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In the present paper a transversely vibrating autoparametric system consisting of three
non-prismatic rods is presented. The considerations refer especially to stability of the semi —
trivial solution. Proper selection of the values of parameters may lead to considerable reduction
of the autoparametric resonance effects or may shift the autoparametric resonance to another
frequency region.

1. INTRODUCTION

Nonlinear coupled vibrating systems with many degrees of freedom are rich
in many kinds of resonances. An interesting resonance is internal resonance of
autoparametric nature [1-4]. More often the vibrating system can be divided into
two subsystems “autoparametrically” (nonlinearly) coupled. The first subsystem
(I) — “oscillator” — is periodically excited, the second one (II) is a “non-excited
subsystem” and oscillates when certain conditions are satisfied. The analysed
autoparametric systems are described by differential equations which admit also
semi-trivial solutions, stable or unstable. When the semi-trivial solution is un-
stable in some range of frequency, an autoparametric resonance occurs. So we
have two cases of autoparametric resonance in properly coupled systems:

a) autoparametric system is tuned to internal resonance,

b) autoparametric system has an unstable semi-trivial solution.

Many authors give their attention to autoparametric resonance. The refer-
ences [5-10] concern an autoparametric resonance in prismatic and non-prismatic
rod systems. In these publications the authors analysed the autoparametric sys-
tems which were tuned to internal resonance [5-8], i.e. the ratio of natural fre-
quencies of sub-systems I and II is close to 2:1, or analysed the system tuned to
the combination resonance [9, 10].
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In the present paper we consider a continuous, transverse vibrating system
which consists of three non-prismatic rods. The couplings of rods are realized
through periodic longitudinal forces which are transverse forces at the ends of
neighbouring rods. The considerations refer especially to stability of semi-trivial
solution of such autoparametric system.

2. AUTOPARAMETRIC SYSTEM — ANALYSIS OF EQUATION OF MOTION

The present paper concerns an analysis of autoparametric resonance in a
plane system of three non-prismatic rods, Fig. 1. Problems of dynamic stability
of continuous non-prismatic elements interacting through internal longitudinal
forces were analyzed in references [6-11]. The references deal with the analysis
of the influence of the shapes of three bars constituting a plane vibrating sys-
tem, upon the vibration amplitudes or upon the instability region, in the states
of stationary internal and periodic combination resonances. Nonlinear damping
effects or nonlinear inertia effects were considered. In this case of interaction of
system elements, the resonances have an autoparametric nature. Proper selec-
tion of geometric parameters may lead to considerable reduction of the resonance
amplitudes and influences the frequency region in which the resonances occur.
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Fic. 1. Model of the vibrating system.

In the paper a similar nonlinear, symmetric system of non-prismatic rods
illustrated in Fig. 1 is analysed, but considerations are devoted, especially, to
stability of a semi — trivial solution, cf. [1, 2]. The rods are visco-elastic (Kelvin-
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Voigt model) and of square cross-section, the vertical rods are identical, the
deflections of rods are small. The external transverse, harmonic load y;sin wt
acts on the horizontal rod. We consider only transverse, symmetrical vibration
in the plane of the system at rest.

In the paper [11] an approximate method of describing of such rod system
was proposed. We assume that the articulated joints A and B do not move
in horizontal direction. The dynamic coupling of the rods is realized through
periodic longitudinal forces S;(t),i = 1,2 which are transverse forces acting
at the ends of neighbouring rods. This coupling slightly influences the modes
of transverse vibration of the rods. Displacements u;,7 = 1,2 of the joints of
the rods are taken into account; except these small displacements, the joints
do not move. The generalized forces corresponding to the longitudinal forces S;
are obtained by assuming that the longitudinal forces S; perform work on the
longitudinal displacements

L
1 ow; .
(2.1) up = —2-/ (3%) dz;, i=1,2.
0

We make the simplifying assumption that the solution of the problem is of the
separable form:

(22) wi(xi,t) = Y,(l’l)T,(t), 1= 1, 2.

Solving the proper boundary value problems, one gets
Yi(z1) = sin(mz1/l),
(2.3)  Ya(za) = —coshi{sin(A1z2/l2) — sh(Mz2/l2)

— tghi[cos(Miz2/l2) — ch(Mza/l2)]}.
Therefore

S1(t) Ey LYy (I2)Ta(t),

(2.4)
So(t) = —EvL Y{(0)Th(t),

and the generalized forces are

Qs = ELY(L)Ti(T:() / [V () 2,

e = ~Eili Y'OTOT(E) [ Ve don
0
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Together with the internal friction connected with the transverse vibrations
of the rods themselves, also the damping forces P;,i = 1,2 associated with the
rates of displacements u; : P; = —k;u; are taken into account.

