ENGINEERING TRANSACTIONS e Engng. Trans. ¢ 51, 1, 87-101, 2003
Polish Academy of Sciences e Institute of Fundamental Technological Research
10.24423/engtrans.502.2003

FREQUENCY REDUCTION IN ELASTIC BEAMS DUE TO A STABLE
CRACK: NUMERICAL RESULTS COMPARED WITH MEASURED TEST
DATA

U. Andreaus, P. Casini, and F. Vestroni

Dipartimento di Ingegneria Strutturale e Geotecnica,
Universita degli Studi di Roma “La Sapienza”,
18 Via Eudossiana, 00184 Roma

e-mail: paul.casini@uniromal.it

The presence of a crack could not only cause a local variation in the stiffness, but it could
affect the mechanical behaviour of the entire structure to a considerable extent. The frequencies
of natural vibrations, amplitudes of forced vibrations and areas of dynamic stability change
due to the existence of such cracks. The vibration characteristics of cracked structures can be
useful for non-destructive testing. In particular, the natural frequencies and mode shapes of
cracked beams can provide insight into the extent of damage. The beam has been schematized
as a 2-D continuous medium and discretized by means of quadrilateral finite elements. The
lowest three natural frequencies (and the associated mode shapes) of the cracked cantilever
beam, were obtained via both the modal and spectral analyses, and were compared with
experimental data from literature in order to assess the reliability of different models of crack
state, namely open crack and contact crack. Both the experimental and numerical results reveal
the significant influence of the opening and closing conditions of the crack on the frequency
reduction; namely this reduction decreases as more realistic contact phenomena are considered
at crack interfaces.

1. INTRODUCTION

Although machines and structures are carefully designed for fatigue load-
ing, possess high levels of safety, are constructed with high quality materials,
and thoroughly inspected prior to service as well as periodically during their
operating lives, still there are instances of cracks or damage escaping inspec-
tions. Therefore, the development of structural integrity monitoring techniques
have received increasing attention in recent years [6]. Among these monitoring
techniques, it is believed that the monitoring of the global dynamics of a struc-
ture offers favourable alternative if the on-line (in service) damage detection is
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necessary. In fact, non-destructive testing can be performed without actually
dismantling the structure. In order to identify structural damage for vibration
monitoring, the study of the changes of the structural dynamic behaviour due
to cracks is required for developing the detection criterion (19, 23].

Cracks found in structural elements have various causes. They may be fatigue
cracks that take place under service conditions as a result of the limited fatigue
strength. They may also be due to mechanical defects. Another group involves
cracks which are inside the material: they are created as a result of manufacturing
processes. For an appreciation of the physical aspects of the problem the reader
is referred to the influential paper by GUDMUNDSON [9].

With the ever increasing sophistication of available equipment, more effec-
tive models had to be built to better interpret the experimental results. As
far as monodimensional continuous models are concerned, two approaches are
considered, namely continuous and local flexibility. In the continuous flexibil-
ity scheme, differential equation and the boundary conditions are derived for
the cracked beam via variational principles [5, 19, 3]. In particular, the modi-
fication of the stress field induced by the crack is incorporated through a local
empirical function which assumes an exponential decay with the distance from
the crack, and includes parameters that had to be evaluated by experiments
or using the displacement field in the vicinity of the crack found with frac-
ture mechanics methods (stress intensity factors). In the local flexibility models
[9, 14, 17, 1, 4, 21], the main idea in modelling the crack is to introduce a local
compliance matrix, connecting longitudinal, bending and shear forces and dis-
placements near the crack tip; the elements of the local flexibility matrix describe
the reduced stiffness due to the crack by means of the stress intensity factors
[22].

Alternatively the cracked beam can be discretized via the Finite Element
Method by using both 1-D [8, 15, 18] and 2-D elements [10, 24, 12].

