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Implant separation from bone tissue, resulting in the necessity for revision surgery, is a
serious drawback of cementless total joint replacement. Unnatural stress distribution around
the implant is considered the main reason for the failure. Optimization of the implant proper-
ties, especially its geometric parameters, is believed to be the right way to improve reliability
of joint prosthetics. Numerical models of femur-implant system enabling approximate analysis
of stress distribution and shape optimization of implants suffer from numerous simplifications
as, e.g., the assumption of bone isotropy, which may put in question reliability of the results
obtained. In this paper, a numerical model including orthotropic properties of both cancellous
and cortical bone is presented and influence of this assumption on results of the analysis and
optimization is investigated.

1. INTRODUCTION

Total joint replacement is a standard surgical technique employed in treat-
ment of various types of joint diseases and damages, especially in hips and knees.
The surgery consists in removal of femoral head and acetabular surface and place-
ment of a pair of implants, being elements of an artificial joint, in cavities of
appropriately drilled bones. Implants can either be directly forced (press-fitted)
into the cavity or fixed to its walls by an interfacing layer of flexible polymeric
cement (like PMMA). In the present paper, prostheses of the first (cementless)
type are only considered.

This technique has, however, a number of drawbacks. Long-term and
short-term aseptic loosening of artificial joint components in bones belong to
the most serious of them. The first one occurs typically 10-20 years after
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surgery [15]. The precise mechanism of the failure is not clear, however, me-
chanical rather than medical factors are reported to play the major role. In
cementless implants, load transfer between a stiff implant and relatively flexible
bone results in extremely unnatural stress distribution in the latter, i.e. exces-
sive stress concentrations near to the implant ends, and stress shielding [5, 14]
followed by bone resorption in other areas of the bone-implant interface. The
reason for short-term loosening are relative micromotions resulting, e.g., from
improper implant fitting in the bone cavity. These may affect bone ingrowth
into the porous implant surface and, consequently, lead to permanent debonding
of implant from bone, HUISKES and VERDONSCHOT [15] and references cited
therein.

Stresses and motions in bone and implant depend mainly on loading condi-
tions and on the implant design, i.e. its mechanical properties and geometry. As
the latter is easy to be modified in quite a wide range, design optimization of
the implant shape appears to be a promising way to improve the reliability of
joint prosthetics.

Numerical simulations of mechanical behavior of bone-implant systems are
mainly based on the finite element method [34]. PRENDERGAST reports in his
review paper (23] over two hundred contributions in this field. The method is crit-
icized for limited reliability of results due to effects of mesh size and distortion,
simplified constitutive models and loading conditions. Yet, it still remains the
fundamental non-invasive tool in effective analysing of deformation and stress
distribution in both intact and implanted bones.

Design optimization of implants requires, apart from the numerical analy-
sis tool, the computation of design gradients (sensitivity) and an efficient opti-
mum search algorithm. Publications on design sensitivity of implants appeared
in the literature since early 80’s [32] but it is only in recent years that com-
prehensive finite-element sensitivity and optimization studies have become of
major interest of researchers, e.g. [3, 10, 11, 13, 20]. In these studies, one- and
two-dimensional models of bone-implant interaction were analysed with opti-
mization of the implant shape or mechanical properties. Such models enable
efficient analysis, but they fail to include fully 3-D effects which is a serious
drawback. An example of a 3-D analysis and optimization of the femoral im-
plant shape can be found in [18]. However, even in the latter paper, bone is
assumed to be isotropically elastic which again raises a question of reliability of
the results.

The objective of this paper is to compare the earlier numerical results [18]
with the results of analogous analysis performed under the assumption of aniso-
tropic properties of bone. The parametric transversely isotropic bone model
based on numerical analysis of equivalent microstructure [19] has been em-
ployed.
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2. PHYSICAL AND NUMERICAL MODEL

2.1. Geometry and load

The geometry and loading conditions of the model are assumed identical as
in [18]. Figure 2.1 displays the frontal cross-section of the 3-dimensional model
of a femur with the hip endoprosthesis. The geometry of bone is simplified in the
sense that the planar symmetry with respect to the frontal mid-plane is assumed,
for both bone and implant. This simplification is not expected to significantly
affect the stress distribution in bone; on the other hand it enables easy automatic
generation of finite element meshes of the system for different values of implant
shape parameters.

FiG. 1. Physical model. The winglet base line and the boundary of the proximal porous coated
area on the implant surface, are marked in the implant cross-section. Short lines in the bone
cross-section denote principal directions of orthotropy.