The following notation is used: l1,lo — lengths of rods; Eq, E; — Young’s
moduli; I;, I5 — cross-sectional moments of inertia; m, ms — linear mass densities;
wy,wy — transverse displacements; u;,uy — longitudinal displacements; Sy, Sy —
internal coupling forces; 71,72 — viscosities and kj, k2 — coefficients of nonlinear
damping.

From the Lagrange equations the problem can be transformed into discrete
system of two degrees of freedom, described by the equations (cf. [6, 7, 10])

Ty + (B/A)T, = (C/A)TRTy — (D/A)T, — (E/A)TITE + (T1/A) sinwt,
(2.6)

Ty 4+ (BJAYTy = —(C/A)T\Ty — (D) ATy — (E/A)TyTZ,
w.here the coefficients are (cf. [6]):

l1 l2
A = / (20 Y2(z1 )z, i

0 0
ll 12

B = E / Li(zy)[Y, (z1)]%dz,, B =E, / Iy(%2)]Yy (22))%dzs,

m2($2)Y22(332)d(E2,

0 0
C = o (Bala(an)Y; (olaset / [¥; (1) 2day,
@7 ¢ = ——[Elh(xl)YI (@1)]es 20 / 1Y, (22)]2de,

ll 5

D = 771/11(961)[3”1"(151)]24271, D= 772/ Iy(23)[Yy (22)]%das,

2 Iy 2

I
F = k1 {/[Y{(J)l)]zdl‘l s E:kg /[Yé(rg)]zd:vg N
0 0

Pl = /lel(rl)dxl.

(=]
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All possible loadings, internal longitudinal forces, forces connected with damp-
ing and nonlinear forces are taken into account by means of the corresponding
generalized forces. The first term on the right-hand side of equations (3.1) stands
for coupling, the second one describes linear damping, the third one is connected
with nonlinearity of geometrical nature (nonlinear damping). The last term of
the first equation corresponds to external harmonic loading. Coefficients of the
equations are functions of the shape parameters of rods.

The transverse dimension a; of element I changes as a quadratic function
of z1, so the cross-sectional area and the moment of inertia are (cf. Fig. 1 and
papers [6, 10])

1
(2.8) Ay = a} = aié}, L = ﬁai‘dﬁ‘,
where
(2.9) b1(z1, 1) = drr {(z1/h)2 + 21 /l1} + 1,

and the parameter k; which defines the shape of the rod I (Fig. 1) takes the
form

k1 = (a1 = f1)/a1, a1(0) =ai(hh) = ai,

a1(l1/2) = B, K1 € (—00,1].

(2.10)

The vertical rods are identical and their transverse dimension is a linear
function of z9. Therefore the cross-sectional area and the moment of inertia are

1
(2.11) Ay=a2 =042 I,= Eag(pg,
where
(2.12) d2(xa, ko) = 1 — Kka(za/la),

the parameter ko defines the shape of the rods II and takes the form

kg = (ag — B2) /a2,  a2(0) = oy,
(2.13)

ag(lz) = ﬂz, Ko € (—OO, 1].

On the basis of the relations (2.3), (2.7) - (2.12), one obtains the coefficients
of equations (3.1) in the following form (cf. [6 — 10]):
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A(ar, k1) = prhiad fa(k1), A(ag, K2) = palacd f4(k2),
Ol4 — 014
B(eq, k1) =Ell—31f3(f€1)) B(az, k) =El—32f1§('€1))
1 2
o 5 o
0(012) = E2l—l§fc, C(Oll) = Ell—‘lgfc"y
(2.14) 1 1
' m ~_ M 5
D=1+ D=~
E1 ’ E2 '
kl = k2
E= l—sz) E= l—gf_)
1 2
2l
Fl - —1_71>
™
where
fa(k1) = 0.391x% — 0.896x; + 0.500,
fe(k1) = 2.701x} — 11.64x3 + 19.01x2 — 14.12k; + 4.058,
(2.15) fa(k1) = 0.1747K% — 0.5680k; + 0.499,
' f5(k1) = 1.253K% — 7.153k3 + 15.94x% — 17.06k; + 9.890,
fc = 2420, fo = fs, fe = 24.35,
fe = —14.40, 5 = f5: fg = 33.00.