In addition, the nonlinear behaviour of a beam with a closing crack vibrat-
ing in its lowest modes of vibration can be simulated through multi-degree-of-
freedom models with bilinear stiffnesses 07 118

In the development of some theoretical models, it has been assumed that the
crack remains open [9, 5, 14, 8, 17, 3]. In order to validate the open crack models,
a static preload has been introduced in experimental tests which keeps the crack
open [3, 17, 11, 16].

While the beam is vibrating, the state of the crack section varies from ten-
sion to compression, i.e. the crack opens and closes with time. This results in a
modification of the crack section stiffness, the extremal values being the stiffness
of the open crack and that of the intact beam. Thus, the nonlinear behaviour of
the closing crack introduces the characteristics of the nonlinear systems. How-
ever, for many practical applications, the system can be considered bi-linear,
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and the fatigue crack can be introduced in the form of the so-called “breathing
crack” model which opens when the normal strain near the crack tip is positive,
otherwise it closes [24, 10, 15, 19, 1, 18, 16]. Crack closure during half of the
vibratory cycle causes a smaller drop in the eigenfrequencies. Thus, relying on
the drop in the natural frequencies only and using the open crack model could
lead to underestimating the severity of the crack [4].

The crack closure effect was experimentally investigated for an edge-cracked
beam with a fatigue crack [9, 12] and it was found that the eigenfrequencies
decreased, as functions of crack length, at a much slower rate than in the case
of an open crack. Thus, the interfaces forces are needed for the modelling of
interface normal contact and dry friction [1, 12].

The recent literature suggests that the nonlinear component of motion of a
cracked beam must be accorded increasing importance where accuracy is impor-
tant in a system model. Few response analyses of cracked structures have taken
into account the effect of alternation of the crack opening and closure. Therefore,
the aim of the present paper is twofold: (i) to investigate the free response of
the cracked beam after an impulsive loading via spectral analysis, and (ii) to
compare the previous numerical results with measured test data known from lit- -
erature. A beam is considered as a 2-D solid body and the finite element method
is used to discretize both the continuum and the crack interfaces. Models of open
and breathing cracks are compared in terms of frequency reduction.

2. SYSTEM MODEL

2.1. Generalities

Figure 1 shows a cantilever beam with a single-side edge-crack; the straight
beam of length L and rectangular uniform cross-section is clamped at the left end
and free at the right end. The crack is located at the upper edge of the beam at
a distance z from the fixed end and ¢ = z/L is the dimensionless crack position;
the severity s = a/h of the crack is expressed in terms of the ratio between its
depth, a, and the height of the beam, h. Linear isotropic stress-strain material
properties are assumed.

A cracked cantilever beam of length 300 mm and cross-section 20x20 mm?,
with Young’s modulus E = 2.068 x 10° Mpa, Poisson’s ratio v = 0.3, and mass
density p = 7850 kg/m3, Fig. 1, was tested and studied by Rizos et al. [17].
The vibration frequencies and mode shapes of the beam containing an edge-
crack of various sizes at different positions along the beam were obtained by
KaM & LEE [11] from either experiments [17] or finite element analyses of the
cracked beam when experimental data were not available. In the case of the
finite element analyses of the cracked beam, the stiffness matrix of the cracked
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FiG. 1. Cantilever beam with a transverse single-side edge-crack.

element proposed by QIAN et al. [15] was used to generate the required data for
crack identification.

The mechanical behaviour of an opening crack is different from that of a
closing crack. To analyze these behaviours in fracture mechanics when general
time-varying loads are applied is a very complex problem; in fact the stress-
strain field at the crack tip, the form of the crack interface and the level of the
crack’s opening and closing are all required [15]. Thus, the equations of motion
are nonlinear and nonsmooth, and, definitively, there is no exact solution of
these equations. Consequently, a numerical method [9, 24, 12] must be adopted.
Herein, the plane-stress elastodynamic response of an edge cracked panel (2-
D body, i.e. a strip) is studied; both modal and spectral analyses have been
performed using a proprietary finite element package (ADINA 7.4). The finite
element mesh consisted of 2-D solid plane stress 8-node isoparametric elements.
A consistent mass matrix is used with implicit time integration, provided that the
Newmark method and full Newton iteration are used. Two-dimensional contact
surfaces are specified to model the planar contact behaviour between 2-D solid
elements at the crack interfaces, Fig. 2.

