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This paper deals with the high frequency analysis of one-dimensional waveguides. In this
frequency range, this paper proposes a numerical implementation and tests of an alternative
to the classical predictive dynamical methods. The originality of this approach consists in the
fact that it is solely an energy density description. A numerical scheme very similar to the
well-known direct stiffness method is employed here. This leads to a numerical code capable of
predicting the mean value energy density for complex beam-like structure up to high frequen-
cies. A twenty-four components plane truss, including both the bending and extension motion
is used as a verification test, and shows the ability of the proposed code to predict the high
frequency dynamics of complex beam-like structures.

1. INTRODUCTION

The medium and high frequency dynamics is the subject of intensive research
and a great number of works and publications confirms the interest of the scien-
tific community in such questions. In fact, there is still a real need for inventing
methods well suited to deal with medium and high frequencies and taking into
account the numerous problems of this domain. These problems make the use of
the classical methods (finite element, boundary element,...) not always possible,
for many reasons to be discussed below.

Among the classical methods which are widely employed in the prediction of
sound and vibration level of industrial machines, let us mention the finite element
method as an example. From a global point of view, this method based on the
Rayleigh scheme uses a discretisation procedure which is mainly dependent on
the complexity of the studied cases and of the frequencies of interest. Indeed, as
the frequency increases, the wavelength decreases and a great number of elements
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are needed. This leads to difficulties in the numerical analysis. Moreover, in the
strict analysis of the features of high frequencies, it should be noticed that the
main argument against the use of classical methods is the damping phenomenon
which has a leading role. In fact, as the frequency increases, the modes are
strongly coupled whilst the approximation of the dynamical behavior by finite
element method advances the superposition of the uncoupled modes.

In the light of this succinct description, the development of further possibili-
ties appears to be necessary. Among them, let us mention the well known Statisti-
cal Energy Analysis (SEA). This method appeared in early seventies. The (SEA)
proposes an analysis of the energy transfer between subsystems (set of modes).
From a (SEA) scheme, a global tendency of the total energy is then given. Nev-
ertheless, the (SEA) needs to be improved in order to avoid its deficiencies. The
reader can, in this context, be referred to the review of the Statistical Energy
Analysis [1], where an interesting survey and a number of critical comments are
given. '

Owing to the exposed literature survey, a number of works appeared to en-
hance the Statistical Energy Analysis robustness and productivity. Among those
attempts let us report the earlier work of BELOV and RYBAK [2] and the in-
teresting investigations of NEFSKE and SUNG [3], who proposed the use of the
heat conduction analogy to get not only the total energy available in a (SEA)
model, but also the space evolution of energy density within the subsystems.
This leads to energy formulation of the dynamical equation of motion instead
of the classical displacement-based model. This model has been improved by
BERNHARD and his team [4 — 7] and studied also by IcHCHOU, LE BOT and
JEZEQUEL [8 - 12].

The main goal of this paper is to present a numerical implementation of such
a technique in order to build an energy code. In fact, we first shortly present
the basis of the technique and a general formulation needed to couple the sub-
systems. The Direct Stiffness Method is used to solve the energy equation and
to implement the method. A verification test is finally considered. The latter
is a complex plane lattice comprising twenty four bar elements. This example
has been chosen since it has been treated by other contributors in the literature
using different approaches to the problem [13, 14].

2. A BRIEF REVIEW OF THE LOCAL ENERGY EQUATION

This section attempts to summarize the main definitions and steps needed
in order to understand the energy equation properties. Accordingly, in the sub-
sequent presentation, the term w, will denote a propagating plane wave (of the
kind defined by index a) in a one-dimensional medium (Fig. 1). Precisely, it
will designate a bending, extension or torsion plane wave propagating in a bar
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element. However, the presentation is suited for a more general case. Moreover,
when needed, an evanescent wave will be indicated by the term e, (see Fig. 1).
Note that both the phase and the amplitude are included in the notation used
here (complez notation is then implicit). Finally, let us mention that only steady
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FiG. 1. Wave designation into a simple wave guide

state dynamics will be taken into account below, w representing angular velocity
of propagating wave. Therefore, no transient aspect is involved in this study.
Let us also denote by “s” the identifying mark on the neutral axis of the bar.
On the basis of the energy equation formulation, two continuous energy pa-
rameters are introduced. The first energy quantity is nothing else but the total
energy density W (s) defined as the sum of the potential energy density and the
kinetic energy density. The second energy variable I(s) is the active energy flow
defined as the real part of the complex energy flow. These parameters are contin-
uous, contrary to (SEA), where such parameters are discreetes. The quantities
introduced in the framework of this model may be related to classical energy
quantities deduced from motion equations by various ways. The common idea of
all these interpretations is that the energies considered here are classical energies
where all irrelevant details in a high frequency view are removed. Usually, local
averages over time, space, frequency or ensemble are involved.