A standard implant with oval cross-section, bent shape and a vertical sta-
bilizing “winglet” on the lateral side is considered (see Sec. 2.3 for more details
of the bone and implant transversal cross-sections). The upper part of the im-



198 P. KOWALCZYK

plant surface is porous-coated to induce tissue ingrowth and better adhesion
between bone and implant. The lower boundary of the coated area is marked
with a skewed line in Fig. 2.1. The remaining part of the implant surface is
assumed smooth. In the computations, low-friction contact is assumed on the
smooth bone-implant interface (in fact, since little is known about the value of
the friction coefficient, it is taken as zero). The porous-coated interface is mod-
elled as the high-friction interface which, under certain assumptions discussed in
Section 3.2, can be simplified to the perfect bonding contact condition.

Load conditions have strong influence on the stress distribution and, conse-
quently, on the result of shape optimization. The hip joint is subjected to various
types of loads in the patient’s everyday life activities (walking, running, stand-
ing, etc.). The three loading cases shown in Fig. 2.1 are equal to loads analysed
by CARTER et al. [2] and correspond to stance phase of gait (F1) and two ex-
treme situations occurring during normal activities (F3 and F3). The load values
and angles for both joint head and abductor forces are displayed in Table 1.
The loads are equilibrated by forces in the knee joint (replaced by the boundary
condition on the cut-off bottom surface).

Table 1. Numerical data for loads. Angle is measured from the horizontal axis.

Load case joint force abductor force

value [N] | angle [°] | value [N] | angle [°]

1 2317 —104 702 62
2 1158 —76 351 98
3 1548 —146 469 55

The analysis and optimization procedure are performed for an equivalent
load, being a weighted average of different load patterns. Following [2], we assume
the same weights for each load (which corresponds to equal number of cycles
occurring for each load case during patient’s activities).

2.2. Constitutive properties

In the biomechanical research, the lack of comprehensive and reliable mate-
rial data is one of fundamental difficulties. Experimental studies, especially for
cancellous bone, give results that are fragmentary and prone to various types
of errors. They do not provide sufficient information necessary to perform com-
putations, i.e., in the general case, nine orthotropic elastic constants plus three
angles describing orientation of principal directions of orthotropy (in the case
of transverse isotropy this reduces to five elastic constants and two angles). Ad-
ditionally, due to the material inhomogeneity, all these constitutive parameters
must be understood as function of spatial location — we thus do not need just
their values, but spatial distributions.



INFLUENCE OF BONE ANISOTROPY... 199

Cortical bone is probably the most easy tissue to investigate experimentally
and thus best documented in the literature. Yet, even in this case, the results
reported differ much from each other depending on the source [4]. In the fol-
lowing analysis, cortical bone is treated as transversely isotropic material with
the principal axis of the higher stiffness modulus F3 oriented longitudinally and
tangentially to the bone surface. Elastic constants are taken as average of results
obtained in [1, 24, 33] and are assumed as follows:

E1 = E2 =:14:33 GPa, E3 =r215h GPa,
Vig = 0.43, V31 = V3 = 0.367,
G12 = 5.0 GPa, G31 = G33 = 5.95 GPa.

For cancellous bone [8, 9, 12, 21| discrepancy of results is even larger, besides,
data are acquired at only few locations and are not complete in the sense of
number of the measured constants. Particularly, nothing is known about the
directions of principal axes and their relations to directions of the measured
moduli. Thus, such data cannot be used in numerical analysis.

Much more exhaustive results can be obtained from the numerical investiga-
tions of trabecular microstructure. VAN RIETBERGEN and coworkers [26, 27, 31]
report a set of full orthotropic elastic data for a few hundreds of human can-
cellous bone specimens obtained from the finite element analysis of micro-CT
scans.

Another method, employed by the author in [19], consists in finite element
analysis of parameterized equivalent microstructures consisting of repeatable
cells corresponding to typical real microstructure patterns. This is a numerical
counterpart to the mathematical homogenization methods developed for trabec-
ular microstructures e.g. in [7, 29]. Trabecular tissue is assumed isotropic, with
the elastic constants E = 14.33 GPa (the same as E; for cortical bone, cf. [30])
and v = 0.3. Constitutive models derived from these data have the advantage of
parameterized elastic constants (i.e. the constants are given as tabulated func-
tions of certain microstructure parameters). The constitutive models of this type
will be used in this paper.

