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Living bone is continually undergoing processes of growth, reinforcement and resorption.
These processes are termed collectively “remodeling”. The remodeling processes in living bone
are the mechanisms by which the bone adapts its histological structure to changes in long-term
loading. The theory of adaptive elasticity was developed as a model for the mechanical load
induced adaptation of bone. All three aspects of the theory of adaptive elasticity are reviewed
here. These include internal adaptation, surface adaptation and architectural adaptation. The
successes of the theory as well as the features of the theory that should now be revised are

discussed.
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Introduction

The ability of living bone to adapt its material structure and form to its
mechanical loading is a well-known example linking biological form and function.
The phenomena associated with bone adaptation to mechanical loading have
become associated with the name of Julius Wolff because he called it his “law”
(CowiN, 2001). In the 1800’s a number of investigators made observations about
bone form and function as described in WOLFF (1892, 1986) and RouXx (1885).
There are two distinct portions to Wolff’s “law”. The “law” that pertains to
trabecular bone architecture relies on the observed similarity of the predominant
alignment of trabecular bone struts found internally near the ends of long bone
and the approximate principal stress trajectories. The second portion of Wolff’s
“law” is that the external form of bone is dependent upon its function. For over
a century, these observations by Julius Wolff about bone form and function have
presented fertile ground for further investigation and criticism.

Models to describe functional adaptation may be classified as phenomenolog-
ical or mechanistic. The phenomenological models attempt to simulate cause and
effect (e.g., changed mechanical loading leading to changed bone architecture)
without a consideration of the intermediary mechanisms involved. Phenomeno-
logical models allow for convenient testing of the consequences of different hy-
potheses about bone adaptation. This approach is often useful for eliminating
some assumptions that don’t match experimental or clinical results and observa-
tions (e.g., only compressive static loading leads to bone formation) or stimulate
further investigations (e.g., strain rates and spatial gradients may regulate adap-
tation). The theory of adaptive elasticity considered here is a phenomenological
model. This and other phenomenological models for cortical and cancellous bone
adaptation have recently been reviewed by HART (2001).

Mechanistic models, on the other hand, start instead with parameters (e.g.,
bone cell activities and microenvironment) that are linked to portions of the
biological processes involved in bone maintenance, turnover, and repair. These
models, currently less developed than some of the phenomenological models be-
cause they are more complex, may lead to successfully linking mechanical and
biological causes and effects. These models offer the promise of not only extend-
ing the descriptive and predictive capabilities of phenomenological models, but
may offer insights into manipulation of the bone response, and development of
pharmacological therapeutic agents. A mechanistic model for bone adaptation
is described by CowIN and Moss (2000). A mechanistic model that relates the
effect of mechanical load applied to a whole bone to the bone fluid flow around
the cells buried in the bone and, most significantly, to the bone adaptation pro-
cess has been presented in a series of papers over the last decade: COWIN et al.
(1991), WEINBAUM et al. (1994), COWIN et al. (1995), ZHANG et al. (1998),
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CowiN (1999), WANG et al. (1999, 2000), YOU et al. (2001) and SMIT et al.
(2002). Mechanistic models are not reviewed here; aspects of these models are
reviewed in COWIN and Moss (2000), HART (2001) and COWIN (2002).

The distinction made by FROST (1964) between surface and internal remod-
eling is followed here. Surface remodeling refers to the resorption or deposition
of bone material on the external surface of the bone. Internal remodeling refers
to the resorption or reinforcement of existing bone by decreasing or increas-
ing respectively, the bulk density of the bone within fixed external boundaries.
Part I concerns internal adaptation, Part II, surface adaptation and Part III is
on architectural adaptation that concerns trabecular reorientation in cancellous
bone.