Consider now the simplest waveguide, where two travelling waves exist: an
incident propagating wave (incoming) denoted wg, and a reflected (or outgoing)
travelling wave denoted w,, . Far from singularities, only pure propagative waves
are kept. In fact, evanescent waves are mainly concentrated at the junctions or
sources locations, and they will not contribute to the dynamics far from those
locations. It is the first hypothesis of the energy equation. Then, partial energy
quantities can be introduced and defined as the energy variables associated with
each kind of travelling waves. IF, I;, Wi and W will represent respectively
the active energy flow and the energy denity associated with the incident and
reflected progressive waves. To close the preliminary presentation, a set of re-
quired parameters may be described. Those parameters are: the group velocity
Cga» and the characteristic impedance Z, associated with the system. It can be
readily shown that partial energy flow quantities can be related to the associated
waves by the general relationship (2.1):
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(2.1) IF = —w?Zywl o}, I7 = —=w? Zyw

In order to establish a relationship between the partial and global energy pa-
rameters, another assumption is introduced. This assumption postulates that
waves interferences are not considered in the formulation of the model. As a
consequence, a superposition principle can be employed for the quadratic pa-
rameter as it is the case for displacement parameters. Hence, this assumption
leads to (2.2):

(2.2) Wals) = W(s) + Wils), In(s) = IF(s) - I (s).

(o7

The first step in deriving the energy equation is the local energy balance for a
non-loaded region:

(2.3) div.Ip + pay,, = 0,

where pq,,, is the power density being dissipated. The damping model adopted
here is the same as in (SEA): power density being dissipated is proportional to
the energy density. Hence:

(24) pad;ss = UaUJWm

where 7, is the damping loss factor. The validity of this relationship has been
discussed in the literature concerning (SEA). As the travelling wave is a particu-
lar solution of the motion equation, the power balance (2.3) may be applied and
leads to:

dr,* |
-ES_ +padiss =0.

As we are concerned with pure travelling waves, a simple relationship exists
between partial energy flow and partial energy density [15]:

(2.5)

(2:6) Io*(s) = g, WiE(s).

The minus sign, before the group velocity, stems from the direction of propaga-
tion. The power densities being dissipated are given, as in (SEA), by:

(2'7) p:atdiss = nawWC:tt'

Now, substituting (2.7), (2.6) in the power balance relationship (2.5), we obtain:

—c2 dW,*
2. IF(s) = 2272
(2.8) & (8) o ds
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Adding equations (2.8), a relationship between I,(s) and W,(s) is obtained:

_ C.’}ga d WOl

(29) Infs) = T2 5,

which is similar to the thermal conductivity law (2.9). Finally, introducing this
relationship into the power balance, we obtain:

d*W, [ Naw
ds?

2
(2.10) ) Wa(s) = 0.

Cga
Equation (2.10) is analogous to the steady state heat conduction equation with
a convective term. The solutions of this equation exhibit a slow space evolution,
contrary to the energy densities predicted from the classical governing equations.
The energy equation (2.10) predicts only the macroscopic evolution of the energy
density, without any details of the smallest oscillation which are not relevant
for the medium and high-frequency models. This is the sense of the local space
average introduced in [4]. Alternatively, the solution of this energy equation may
be viewed as the space or frequency average of the energy density deduced from
the classical governing equations. As a compensation for this lack of information,
a significant gain is obtained in the time-computation up to high frequencies.
General solution of this equation is:

(2.11) Wa(s) = Ate %a® + AZeca

for the energy density, and:
(2.12) Tals) = cq [Afe 50" — aze "],

for the energy flow. AZ and A are two arbitrary constants which have to be
determined with appropriate boundary conditions usually expressed by I,. It
should be noticed that a similar equation governs each propagating wave. In
fact, the wave uncoupling is assumed inside the bar. In fact, no wave energy
transfer occurs far from the singularities. The wave coupling will be assumed to
take place at the junctions and interfaces.