2.2. Contact modelling

Contact surfaces are defined as surfaces that are initially in contact or are
anticipated to come into contact during the response solution. Two-dimensional
contact surfaces are formed of a series of linear contact segments and each seg-
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ment is bounded by two nodes, Fig. 3. Two contact surfaces that are initially in
contact or that are expected to come into contact during the response solution,
form a contact pair. An important distinction should be made in a contact pair
between the contactor surface and the target surface, inasmuch in the converged
solution, the target nodes can overlap the contactor body and not vice-versa;
in other words, after satisfaction of the contact condition, the contactor nodes
cannot be inside the target body, but the target nodes can be inside or outside
the contactor body. A node of the contactor surface can come into contact with
a segment of the target surface.

In frictionless contact, the possible states of the contactor nodes and/or seg-
ments are: (i) the gap between the contactor node and target segment is open
(no-contact); (ii) formerly closed gap has opened; a tensile force acting onto the
contactor node is not possible (tension release); (iii) the gap between the con-
tactor node and the target segment is closed; a compression force is acting onto
the contactor node and the node kinematically slides along the target segments
(sliding).

In frictional contact, (i) the states of “no-contact” and “tension release” are as
for the case of frictionless contact. Otherwise (ii) the gap between the contactor
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FiG. 3. Two-dimensional case of contact.

node and the target segment is closed, a compression force is acting onto the
contactor node, and the node kinematically slides along the target segments
with the restrictive force to sliding being equal to the Coulomb friction force
(sliding); (iii) as long as the tangential force on the contactor node that initiates
sliding is less than the frictional capacity (equal to the normal force times the
Coulomb friction coefficient), the contactor node sticks to the target segment
(sticking).

The finite element solution of the governing continuum mechanics equations
is obtained by using the discretization procedures for the principle of virtual
work, and in addition now discretizing the contact conditions also. To exemplify
the formulation of the governing finite element equations, let us consider the two-
dimensional case of contactor and target bodies shown schematically in Fig. 3,
where the target segment corresponding to contactor node k is defined by nodes
k1 and ko. The target point  is the closest point of the target segment ki — ks to
the contactor node k. By assembling for all contactor nodes the nodal point force
vectors, the discretization of the continuum mechanics equations corresponding
to the conditions at time t+At gives [2]

90 fi(u) = fo — £:(u,§) =0,
cc(u’ §) =0,

where

§T ol {)\T,’FT},
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u, A, 7 — solution variables, namely

u — nodal point displacements,

A — normal traction components,

T — tangential traction components,

f; - internal nodal point forces equivalent to element stresses,

fe — total applied external nodal point forces,

f. — updated contact forces,

c. — contact conditions.

The incremental finite element equations of motion including contact con-
ditions for solution of Egs. (2.1) are obtained by linearization about the last
calculated state at time ¢ :

i [ (K+Ks,) K, H Au } { o it }
gu Kgg Af —Cc
-where: Au and A¢ = increments in the solution variables u and ¢, K = usual
tangent stiffness matrix including geometric nonlinearities, not including contact
conditions, K¢, ﬁg» Kgu, Kgé = contact stiffness matrices;
It is worth to be noticed that the vector f, is evaluated at current time t+At.
In order to simplify the notation, the following-relations are understood to
refer to any contactor node k. Using the definition of the “gap function” g, that

is the (signed) distance from the node k to the node k;, the conditions for normal
contact can be stated as the SIGNORINI’S in displacements conditions [20]

where A is the normal traction component.
Moreover, Coulomb’s law of friction states that [13]

h>0, 20, hy=0,
(2.4) A(b—~vT1) =0,
h=p\—r,

where:

v — any nonnegative parameter,

p — the coefficient of friction between contacting surfaces,

T — the tangential traction component,

4 — the tangential velocity component at time ¢ of the node k; with respect
to node k,