2.1. Semi-trivial solution

We consider an autoparametric resonance in the system (Fig. 1) which is not
tuned to resonance. The system can be divided into two subsystems. The first
one (horizontal element) — the oscillator, is periodically excited and the second
one (vertical elements) is not excited and can oscillate if some conditions are
satisfied. The system of equations (3.1) admits the semi-trivial solution, i.e. the
trivial solution: 75 = 0 and the non-trivial solution 73 = a cos wt + b sin wt. So
the amplitude A of element I is determined by the relation

1 1 20)2
(2.16) wi,=uwj — 5 (251 + ZFA2>

1 - 2
(251 + ZFA2)

IF

1 Lo ? 2 7
:1‘ 251+ZFA —4(.4.)01 +Z§,
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where

wi, = B/A, 20, = D/A, F=E/A, ~y=Ty/A

The stability of the solution can be examined by means of the procedure used
in the case of a small disturbance. The variational equations are:

i+ (200 + FTY) i + (wiy + 2FTiTy)u — GTyv = 0,

(2.17) )
B+ 2000 + (Wi + GT1)v = 0,
where:
. . B
V=T, B=Dtv, uh=1,
D C - C
T A’ A

Only the second equation (3.4) is not coupled and has a form of the Mathieu
equation, so the stability can be determined by analysing these equations sep-
arately. On the boundaries of the first, most important instability region, the
solution is periodic of the form: v = « cos wt/2 + ( sin wt/2. So the boundaries
of the first instability region are determined by the equation

2
(2.18) Rz—a2+b?~i —“’—2+w2 + 03w
. = = i 02 2w | -

In the second example we analyse the semi-trivial solution for nonlinear in-
ertia. The equations of motion take the following form [7]:

Ty + (B/A)Ty = (C/A)T»Ty — (D/A)T, — (EJA)ThT?
— (Fp JAMT? + T + (T1/A) sinwt,
(2.19)
Ty + (BJA)Ty = —(C/ AT\ Ty — (D] ATy — (E/ ATy T}
+ (Fpp | A)ToTE + THT).

The fourth terms on the right-hand side of Eqs (2.19) are related to nonlinear
inertia. The effects of masses, concentrated at the articulated joints, on amplitude
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are analysed. Now the amplitude A of element I is determined by the relation

1 1. -
2 _ 2) 2
(220)  wip= 1+1 Ay [ (1 + §H1A )wm

(251 += FA2> :F%\/Z},

t\Dlr—t

where

(221) VA= \/<251 + %F@)z [ (251 + %FA2>2

1 - 1 -\ 7y
—4 (1 + —2-H1A2> w81:| + 4 (1 + §H1A2> F,

Fy
Hi=—/".
1= 74

The variational equations are:

(2.22) (14 H\T?)ii+ (26, + FT2 + 2H\ T\ Th )%
+ (Wi + 2FTVTy + HiT? + 2H 1T )u — GThv =0

v+ 2690 + (wiy + GT1)v = 0.

The results are presented in Figs. 2, 3 where the amplitude A of element I
(semi-trivial) and instability region R(w) of small disturbance v for prismatic
bars are illustrated, for nonlinear damping and nonlinear inertia. In Fig. 2 we
present the graph of amplitude A of element I of a semi-trivial solution and
boundaries R(w) of instability regions of element II versus the excitation angular
frequency w for nonlinear damping and for different values of the shape parame-
ter ko. The results presented in Fig. 3 are similar but in the equation of motion,
a nonlinear inertia is taken into account. The points P and @) of intersection of
curves A and R determine the stability boundary points on the amplitude Aofa
semi-trivial solution. The part of the curve A lying between these points (P, Q)
corresponds to unstable semi-trivial solution, and in this region an autoparamet-
ric resonance occurs. For semi-trivial solution the change of values of geometric
parameters shifts the boundaries of instability region of non-excited subsystem
in comparison with the resonance curve A of the excited subsystem.
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F1G. 2. Amplitude A(w) and boundary of the instability region R(w) versus frequency of
external excitation for nonlinear damping.
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Fi6. 3. Amplitude A(w) and boundary of the instability region R(w) versus frequency of
external excitation for nonlinear inertia.
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Next we have analysed our system in a three-dimensional space. Figures 4-6
illustrate the boundary surfaces of instability regions. Above the surfaces the
system is unstable, below them the system is stable. The graphs of values of