3. COUPLING CONDITIONS FOR THE ENERGY EQUATIONS

To close the energy description, boundary and coupling conditions as well as
the second term needed for the differential equation must be discussed. Indeed,
let us consider first a complex junction between a set of m waveguides. Each
of them transmits a set of n kinds of propagating waves. From the previous
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section, it follows that each kind of waves can be described by a second-order
energy differential equation, so that a set of (m * n) coupling conditions for
energy parameters is required to close the problem. The most general form of
those conditions is given below in a convenient computable way.
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F1G. 2. Waves considered next

In the next subsections, the propagating waves sets will be denoted by War,
where 8 concerns waves of non-dispersive nature (1 < 8 < n;) (see Fig. 2), and
where 7 is the waveguide index (1 < r < m). In addition, w,, is the set of non-
dispersive waves, (1 < a < ng). Obviously, n; + ng = n is the total number of
waves to be considered. It should be eventually noticed that evanescent waves €4y,
with (1 < & < n2) are needed to describe correctly the waveguides interfaces.

3.1. Boundary and coupling conditions: unloaded singularity

At a junction, a set of propagating and evanescent waves exists. Those waves
are divided into two parts. The first set comprises only propagating waves arriv-
ing to the interface. The vector containing such progressive waves is {w,}. The
second set of waves are those stemming from the junction. Those waves are in
general of propagating and evanescent kind. The vector of waves arising of the
interface is {w,}. Using the convention adopted for the interface (Fig. 3), the
defined vectors can be readily written as:

def def
(3.1) {we} = {wsh}, {wo} = {ws, €0}

d denotes progressives waves of dispersive or non-dispersive nature. {we} is a
column of n *m line number, whilst {w,} is a (n+n;) * m number of lines. The
equilibrium and compatibility equations, when expressed at the junction, link
this waves present at the interface. In the general case considered here, a set of
(2 * n1 + ng) * m equations is needed. Those relationships can be written, with
regard to expression (3.1), as follows:

(3:2) (B] {we} = [S]{w,}.

[E] is & neq * ne matrix dimension, where Neg = (2%ny +ny)*m and n, = nxm.
[S] is & n, *n, matrix dimension, where n, = (2%n; +ny) *m. This relation (3.2)
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Fi1G. 3. Incident waves and reflected or transmitted waves at a junction
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assimilates an interface to a wave converter with an input-output constitutive
law. From this law (3.2), the waves arising from the interface can be deduced
from the impinging ones simply by:

(3.3) {wo} = [S]™Y [E] {w.}.

Thus, an interface will be completely described from the knowledge of matrix [E]
and [S]. The resulting matrix (3.3) contains hence the reflection and transmission
coefficients which represent the interface behavior from a wave description. It can
be noticed that (3.3) is the exact formulation of the coupling conditions, and that
the latter can be detailed as follows:

(5 )- (5

[P] is a n, * n, matrix dimension, where n, =n*m. [Q] is a (ny * m) * (n *m)
matrix. The coupling conditions suited for the energy equation described in the
previous section are deduced from the propagating-propagating relationships at
the junction. Hence, the useful relationship from (3.4) is:

(35) {w;,} =P} {wf}.

The quadratic form of this expression (3.5) can be readily deduced, expressing
the modulus of each term in (3.5). Indeed, relationship (3.5) can be written as
follows (3.6):

nxm
(3.6) wy, = Z P jrys wis
ys=1
Thus:
nxm
(3.7) wy, X wy = Z Pspys X P}mssz X w,;:"
ys=1
nxm nxm
+ Z Z P(SP'YS X P&r(t X U)Ct .
vs=1(t=1

At this stage, the previous relationship can be simplified by omitting the second
term in the equation. In fact, this term is the contribution of interferences to
the partial energy associated to each wave. It has a space and frequency oscil-
lating aspect which have been removed in the context of energy flow equation.