Equations (2.3) and (2.4) can be interpreted by considering the following
cases:
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1. No contact: If g>0, the inequality in (2.3) implies A=0. It follows from
definition (2.4)3 and the first inequality in (2.4); that 7=0. When there is no
contact, all contact tractions must be zero. Equation (2.4), is trivially satisfied.

2. Sticking contact: If A>0 and h > 0, the equalities in (2.3) and (2.4); imply
9=0 and y=0. It follows from Eq. (2.4)2 that & = 0. When there is contact and
the contact friction force has norm 7 less than the frictional resistance pA, there
is no relative motion.

3. Sliding contact: If A>0 and h=0, the equality in (2.3) implies g=0 and
definition (2.4)3 implies 7 =pA. It follows from Eq. (2.4)y that @ = y7. When
there is contact and the contact friction force has norm 7 equal to the frictional
resistance g, the motion of the target body relative to the contactor body must
be in the tangential direction s.

Thus, the components of the vector c. which refer to the node k£ can be
written as

Cow = w(g,)\) )

2.5
( ) Ccv =V (u7 T, ﬂ)‘)

and the following constraint functions can be used:

& X Y
w(gv)‘):gT'_\/<g—§_) + &N,

2 U
1,7, u)) = u\ — —arctg [ — ),
v (U, T, pN) =p —arctg (ET)

(2.6)

where ey is very small but larger than zero and e is a small parameter which
can provide some regularity to the Coulomb friction law.

3. MoODAL ANALYSIS

The lowest three natural frequencies of the intact beam (K¢, = Kie =
K{, =Kg =0, Eq. (2.2)) have been evaluated by performing the modal anal-
ysis of the 2-D finite element model described in Sect. 2: 183.4 Hz, 1126.7 Hz,
3060.8 Hz; the associated mode shapes are depicted in Fig. 4a, where the 15,
2md and 3" rows refer to the lowest three mode shapes respectively. The low-
est three natural frequencies of the cracked beam were determined via modal

analysis under the assumption of open crack (Kf”E =.0. KEE = 0) and compared

with the results of experimental tests in order to assess the reliability of differ-
ent models of crack state, namely open crack and contact crack. Numerical and
experimental results have been normalised with respect to the corresponding
eigenfrequencies of the uncracked beam. The relevant mode shapes obtained via
the 2-D finite element model are depicted in Fig. 4b.
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Fi1c. 4. Mode shapes.

Filled contour maps of Table 1 that fill the area between contour levels, si-
multaneously illustrate the combined influence of crack position and severity on
the lowest three natural frequencies of the cracked beam. Columns (a) and (b)
refer to experimental data and open crack models respectively, and the 1%t,27d
and 3" rows refer to the lowest three natural frequencies respectively. The two
dimensions of each rectangular domain are the length of the beam and the largest
crack depth (a = 0.75h); more precisely, the co-ordinate axes respectively coin-
cide with the 2- and y-axes of the beam, Fig. 1. Fill attributes are assigned
so that there is a gradation change of colour from the minimum to maximum
contours. Moreover, a colour scale shows the fill assigned to each colour on a
filled contour map; a sample of the fill attributes assigned to each level and the
numerical value for each level are displayed. The numerical values measure in
percentage the difference between the reduced frequency of the cracked beam
and the frequency of the uncracked beam, normalised with respect to this latter
value. For given position and severity of the crack, the frequency reduction can
be estimated by visual means.

The results from experimental tests [11], reported in column a), refer to a
crack maintained open by static preloading. A good agreement can be observed
between the results obtained via both the physical (column a) and numerical
(column b) experimentation.