It is assumed that cancellous bone in femur is built of interconnecting bars
only, and forms a microstructure of ‘prismatic cells’ (using the terminology
of [19]), i.e. each microstructural node is a 5-bar node. This yields microstruc-
tures with the macroscopic properties of transverse isotropy with remarkably
higher stiffness in the principal direction. Within the range of volume fraction
between 0.1 and 0.3 the ratio E3/E; varies from about 2.5 to 1.5. Since this
microstructure is parameterized by only one parameter (bar thickness), we can
as well parameterize it by volume fraction instead. Thus, to define material
properties of cancellous bone, it is necessary to provide distribution of volume
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fraction within the bone and distribution of orientation of principal direction of
anisotropy.

There is no precise recipe to define the distributions. The only way to pro-
vide this information to the numerical model seems to do it in an arbitrary way
based on visual examination of femur cross-sections. It is known from experimen-
tal studies [12] that the cancellous bone density in the proximal femur (excluding
head) takes values from 200 to 300 g/cm? which corresponds to volume fractions
of 0.1 to 0.15. From anatomical cross-sections it can be seen that the orienta-
tion angle of the microstructure characteristic direction is about 45° from the
vertical axis. It can also be seen that trabeculae are somewhat more dense in
the neighborhood of cortical bone and that the orientation angle is lower in this
area.

Based on these observation, the distributions of volume fraction and of the
orientation angles have been assumed in the form shown by short lines in Fig. 2.1.
Values of anisotropic material constants at each location are found for a given
volume fraction value from the tabulated data available from [19)].

To compare the results obtained with the use of anisotropic constitutive
models with results obtained for isotropic model, an equivalent distribution of
isotropic elastic modulus E and Poisson ratio v is introduced. In order to make
the two models comparable to each other, the isotropic constants at each location
are computed from the anisotropic values with the use of the least square meth-
ods. Minimized is the difference between five independent transversely isotropic
coefficients of the stiffness matrix Ci;, Cs3, C12, C13 and Cgg computed from
elastic constants of the anisotropic model, and their corresponding isotropic

st T s o E(1-v) = mm Ev
counterparts C1; = Cs3z = Artoi=3u) ; C"m =g =2 (1+l/)(1 _21,),
and Ceg = ———— . The so obtained values of E and v (for each location
2(1+v)

separately) are then used in the isotropic model.

DING [6] reported changes in cancellous bone density and stiffness with age.
It is shown that in young subjects, before the age of 40 years, the stiffness
modulus of cancellous bone increases at approximately constant volume fraction
(which indicates tissue strengthening associated with increase of the microscopic
stiffness modulus) while later, after the age of 50, both the stiffness modulus
and the volume fraction decrease (which indicates that trabeculae get thinner
at approximately constant tissue modulus). In order to evaluate how the phe-
nomena affect the optimized implant shape, additional two numerical tests are
performed. In one of them, all orthotropic elastic moduli of both trabecular
and cortical tissue are diminished by 10%. In the other — density distribution is
modified such that in most parts of cancellous bone the trabecular thickness is
lower by about 5% (so that the overall macroscopic stiffness decreases by about
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10%) and the thickness of cortical wall in the bone shaft is also diminished
by 5%.

Material data taken for implant (titanium) in all numerical tests are: E =
110 GPa and v = 0.33.

2.8. Finite element discretization

The finite element discretization is shown in Fig. 2. The mesh basically con-
sists of linear 8-node brick elements, but occasional prismatic, tetrahedral, and
other types of degenerated linear continuum elements appear in the mesh as well.
The contact layer is modelled with 8-node contact elements [17].

FiG. 2. Finite element model.

The mesh is obtained from a structured mesh generator written for this pur-
pose. It allows for generation of meshes for different sets of implant shape pa-
rameters. The mesh topology (number of rows, circumferential segments, radial
layers in each segment, etc.) is determined depending on the geometric propor-
tions of implant and bone in the particular design, but it can as well be adopted
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from another design, so that meshes with identical topology can be created for
different design parameter sets.

3. ANALYSIS AND OPTIMIZATION

3.1. Finite element procedure

Numerical optimization of a mechanical system, like that consisting of bone
and implant, requires the parameterized physical model of the system, a nu-
merical code for static analysis, and an appropriate optimization scheme. The
computational code must be capable of computing strains, stresses and all other
variables needed to determine the objective function and, since most efficient op-
timization procedures are gradient-based, also design derivatives (sensitivities)
of these quantities. Figure 3 shows the scheme of computations performed in the
sensitivity-based optimization routine.

initial design

finite element
equilibrium analysis
sensitivity analysis

!

strains, stresses, etc., with design gradients new design
the objective function and its design gradient

|

gradient-based optimization routine
convergence criterion

!

optimum design

Fi1c. 3. Computation scheme in the optimization routine.