DIRECT STIFFNESS ENERGY MODEL 493

A number of publications and works in the literature discuss the validity of this
simplification, the reader can obtain explanations from [16 — 19] and [20]. Thus:

nxm

(3.8) wy, X Wy = Z Pirys X Phgunty x wif.
vs=1
Using this simplification and Eq. (2.1), one can obtain:
nxm
(3.9) Iy = > (Zsr/ Zys) X Pirys X Pipyg x L.
ys=1

This expression can be considered as the generalization of coupling conditions
given by several authors, in particular, NEFSKE [3] and CHO in [21, 22]. Equa-
tion (3.10) represents a set of (m * n) coupling conditions required to close the
energy problem and to solve the differential equations. Note that those equa-
tions are written in terms of the partial energy quantities. A different version
of these relationships is used in the section Direct stiffness energy implementa-
tion. Eventually, a general form of the reciprocity principle (consequence of the
Maxwell-Betti theorem) can be formulated from Eq. (3.10) as follows:

nxm

(310) V’)’S, Z (Zér/Z“/s) X P6r7s X P;r'ys =1
ys=1

This expression is a generalization of the similar expression given by NEFSKE [3]
and CHo [21].

3.2. Boundary and coupling conditions: loaded singularity

In this subsection, the treatment of an input force at a complex junction
is considered. The procedure used below is similar to the one adopted before.
Hencefore, propagative and evanescent waves are divided into: a vector of pro-
gressive waves entering the junction {w,}, and a set of waves stemming from the
junction {w,}. Moreover, the vector {F} contains concentrated external gener-
alized forces (forces, moments,...) which are assumed to be known. The force
vector is a column of ny elements. Those parameters are linked to the entering
waves quantities. For convenience following the convention adopted here (see
Fig. 3), it follows:

def def
(3.11) {we} = {wi,, F}t , {wo}’/z\{w;r, ea}t.

Here, ¢ denotes progressive waves of dispersive or non-dispersive nature. {w,},
is a column of (n * m + ny) lines, whilst {w,} is a column of (n + ny) * m
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lines. Equilibrium and compatibility equations expressed at the junction, link
the defined vectors as follows:

(3.12) [E] {we} = [S] {wo}.

[E] is a ngq * ne matrix , where neg = (2% ny +ng) *m and n, = n*m + nf.
[S] is a m, * n, matrix , where n, = (2 ¥ n; + ny) * m. From this law (3.12), the
following expression can be deduced:

(3.13) {wo} = [8]"V [} {w}, F}".

Thus, the loaded interface will be completely described from the knowledge of
matrix [E] and [S] and the force vector {F}. In fact:

’U);T _ P R + t
(314) {fa'r} = [Q S] {’IUJ,-,F} .
and:
nxm nf
(3.15) wgr Z PJr'ys +s + Z Rset Fort.-
vs=1 t=1

The quadratic form of this expression (3.15) can be readily deduced by expressing
the modulus of the wave arising from the junction, as a function of incident waves
and input forces:

(3.16) Wy, X w";: =31 + Iy + X3.
where:
nxm
(3'17) Z P'ystfr ys X wﬂ + ZRthFﬁrt
vs=1 t=1
nxm nxm ny ny
(318)  To= ) D PoearPlswsi x Wl + 35 Rect R For Fiy.
’YS:]. (t=1 t=1 k=1
Cttvs Kkt
nxm Nf nxm 0Nf
(319)  B3=) > PresrRiuf, x F5F+ 30 Y Pl Reewsf x Ff,.
vys=1 t=1 ys=1 t=1

Therefore, assuming that no correlation exists between the different sources oc-
curring in this problem (this means that the external input sources and the
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arising waves are not correlated), this is a high frequency consequence which has
been addressed by some authors (see for instance [23, 24]), the previous relation-
ship can be simplified by omitting terms in the Equation (3.16), the contribution
of (3.18) and (3.19).

nxm i
(3.20) we x Wy = 3 Plywd xwit +) RELFE,.
ys=1 t=1
which leads finally to:
n*xm nf
(3.21) Iy = 3 (Z50) Zys) X Porgs X Phoyg X L + Y 25, R Fiyy.
'yszl t=1

Equation (3.21) represents the set of (m * n) of coupling conditions required to
close the energy problem and to solve the differential equations.