The influence of the crack on the frequency reduction attains its maxima
when the crack is located at the peak/trough positions of the strain mode shapes,



96

U. ANDREAUS, P. CASINI, and F. VESTRONI

Table 1. Reduction of the lowest three eigenfrequencies due to crack.

1000

00

00 00 15

i [mm]
30.0%

L 150%

L 00%

5000
24.0%
| 160%

10000

500 W00 X0 %00

15000 ne

10000 mo A0
[mm] [mm]
24.0% 24.0%
W 16.0% B 16.0%
| so% | 8%
e g
a) Measured test data [11] b) open crack model (modal analysis)

whereas its influence becomes the smallest at mode shape nodes. Furthermore,
the influence of the crack, located at the peak/trough positions of each strain
mode shape, dramatically drops as soon as one passes from the 15 mode to the
higher ones. In more detail, as far as the 15 mode is concerned, when ¢=0.034 and
s = 0.7 the open and contact crack models give maximum normalised frequency
reductions 48.8% wversus the experimental 53.5%. As far as the 2" mode is
concerned, as expected, two local maxima frequency reductions are encountered
for (1=0.034 (open crack: 20.3%; experimental: 21.4%) and (3=0.67 (open crack:
31.1%; experimental: 31.4%). As far as the 3'4 mode is concerned, three local
maxima frequency reductions are encountered for ¢;=0.034 (open crack: 13.4%;
experimental: 12.1%) and (2=0.267 (open crack: 24.5%; experimental: 17.1%)
and (3=0.67 (open crack: 24.6%; experimental: 21.9%).




FREQUENCY REDUCTION IN ELASTIC BEAMS .
4. FREE MOTION AFTER IMPULSIVE LOADING

4.1. Generalities

The structure appears to have different mechanical behaviour during crack
opening and closing, which are governed by the external load. Therefore, the
natural frequency of the structure is also governed by the external load. In com-
parison with a beam with an open crack, the variation of the natural frequency
is reduced when the effect of crack closing is considered. The decrement of the
variation depends upon the external force [15].

Furthermore, the possibility of geometric nonlinearities in response record
cannot be a priori excluded and therefore should be taken into account. Thus,
the tests on the cracked beam have been accompanied by a test on an undamaged
specimen under the same conditions. In more detail, an impulsive force has
been transversally applied for a very short while (At = 10~ s) at the end of
both the uncracked and cracked beam, and the amplitude of the end transverse
displacement has been recorded when a steady-state has been attained s
3 x 103At). The current numerical tests were conducted to amplitude levels
(100 kN) where no geometric nonlinear behaviour was apparent in an undamaged
specimen .

4.2. Constant and instantaneous loading

Free vibrations of the cracked beam after impulsive excitation have been
numerically analysed under constant and instantaneous loading via the modified
Newmark integration method. A point load has been dynamically applied at the
cantilever free end and maintained for both the whole duration of the analysis
(constant loading, Fig. 5a) and for a very short while (instantaneous loading,
Fig. 5b). The constant point force (preloading) has been applied both in the
positive and negative verse of the y-axis, in order to separately simulate the
different conditions of closeness with full contact and openness of the crack. As
it will be observed in the following, since now it can be conjectured that the verse
of the instantaneous force (a numerical expedient to simulate the impact hammer
experimental technique) is inessential. In all the cases under examination, the
frequency content of the displacement time-history of the loaded point node has
been determined via spectral analysis.

