angle ¢
for which the sample width decreases more than the sample thickness (Ry > 1,
strain localization by necking is predicted) and such sample orientations for
which opposite behaviour is observed (Rp < 1, strain localization by thinning
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is predicted). The Barlat-Lian surface as well as the Hill surface predict strain
localization by thinning for all values of the angle ¢. For the Barlat-Lian criterion,
the minimum and the maximum value of the Lankford coefficient R4 are close
to each other and placed below one. For the proposed criterion, function Ry
increases rapidly in the region of ¢ = 22.5° to its maximum at ¢ = 45° and then
decreases in the region of ¢ = 77.5°. For these regions of the angle ¢, small change
in sample orientation can cause significant difference in the flow process. For the
phenomenological yield conditions the function Ry changes more smoothly. The
initial value of the Lankford coefficient for the proposed yield surface (3.43)
is slightly greater than one due to the fact that uniform distribution of grain
orientations brings only some approximation of full isotropy of the sheet. It
is worth noting that for the initial state, the proposed yield surface predicts
“anomalous” behaviour of the material. For Y,/Y; < 1 the Lankford coefficient
is greater than one.

4.8. Pure shear texture

Now we turn to the evolution of plastic anisotropy in the polycrystalline
sample subjected to pure shear. This sample has initially uniform distribution
of grain orientations. During the shearing, the specified crystallographic texture
develops in the sample. Texture development has been calculated for the velocity
gradient LP, whose direction in the basis {e;} (Fig. 5) could be expressed as
follows:

Path(L%,) = Path(L};) = 1.0.

Remaining components of the tensor LP were equal to zero. Computational pro-
cess has been conducted until the tangent of the shear angle # became equal to
0.98. As for the rolling process, initial uniform distribution of grain orientations
has been simulated by 1024 grains with different orientations. Computations
have been made using the same constitutive model and the numerical program
as for rolling process.

Texture development is presented in the Fig. 9 where the pole figures <111>
are placed for the succeeding ranges of shearing process. It is observed that the
lines representing directions <110> in the sample coordinate system {e;} are
the axes of symmetry for each pole figure. It is easy to see that these directions
are also the principal axes of the tensor DP.

For the computed textures of pure shear, the change of the proposed yield surface
as well as the change of the phenomenological yield conditions will be considered.
Material parameters describing the shape of the Barlat-Lian surface and the Hill
surface are calculated from the formulas (3.47)-(3.50) assuming that the principal
directions of orthotropy {my,}, @ = 1,2 in the sheet plane are located at the angle
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F1G. 9. Pole figures <111> for pure shear process: the initial state (a), tan(f) = 0.6 (b) and
tan(8) = 0.98 (c)

45° to the sample axes {e,}. This is indicated by the described symmetry of the
pole figures. Calculated values of the material parameters are collected in the
Table 3. As in the case of rolling process, in order to obtain the parameter b for
the Hill condition, the expression (3.25) is used instead of (3.24).

Table 3. Material parameters obtained from the proposed yield surface (3.43) for
the crystallographic texture calculated for the specified range of rolling process.

psoms e oot | 3] 3 | G | ] | o)
0 1.0 1.0 ]0.999 | 0.559 | 1.0
0.6 1.067 | 0.988 | 1.021 | 0.548 | 0.992
0.98 1.158 | 0.997 | 1.046 | 0.545 | 0.997