Part I. Internal adaptation

1. THE ORIGINS OF THE THEORY OF ADAPTIVE ELASTICITY

In 1970 George Hermann participated in the Southwest Mechanics Lecture
Series and gave a lecture at Tulane University on the Mechanics of Bone Fracture
(HERMANN and LIEBOWITZ, 1972). I was on the faculty at Tulane University at
that time and attended the lecture. In that lecture George Hermann showed illus-
trations of bone plates, plates that were attached to the two ends of a fractured
bone by screws to stabilize the fracture. Since it is well known in the mechan-
ics of elastic materials that holes in an object filled with material of a different
modulus cause stress concentrations, it was difficult to understand the use of
the screws and, more significantly, leaving the screws in the bone indefinitely.
To answer that question an area of research was begun that led to the theory of
adaptive elasticity. The formal theory of adaptive elasticity originated in three
papers (COWIN and HEGEDUS, 1976; HEGEDUS and COWIN, 1976; and COwIN
and NACHLINGER, 1978). The objective of these papers was the formulation of
a model for the understanding and prediction of the strain-controlled remodel-
ing properties of normal living bone. The bone adaptation to the environmental
strain model proposed in these papers was a thermomechanical continuum theory
involving a chemical reaction and mass transfer between two constituents. The
strain adapting properties of living bone are represented by a strain-controlled
chemical reaction that transfers mass, momentum, entropy and energy to and
from the porous elastic solid. The addition of mass to the porous solid modifies
its porosity. Bone adaptation to environmental strain is a collective phrase for
the continual processes of growth, reinforcement and resorption that occur in
living bone. The resulting theory describes an elastic material that adapts its
structure to applied loading, hence the term adaptive elasticity.
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2. THE GUIDING PRINCIPLES FOR THE 1976 MODEL OF BONE STRUCTURAL

ADAPTATION TO ENVIRONMENTAL STRAIN

The 1976 model was heavily influenced and guided by the book of HAROLD
FROST (1964). The salient physical and biological features of bone adaptation
to environmental strain that were identified as attributes of the 1976 model are
(CowIN and HEGEDUS, 1976):

1.

There are three basic components of whole bone: the bone cells; extra-
cellular fluid; and the solid extracellular material that is called the bone
matrix.

The bone matrix is a solid structure with interconnected pores. The me-
chanical properties of whole bone are essentially the same as the mechanical
properties of the matrix.

. The porosity of the bone matrix is affected by the ambient long-term strain

history of the bone.

The porosity of the bone matrix is changed by the addition of mass or
the removal of mass from the bone matrix. This transfer of mass occurs
as the result of a chemical reaction that is mediated by the bone cells.
Momentum, energy, and entropy may also be transferred to or from the
matrix structure by these chemical reactions.

. The rates of these chemical reactions depend upon the strain and are very

slow. It can be estimated from studies using tetracycline labeling, that the
characteristic time for such a reaction is of the order of months.

The extracellular fluid is always in contact with the blood plasma. The
plasma supplies the materials necessary for the synthesis of bone matrix.

The characteristic time of chemical reaction is several orders of magnitude
greater than the characteristic time associated with a complete perfusion
of the blood plasma in the bone, hence any excess heat generated by the
chemical reactions is quickly carried away by the circulation.

A continuum model was developed on the basis of these observations. It
was assumed that the load adapting properties of living bone can be modeled
by a chemically reacting porous medium in which the rate of reaction is strain
controlled. The porous medium has two components: a porous elastic solid rep-
resenting the matrix structure of bone including the bone cells and a perfusant
that represents the extracellular fluid and the blood plasma which flow through
the matrix structure. A schematic diagram of this model is shown in Fig. 1.

The fact that living bone is encased in a living organism is reflected in the
model by setting the porous structure in a bath of the perfusant. The perfusant
bath is assumed to be an isothermal heat reservoir, an assumption that ap-
pears to be easily justified by common knowledge concerning living organisms.
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heat and mass seals

isothermal perfusant

porous structure

Fi1G. 1. A schematic diagram of the conceptual model for bone remodeling.

The mechanical load is applied directly to the porous structure across the walls
of the perfusant bath as illustrated in Fig. 1. The system consisting of the porous
structure and its perfusant bath is considered to be closed with respect to mass,
heat energy, and entropy transfer, but open with respect to momentum transfer
from loading. The system consisting of only the porous structure without its
entrained perfusant is open with respect to momentum transfer as well as mass,
energy, and entropy transfer. The bone matrix was considered to be the control
system since the mechanical properties of the bone matrix alone determine the
mechanical properties of the bone. Balance and constitutive equations were de-
veloped only for the bone matrix. The perfusant was accounted for only insofar
as it transfers mass, momentum, energy, or entropy to the bone matrix. The rate
at which mass, momentum, energy and entropy transfers occur was assumed to
depend on the local strain and the other independent variables.