Filled contour maps of Table 2, similar to those already defined in Sec. 3, show
the combined influence of crack position and severity on the lowest three natural
frequencies of the cracked beam. Columns (a), (b) and (c) refer to opening and
closing preloading, and instantaneous loading respectively, and the 15,274 and
3™ rows refer to the lowest three natural frequencies respectively.
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Results illustrated in column (a) of Table 2 refer to beam vibrations when
the crack remains almost always open; the comparison between column (a) of
Table 2 and the columns in Table 1 shows a good agreement between numerical
and experimental results. Results illustrated in column (b) of Table 2 refer to
beam vibrations when the crack remains almost always closed; therefore the
dynamical behaviour should tend to the condition of uncracked beam. Results
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illustrated in column (c) of Table 2 refer to the breathing crack condition. Results
reported in column (c) have been numerically demonstrated to be independent
of the verse of the instantaneously applied force. As far as the input data are
concerned, the integration step is At=10"* s, the duration of the analysis is
tmax = 3x1073At and the amplitude of both the instantaneous and constant
loading is 100 kN.

The 1% row of column b) shows that the crack remains closed due to the
preloading; in fact the frequency reduction of the 15* mode is zero everywhere
within the domain; this is due to the preloading applied at the peak/trough
positions of the 15* mode shape. The same preloading is not efficient as far as the
higher modes are concerned; in fact the influence of the crack is not completely
annealed, even if the frequency reductions are much smaller than those without
preloading (column c).

Column c) shows that the frequency reductions are, as expected, intermediate
between open crack and intact beam.

As already observed in the case of modal analysis, the influence of the crack
on the frequency reduction attains its maxima when the crack is located at the
peak/trough positions of the strain mode shapes, whereas its influence becomes
the smallest at mode shape nodes. Furthermore, the influence of the crack, lo-
cated at the peak/trough positions of each strain mode shape, dramatically drops
as soon as one passes from the 15* mode to the higher ones. In more detail, as far
as the 1% mode is concerned, when (=0.034 and s=0.7, the opening and closing
preloading give maximum normalised frequency reductions 47.3%, 0% respec-
tively versus instantaneous loading 32.7%. As far as the 2 mode is concerned,
the two local maxima frequency reductions are encountered for ¢;=0.034 (open-
ing preloading: 19.8%; closing preloading: 3.0%; instantaneous loading: 15.4%)
and (2=0.67 (opening preloading: 31.1%; closing preloading: 1.2%; instantaneous
loading: 11.2%). As far as the 3'4 mode is concerned, the three local maximal
frequency reductions are encountered for ;=0.034 (opening preloading: 11.0%;
closing preloading: 2.0%; instantaneous loading: 5.1%) and (2=0.267 (opening
preloading: 23.2%); closing preloading: 1.3% ; instantaneous loading: 6.9%) and
(3=0.67 (opening preloading: 24.4%; closing preloading: 6.9%; instantaneous
loading: 10.5%).

5. CONCLUSIONS

On the basis of the numerical results and comparisons worked out in Secs. 3
and 4, the following remarks can be stated, which confirm and extend the conclu-
sions suggested by the literature. Generally speaking, independently of the crack
model adopted, the frequency reduction for a single mode increases as the crack
gets closer to the peak/trough positions of the mode shape at hand; moreover,
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if for each mode we consider the crack located at a peak/trough position, we
observe that the influence of the crack decreases from the lowest to the higher
modes.

As far as the comparison among the crack models are concerned, the natural
frequencies obtained via the breathing crack model lie, as expected, between
the natural frequencies of the intact beam and those obtained by the model of
the open crack. This is due to the fact that the global stiffness of the system is
between the stiffness for the open crack and the intact beam cases, whilst the
inertia distribution is unchanged. When the crack closes, there is an increase in
the natural frequencies since the system stiffness increases due to the contact
effects.

The results from the preceding analysis show that in the absence of sufficient
preload, fatigue cracks behave as breathing cracks, resulting in a smaller drop in
the natural frequencies than an open-crack model predicts. This is an important
factor in applications of the method for crack identification. According to the
preloading conditions of the structure under investigation, either the open-crack
model or the breathing crack model must be identified. It is evident that using an
open-crack model assumption to interpret vibration measurements for a fatigue-
breathing crack, will lead to the incorrect conclusion that the crack severity is
smaller than what it really is.
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