4. DIRECT STIFFNESS ENERGY BASED IMPLEMENTATION

In this section the numerical method used to solve the energy equations is
dealt with. The direct stiffness method [25] is fitted to the energy equations.
It has been used and implemented for a number of dynamical cases and espe-
cially for waveguides, particular plates coupling, etc. (see [25]). Its major feature
consists in giving the “exact” solution of the dynamical behavior of complex
structures, whereas finite element implementation for instance requires a set of
approximations.

4.1. Elementary energy transfert matriz for complez one dimensional

Wér(so) Wér(sl)

VA - N

- P — -
So T S1

Fi1G. 4. Elementary energy wave guide, nodal parameters

Let us consider first the simplest waveguide with a unique travelling wave.
Fig. 4 presents the sign convention used here. Each element is defined by two
nodes where the energy parameters are assumed to be unknown. Thus, the pur-
pose of the following process is to express the transfer between nodes with regard
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to the energy equation discussed in Sec. 1. To this end, let us recall the general
particular solution of the energy equation:

N5 Ngr o
(4.1) Wir(s) = Afe osr + Ay ecer
for the energy density, and:
_Dgew LE TN
(4.2) Ir(8) = cgs, |Afre “osr — A5 eosr ||

for the energy flow. Let us now define an energy density vector and an active
energy vector, so that:

- %)= (i)

for the energy density, and:

Iér(so) )
44 I} = ,
@ = (500

for the energy flow. Expressing now the energy density vector on the abscissa
corresponding to nodes 1 and 2 and using the explicit form giving (4.1) and
(4.2), it follows:

—nw
e95r 0 goas, O A;;
(4.5) {Wsr} = Ts Mg | |\ 4o )
€ 9sr e 9sr 5r
for the energy density, and:
=nw W
s " —eC9sr 0 A;’r
(4.6) {lsr} = cgs, s T PR A=)
—e9sr e 9sr or

for the energy flow vector. Eliminating amplitudes Af and Aj, from (4.6) and
(4.5), the energy-equivalent “stiffness” operator can be presented:

3 Cgs. cosh <—T’irl> -1
S {IJT}—sinh (g;';;wr-zr) —6196 r cosh (Eg;”—rl,) {War}.

or simply:

(4.8) {Isr} = [Kor] { W5},
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where [, = (s1—3,) is the “r~th” element length. [K;.] denotes an energy operator
equivalent to the classical kinematic “stiffness”. This matrix is symmetric which
prove the reciprocity of the energy equation. For the single element case given
in Fig. 4, the matrix formulation of the problem is completely determined from
the knowledge of the boundary condition expressed in terms of the active energy
flow as well as the power input in the system.

4.2. Elementary energy matriz assembly

As in the classical finite element method, elementary matrix must be assem-
bled, in order to deal with complex geometry and configuration. The displace-
ment finite element procedure is well established and easy to implement accord-
ing mainly to the compatibility of shape functions. The displacement continuity
and forces equilibrium are simply included. However, such a generalization can-
not be envisaged when speaking about energy equations. Indeed, as it was seen
in the previous sections, energy coupling conditions are not easy do deal with,
specially, when complex waveguide interface is considered. The assembly pro-
cedure used here, is similar to the one presented in [21]. It will be generalized
for a numerical implementation scheme. Indeed in the following, the interface
involving an energy gap will be regarded as an intrinsic element. The dimension
of this element will depend on the complexity of the interface. So, let us recall
the energy coupling conditions established before:

nxm ki
(4-9) I(;‘ = Z (Zér/Z'ys) X Pér'ys X Pgms X I';I; + Z Z&ngrtFJQTt'
ys=1 =1

This relationship is expressed in terms of partial active energy associated with
different wave forms. In order to establish the general expression of the matrix
representing the interface behavior in terms of energy density and active energy
flow, the formula (4.9) must be rewritten. Indeed, from Eqgs. (2.11) and (4.2),
partial energies associated with a wave of kind a can be obtained from global
energies thanks to nothing else but the total energy density W (s) (2.2):