r
v = Zl’ proportional to amplitude «y; of the external excitation (cf.(3.3)) versus

angular frequency w of the external excitation, and natural angular frequency
wg2 of the non-excited element II for different values of shape parameter ks €
(—0.4;0;0.4) of element II are shown.
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Fi1G. 4. Quantity y (proportional to external excitation ) versus external frequency w and
versus natural frequency wo2 for k2 = —0.4.
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2.2. Autoparametric internal and combination resonances

The second part of the report is devoted to presentation of the previously
obtained results (cf. papers [6-10]) for a certain system which is tuned to internal
resonance, so the necessary relations are satisfied.

The papers [5-8] were devoted to the analysis of autoparametric resonance
in the system described by equations (3.1) or (2.19) and tuned to the internal
or combination resonance. The papers [6, 8] deal with parametric optimization
of the system of three bars illustrated in Fig. 1. The system was subject to
the conditions of internal resonance. The effect of geometric parameters on the
resonance amplitudes was analysed for nonlinear damping and nonlinear inertia.
Mathematical analysis was done by means of the modified harmonic balance
method developed by A. ToNDL [12]. The amplitude of parametrically excited
element [I is given in analytical form and it stands for an objective function.
Parameters of shape: oy, as, K1, ko are the control parameters. The optimization
problem is formulated as follows. We look for such values of the shape parameters
which satisfy the constraints: V' = const, the relations for internal resonance and
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FiG. 7. Internal resonance. Resonance curves for different values of k2 and for nonlinear
damping.
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F1G. 8. Internal resonance. Resonance curves for different values of k2 and for nonlinear
inertia.

which minimize the amplitude of vibration of element II. A part of the consi-
derations and results are presented in Figures 7-9. It is seen from Fig. 7 that the
nonlinear damping dominates the nonlinear inertia in the system. Amplitudes of
vibration of elements I and II versus angular frequency of the external excitation
for different parameters of shape are shown. According to the graphs in Fig. 8, the
nonlinear inertia dominates the nonlinear damping [6, 7]. In Fig. 9 similar results
are presented for vibrating system of rods placed on the vertically moving support
[10]. In the equation of motion of such a system, two kinds of nonlinearities of
geometrical nature appear. Paper [8] is also devoted to optimization of the system
presented in Fig. 1, but the analysis is based on the partial differential equation
for a non-prismatic rod. The parametric optimization is confined to instability
regions. The paper deals with the analysis of the influence of the shapes of rods
on the parameter connected with the instability regions. On the graphs presented
in Fig. 10, the instability regions (w(qp), where g is the amplitude of external
excitation) for nonprismatic elements I and IT are shown, for different values of
k1 and kg. Changes of the shape parameters shift the instability regions to other
frequency intervals. Suitable selection of the shape parameters of the elements
may lead to a considerable reduction of the frequency interval in which the
resonance occurs, or may lead to a total elimination of the resonance.

The considered problems may have a practical significance for the paraseis-
mic phenomena when a weak excitation may cause great effects because of the
autoparametric resonances.
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FiG. 9. Internal resonance. Amplitudes of vibration versus external excitation frequency w
for different values of k2 and for kinematically excited system with nonlinear damping.
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Fi1G. 10. Internal resonance. Instability region for different values of k1 and k».

3. CONCLUSIONS

It results from the above analysis that it is necessary to consider two cases
of autoparametric resonanse:

— autoparametrically coupled system which is tuned to internal resonace,

— analysis the stability of semi-trivial solution for a system which is not

tuned. '

In the second case, when unstable (semi-trivial) solutions exist, the autopara-
metric resonance occurs. For a semi-trivial solution, the modification of geo-
metrical parameters shifts the instability region for disturbance of the second
“non-excited subsystem II” in relation to the resonance curves of subsystem I
(periodically excited — “oscillator”), and may lead to total elimination of the
resonance (total elimination of unstable amplitude region).

For the system tuned to internal or combination resonance, proper selection
of the parameters may lead to considerable reduction of the resonance amplitudes
and may lead to reduction of the frequency region in which the resonance occurs.
Modification of the geometric parameters shifts the autoparametric resonance to
another frequency region.
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