A finite element analysis code with the design sensitivity gradient computa-
tion routines implemented has been used. The program has been developed by
the author at IFTR in Warsaw. Mathematical details of computational sensitiv-
ity analysis are presented in [16], and for the particular purpose of this type of
biomechanical problems, in [18].
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3.2. Optimization objective

The goal of optimization is to minimize the mechanical phenomena that
are believed to result in the implant loosening. In this paper, short-term (post-
operative) factors will be focused on. This failure type consists in improper
bone ingrowth into the porous-coated implant surface which results in formation
of permanent gaps filled with loose fibrous tissue. The reason for this may be
either initial improper fitting of the implant into the medullary canal or excessive
micromotions occurring at the bone-implant interface. Such micromotions can
prevent osseointegration and a permanent layer of fibrous tissue is formed instead
of the desired stiff bonding [15, 22|. Such a layer, even if mechanically stable,
may lead in the long run to inflammatory reactions and bone resorption.

In the present study, it is assumed that the implant fits perfectly the medullary
canal as well as the surgeon-prepared cavity in the proximal part. Thus, we are
only interested in minimizing the micromotions between the bone internal sur-
face and the porous-coated part of the implant surface (the smooth part of the
latter is not considered since ingrowth is not expected to occur there, anyway).

As it was pointed out in [18], minimization of micromotions approximately
corresponds to minimization of tangential forces on the implant surface. Thus,
the objective function in the optimization procedure is the maximum tangential
stress on the porous-coated part of the implant surface.

Similarly as in [18], values of tangential stresses o are computed at nodal
points, based on the values of stress tensor components o;; in bone computed at
these points by the f.e. program:

.8 2 2 2 i e : =
T \/anl 0o T 0 3—0% ; Oni = OijN;j; 0] = OpiNn;.

In order to make the objective function smooth and design differentiable, it is
written in the following form

1

b = _]'_i(a(i))m =
e I :

where N denotes number of nodes on the internal bone surface, and m is an
exponent. For m large enough,

i=1,..,.N
In this study, the following value for m is assumed,

i log N
~ logl.02°
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3.8. Design parameters

The design parameters are shown in Fig. 4. These are: (1) the implant length,
(2) the length of the porous-coated zone, (3) the height at which the lateral
stem contour becomes curved, and (4) the depth of the lateral winglet corner.
All parameters are ‘non-dimensionalized’, i.e. expressed as fractions of the bone
shaft diameter (0.03 m) In the initial design (cf. geometry in Figs. 2.1, 4), the
following values of design parameters have been chosen,

hl =00 (l = 150 mm),
hy = 1.666667 (I, = 50 mm),
hs = 3.0 (4 = 90 mm),

ha = 0.266667 (I, = 8 mm).

hy =1/d — implant length

hy =1./d — coated zone length

hs =l;/d  — length of lateral
curved contour

hg =1l,,/d — winglet corner depth

d =0.03m — bone shaft
external diameter

d

F1G. 4. Definition of dimensionless design parameters.

3.4. Optimization procedure

Having the solution of the static problem, we can compute the current value
of @; having the solution of the sensitivity problem, we can also easily com-
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pute d®/dh. These quantities are necessary in any gradient-based optimiza-
tion scheme. Here, the optimization procedure NLPQL described by SCHIT-
TKOWSKI [28] is applied.

In each optimization task, the move limits (i.e. maximum values of design
parameter variation) are set to +£10% of the parameters’ current values, and
the optimization is performed for the model with unchanged mesh topology
according to the scheme in Fig. 3. When converged, i.e. when either the move
limit is achieved or the design derivative does not exceed 0.01, the new mesh is
generated for the computed optimum geometry and the procedure is repeated.
The 10% limit is subsequently decreased as the final solution is approached (this
setting is controlled manually). We must be aware of the fact that the objective
function and its design derivatives may take slightly different values for different
finite element meshes and thus the optimum for the new mesh topology may
be different from the optimum found for the old one. Thus, final convergence
is approved when: i) global minimum is found within the parameter move
limits (all design derivatives < 0.01) for a certain mesh topology and ii) the new
optimum mesh generated for this optimum geometry has the same topology as
the old one.

4. RESULTS

Two computational tests have been performed. In the first test, an isotropic
averaged constitutive model has been assumed at each location in compact and
cancellous bone while in the second test the analogous transversely isotropic
model with an appropriate distribution of principal orthotropic directions has
been considered. In both tests, the same distribution of local density (volume
fraction) in cancellous bone has been assumed (cf. Fig. 2.1) and the averaging
procedure described in Sec. 2.2 was applied to ensure that the isotropic material
constants in the first test correspond to the anisotropic ones in the second test.