1
(4.10) I,s—: = 5 (Isr + Cysr Wsr) ,
on the one hand, and:
]
_ 1
(411) Ib'r = ‘2‘ (167' — Cgs,. WJT‘) 3

on the other hand. Those relationships are valid for each partial energy appearing
in (4.9). Hence, combining the latter with (4.10) and (4.11), one can obtain a
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new form of (4.9) after some calculations:

nxm nxm ng

(4.12) Z(l’ys&r — Ayssr) ys = Z(Cysr Lysor + Ayssr) Wys + Z Zsr RieiFi,
’)’S '73 t=1

where:

(413) A’ystsr = (ZJr/Z'ys) X Pér'ys X Pgr'ys’

(4.14) Lysr =1 if ys=dr,

lyse =0 if s #ér

This is the general form of the interface description according to the energy
equation formulation. The interface matrix dimension depends on the number
of waveguides present at the connection, and on the number of waves considered
in each waveguide.

(4-15) ([1756r]_[A7s6r]){L¥8} = ([cyar lwsér]”f‘cyqs [Avs5r]){ st}'*‘{H“/s}{FdBrt}‘

It should be noted that the resulting matrix contains the reflection and trans-
mission efficiencies of the considered interface.

(4.16) {Ivs} = ([17s6r] - [Avsér])_l([cyar lvs6r] + Cg.s [Avsﬁr]){ W'ys}
+ ([Lysoe] = [Dyssr]) " {Hys H Fin }-

In the case of a unloaded region, this expression leads to:

(4.17) {I’rs} = ([l'ysér] - [A'ysdr])—l([cgar 1'755!‘] + Cgys [A”rs&"]){ W‘/s}-

Henceforth:

(4.18) {I*rs} = [Z’YS] {st}-

Actually, the intrinsic form of the interface treatment in the energy formulation
will induce a special treatment of the assembling procedure, where finally, the
interface will be regarded as a complex element of variable dimension. The latter
is computed in the general case.

4.3. Energy-based code

In this section, the implementation of the numerical energy is briefly ex-
plained. In particular, the subtleties induced by the energy features are discussed.
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Indeed, the non-trivial form of the coupling conditions treatment requires care-
ful attention in the numerical computation of the technique. As shown before,
the resulting global energy stiffness matrix will not be in general symmetric.
However, special attention paid to the correspondence between global and local
nodal numbering, can make this matrix nearly band. To this end, the best way
is to implement a numbering procedure, which takes into account the interface
behavior in the energy description.

5. COMPLEX STRUCTURE VALIDATION

Let us now consider a numerical complex test in order to validate the com-
puted method. It should be noted that the concerned structure is extracted
from a submarine construction. Furthermore, this structure has been studied as
a “benchmark” test for the structural path analysis proposed by GIRARD [13].
This structure has been studied also by Bondoux in the context of the implemen-
tation of a ray theory analysis [14]. Figure 7 presents the studied structure. It is
a plane truss composed of twenty four wave guides. In the following, extensional
and flexural waves have been taken into account in the energy computation.
The interest of this structure remains in the relative complexity of the existing
interfaces between waveguides. Figure 7 shows also the node numbering. The
excitation is assumed to be on node 3. Characteristics of the structure are sum-
marized in Table 1. The waveguides are assumed to be of identical cross-sections.
A constant damping ratio of 0.04 is assumed and introduced next. The compo-
nent lengths are directly reported in Fig. 7. As only two waves are dealt with

12 11 10 9_2.28m

FiG. 7. The studied 24 components beam-like structure

here, an energy model of 96 energetic degrees of freedom is needed. Indeed, each
of the 24 waveguides is represented by 4 energy unknowns.
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Table 1. The beam truss components mechanical and geometrical characteristics.

Inertia (m*) | Section (m?) [ n % | Density | Young mod.
Kg m~3 (Pa)
All beams || 5.34 x 10~ [ 9.024 x 102 | 4 7700 2 x 1011

5.1. The geometry of the validation test

The energy numbering technique of the energy unknown is proposed in Fig. 9.
It makes easy the implementation of the energy method with regard to the inter-
face complexity. Figure 8 gives a picture of the resulting global energy matrix,
and confirms the fact that this matrix is neither symmetric nor a band ma-
trix. However, the numerical gain obtained from the energy equation up to high
frequencies, remains important and compensates the loss of symmetry of the
resulting energy matrix.

index of lign
S 3 3
v

o
S
T

L s N . L L L
0 10 20 30 40 50 60 70 80 90
index of column

F1G. 8. Picture of the energy stiffness matrix.