Looking at the Table 3 we can see that the values of the yield stresses: Y] in
tension in m; direction and Y, in equi-biaxial tension, increase while the yield
stress k in pure shear decreases as the shear angle 6 increases. Evolution of sheet
anisotropy is easy to be observed in the Fig. 10, where diagrams of the yield
stress in tension at orientation ¢ to the m; axis and the Lankford coefficient R,
are presented. The shape of these curves is different than for the rolling process,
especially when the proposed yield surface (3.43) is concerned. We can observe in
this case two local maxima of the function 0g4: at the angle ¢ = 0° and ¢ ~ 60°.
For the other yield conditions one maximum of function og is found at the angle
¢ = 0°, what means at the angle 45° to the e; direction (see Fig. 5). Difference
between the values of the yield stresses obtained for different angles ¢ do not
exceed 15% for all the considered yield conditions.
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Fic. 10. Yield stress in uniaxial tension o,4/Y; (a) and the Lankford coefficient Ry (b)
Legend: ( ) — yield surface given by the formula (3.43) where 2n = 8; (....... ) — Barlat
yield condition where m = 8; (= — —) — Hill yield condition where m = 1.5. The increasing

line thickness relates to the increasing range of shearing process.

The diagram of the Lankford coefficient R4 shows that kinematical behaviour
of the material strongly depends on the angle ¢. For the sample orientation close
to ¢ = 0° and ¢ = 60°, the Lankford coefficient R4 > 1 and strain localization
by necking is predicted. For ¢ = 45° and ¢ = 90° thinning is predicted. Such
a behaviour of the material subjected to the pure shear process is predicted by
the proposed texture-dependent yield surface. The function Ry obtained for the
Barlat-Lian yield surface with m = 8 is much more flat. In this case thinning is
predicted for the angle ¢ between 0° and ~ 60° and for the other values of the
angle ¢ necking is predicted. As for the rolling textures, the Lankford coefficient
Ry calculated from the Hill yield condition for m = 1.5 significantly differs from
the others. For any angle ¢ its value is less than one.

5. CONCLUSIONS

In the paper, the evolution of plastic anisotropy in the polycrystalline samples
due to crystallographic texture development was presented. In order to describe
the texture development, the rigid-plastic model with isotropic hardening was
applied for the single grain. The regularized Schmid law proposed by Gambin
was assumed as a yield condition for the single grain. In the processes associ-
ated with large plastic deformation, the crystallographic lattice re-orientation
was computed for every grain in the polycrystalline aggregate. In these calcu-
lations the extended Clement formulas (2.12)-(2.16) appropriate for any grain
orientation were used. This model was implemented in the numerical program
used to calculate the texture development in the grain aggregate subjected to
large deformation processes.
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Thorough analysis of the phenomenological yield conditions proposed by Hill
in 1990 and Barlat with Lian in 1989 was performed in the case of plane stress
state. The invariant forms of those conditions and the associated flow rules were
derived.

The initial yield condition (3.43) for the polycrystals was proposed. For this
yield surface, anisotropy of the sample directly depended on grain orientations in
the representative volume element of the polycrystal. In order to construct the
yield function, basic information concerning the microstructure of polycrystal
and the nature of plastic deformation in the polycrystalline materials were taken
into account.

Plastic anisotropy in the yield stresses and in the plastic flow process obtained
for the proposed yield surface was compared with the one obtained for the phe-
nomenological yield conditions proposed by Hill and Barlat with Lian. Plastic
anisotropy, which was analyzed, was caused by two large plastic deformation
process: rolling and simple shear. For those two processes, the crystallographic
texture development was computed by the numerical program described above.
It was observed that as far as the yield stresses were concerned, the phenomeno-
logical yield surfaces and the proposed yield surface agreed quite well but as far
as kinematical behaviour was concerned, they predicted different behaviours of
the material. Those conditions predicted also different stress states that could
cause strain localization.

Therefore one can conclude that a proper choice of the yield surface for given
polycrystalline material should be based not only on the values of the yield
stresses obtained in some experiments but also on the analysis of plastic flow
process. For example, the value of the Lankford coefficient should be taken into
account. It seems that the formula (3.12), which relates the yield stress in tension
at the angle ¢ to orthotropy axis with the Lankford coefficient Ry for any yield
condition, can be helpful.

Development of plastic anisotropy in rolling and pure shear processes shows
that even small change in the shape of yield surface can cause more significant
changes of the principal directions of the strain rate tensor DP. Those changes
influence substantially the properties of the deformed metal element.
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