4.1. Isotropic model

Figure 5 presents the computed stress distribution in bone at the bone-
implant interface for the initial geometry model. Tangential stress on the me-
dial and lateral side is displayed along the symmetric cross-section line (marked
with a solid line in the bone contour in the figure center). Stresses presented in
the graphs are limited to the porous-coated implant zone being of our interest.
Stress concentrations are visible especially on the medial side at both ends of
the porous-coated area. Figure 5 also displays the stress sensitivity graphs with
respect to the four considered design parameters, along the same contour lines
for the initial design.
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This implant geometry has then been optimized with respect to the four
design parameters. The optimum design parameter values were obtained as
hy =4.4502 (I = 133.5 mm),
hg = 2.4509 (I, = 73.5 mm),
hs =2.6316 (/; = 78.9 mm),
hg = 0.3399 (Il = 10.2 mm).

Stress distributions for the optimum design along the same lines as those in
Fig. 5 are presented in Fig. 6.

4.2. Anisotropic model

In Figs. 7 and 8 analogous results for anisotropic material model are shown.
Figure 7 presents the computed distributions of stress and its sensitivity in
bone at the bone-implant interface for the initial geometry model, while Fig. 8
presents the stress distributions along the same lines in the case of the opti-
mum implant geometry which in this case is defined by the design parameter
values

hy = 5.7567 (I = 172.7 mm),
hg = 2.3757 (I, = 71.3 mm),
hs = 2.5340 (I, = 76.0 mm),
ha = 0.7417 (I = 22.3 mm).

4.8. Effect of changes in tissue modulus and trabecular thickness

Optimum implant shape computed for a model with tissue elastic stiffness
reduced by 10% in the entire model is described by the following parameter
values,

l »=172.4 mm,
i = 73.0 mm,
l; =76.9 mm,
i, = 216 mm;

A model with overall stiffness reduced due to decrease (by 5%) of trabecular
thicknesses and cortical wall thickness in the shaft yielded the following optimum
shape parameters,

l .= 167.8 mm,
l, - =82.0mm,
iy =81.7 mm,

ly = 21.8:mm.
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5. DISCUSSION

The results presented in Fig. 5 have been obtained at very similar input data
as the results presented in [18] (initial design). The distribution of the Young
modulus is nearly the same, the only significant difference is that in this study
the Poisson ratio is distributed within the cancellous bone and taking values
from 0.28 to 0.35 while in [18] it was constant and equal to 0.35.

It can be seen that the results of both studies do not differ significantly, which
could be expected. However, it can be seen that the optimum shapes obtained
for the two models differ more remarkably. The first three design parameters
differ by about 5%, but the fourth one, i.e. the winglet corner depth, is twice
smaller in this study than it was computed in [18]. This difference is perhaps not
that important in view of the fact that the sensitivity of the objective function
with respect to this particular parameter is generally low, but still we must
mention here that even small differences in the assumed distribution of material
properties may affect the results of the optimization process.

This conclusion is even more justified when we compare the results obtained
for isotropic and anisotropic bone properties in this study. The initial distribu-
tions of stresses are still quite similar for both models. However, the resulting
optimized implant is in the second (anisotropic) test nearly 30% longer than in
the first test. The further two parameters (coated zone length and curved lateral
contour length) have similar optimum values in both the tests, while the latter
(winglet corner depth) is again about twice larger for the anisotropic model than
for the isotropic model.

Comparison of the optimum shapes obtained for reduced stiffness of bone
with the above results shows that, surprisingly, the results do not differ signifi-
cantly. For overall tissue stiffness variation (corresponding to physical phenomena
occurring in the young subjects’ bone) we get practically the same implant shape.
In the case of overall bone mass loss (typical of older subjects), the optimum
stem is slightly shorter and has slightly longer coated surface zone.

It can be generally concluded that, apart from other simplifications of the
model assumed in the computations (simplified optimality criterion, negligence
of long-term factors, no account for bone remodelling, etc.), the issue of pre-
cise description of material behaviour and the distribution of material properties
cannot be neglected when interpreting the finite element results of stress distri-
bution in bone-implant system and especially the f.e.-based optimization results.
It appears that changes in the material model, the values of material constants
and their directional proportions, affect significantly the results of computations
and design. This effect is especially remarkable when material anisotropy of bone
is changed, while it is much less significant when material constants are changed
in the entire model without modifying their directional proportions.
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