5.2. The reference results

In order to compare to the energy results, a finite element analysis of the plane
structure has been performed. This calculation used here as reference results will
be considered as the “exact” computation of the truss response. Typical results
obtained from this computation is given in Fig. 11, which present the longitudinal
velocity of point 12 when a horizontal excitation is assumed. It should be noted
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that this response is dominated by the modal behavior of the truss and that
up to 10 kHz, a great number of modes are required in order to compute the
solution.

F1G. 10. Input forces key points and output results location.

5.3. Comparison for flexural excitation at point 3

Let us introduce a vertical force (with respect to the y-axis) on the point
3. This is a transversal force of 1N amplitude. Figures 11-15 give an outline of
energy computations. Actually, the energy results given, prove that the energy
equation gives a direct prediction of mean values of the expected dynamical
levels. Indeed, the energy equation, smooths the response and gives, at a low
computational cost, an average prediction of the expected results. Therefore,
the energy equation computation requires a very limited frequency sampling
and spatial meshing of the structure.

Furthermore, as suggested by the authors in [9], an envelope estimation of
the prediction can be performed from the energy equation predictions.



velocity (m/s)

10 10 10° 10 10°
frequency (Hz)

Fic. 11. Modulus of the longitudinal velocity at the middle of bar 3-7 (Point P3):
comparison between energy code results and the reference calculation.
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F1c. 12. Modulus of the transversal velocity at point at the middle of bar 3-7 (Point P3):
comparison between energy code results and the reference calculation.
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Fic. 13. Modulus of the slope velocity at the middle of bar 11-13 (Point P2): comparison
between energy code results and the reference calculation.
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F1G. 14. Modulus of the transversal velocity at the middle of bar 11-13 (Point P2):
comparison between energy code results and the reference calculation.

[505]
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3 Modulus of the longitudinal velocity

velocity (m/s)

frequency (Hz)

Fi1G. 15. Modulus of the horizontal velocity at the point in the middle of bar 11-13 (Point
P2): comparison between energy code results and the reference calculation.

5.4. Comparison for extensional excitation at point 3

Let us introduce now a vertical force (with respect to s-axis) acting on the

geometrical node 3. This is a transversal force of 1N amplitude. Figures 16-20
give some results.

p Modulus of the longitudinal velocity
107 ¢

velocity (m/s)

frequency (Hz)

Fi1c. 16. Modulus of the transversal slope velocity at the middle of bar 12-13 (Point P1):
comparison between energy code results and the reference calculation.
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F1G. 17. Modulus of the transversal velocity at the middle of bar 12-13 (Point P1):
comparison between energy code results and the reference calculation.
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Fic. 18. Modulus of the transversal velocity at the middle of bar 7-8 (Point P4): comparison
between energy code results and the reference calculation.
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Fi6. 19. Modulus of the transversal velocity in the middle of bar 7-8 (Point P4): comparison
between energy code results and the reference calculation.
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Fi1c. 20. Modulus of the transversal velocity in the middle of bar 3-7 (Point P3): comparison
between energy code results and the reference calculation.

[508]
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6. CONCLUSION

In this paper, the high frequency dynamics of a one-dimensional complex
system has been analyzed by means of an energy equation. The basic formulation
of the energy equation has been given first. It has been shown that the energy
equation is based upon an energy superposition principle, which follows from
neglecting the interferences in the wave description of the problem. This leads
to an equation which gives smooth energy prediction. This formulation is thus
well suited to deal with medium and high frequencies as it requires only a low
computation cost, in comparison to the finite element modelling using classical
formulation.

In view of a numerical implementation of the resulting equation, the coupling
phenomenon related to this equation has been formulated. It has been shown
that the energy boundary and coupling conditions can be formulated, in the
most general case, by defining an interface input-output operator which describes
completely the local behavior of waves. Finally, a numerical scheme able to take
into account the energy equation features has been discussed.

The results obtained when testing a complex 24 component truss, show the
ability of a developed formulation to predict the mean energy value of a one-
dimensional complex system up to high frequency. This leads to an interesting
tool which can help to design structures in a wide frequency band.
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