Two assumptions were also made concerning the momentum balance of the
porous structure. First, it was assumed that the force of interaction between
the porous structure and the perfusant is small compared to the load applied to
the porous structure. The second assumption was that only mechanically quasi-
static processes are considered. This is justified because the characteristic time
of remodeling is so large compared to a characteristic time for inertia effects.

3. THE CONTINUUM MODEL, THE BALANCE EQUATIONS
AND THE ENTROPY INEQUALITY

The motion x(X, t) gives the place x of a particle X at time ¢,
(1.1) x = x(X,1).
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The velocity v of a particle X is given by the time derivative of the motion
holding the particle X fixed,

e

122 i X
( ) Dt X=const

The deformation gradients F' are defined by

I
L P
(1.3) X’
and the tensor velocity gradients are denoted by
ov
14 L=—.
(1.4 o
The bulk density p of the porous structure is expressed as a product
(1.5) p=v,

where 7 is the density of the material that composes the matrix structure and v
is the volume fraction of that material present. Both v and v can be considered
as field variables. The balance of mass for the porous matrix structure without
perfusant is given by

D
(1.6) b—z/'yudv —/ cdv,
0 0

where the derivative indicated, D/Dt, is the material or substantial time deriva-
tive performed holding X constant; ¢ is the rate at which mass per unit volume
is added to or removed from the porous matrix structure; dv is an element of
volume and O indicates the porous matrix structure or any portion thereof. If
c vanishes, (1.6) reduces to a more familiar statement of mass balance. Because
mass is being added to the object, the traditional transport theorem must be
modified. If we let f denote an arbitrary field quantity, the modified transport
theorem can be stated in the form

(1.7) gt/'yufdv /(cf—{—'yuf)dv

0

This reduces to the usual transport theorem of Reynolds when ¢ vanishes.
The balance of momentum for the porous matrix structure is given by

(1.8) ll))t/'yuvdv /T nds+/'yubdv+/(cv+p)dv,
0 0
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where T denotes the stress tensor, ds is an element of surface area, 00 is the
surface of O, n is a unit normal to the surface 0, b is the action-at-a-distance
force and p is the force the perfusant applies to the porous matrix structure.
The first three integrals in (1.8) are customary; the fourth is a departure. The
first term in the fourth integrand represents the force of interaction between the
porous matrix structure and the perfusant; the second term, cv, represents the
momentum added to the porous matrix structure due to the addition of mass.
The balance of energy for the porous matrix structure is given by

(1.9) D2t/71/(s-{-%v-v)dv=/(v.T.n—q.n)ds
0

00

+/7u(b-v+7‘)dv+/<c€+-;-cv-v+p-v+ﬁ)dv,
0

where ¢ is the specific internal energy, r is the specific heat supply function per
unit time, q is the heat flux vector, and h is the energy transfer between the
matrix and the perfusant which will be discussed below. The first three integrals
in (1.9) are customary; the first integral is the sum of the internal and kinetic
energy, the second represents the work of the action-at-a-distance force and the
heat supply per unit mass and the third represents the work done by the surface
tractions and the heat flux. The fourth integrand in (1.9) is associated with
the energy transfer between the matrix and the perfusant. The first term in
the fourth integrand is the work done by the force of interaction; the second
represents the kinetic energy of the added mass; and the third represents the
internal energy of the added mass, assuming its specific internal energy is the
same as that in the local porous structure. The fourth term represents any energy
transfer between the matrix and the perfusant that is not accounted for by the
other three terms. For example, h may represent the energy transfer due to the
fact that the internal energy of the added mass is not the same as that of the
local porous structure.
We assume the entropy inequality to be of the form

(1.10) l—l))z/'yundvz—/——d +/7 d’u+/(cn+%>dv,
0 00

where 7 is the specific entropy, 6 is temperature and h is defined in the same
fashion as h above. We distinguish between h and h to indicate that all the energy
transferred from the perfusant to the matrix need not contribute to the entropy
production. As in the case of the balance equations for momentum and energy,
the first three integrals are traditional and the last integral represents the entropy
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produced by the perfusant and the chemical reaction between the perfusant and
the matrix structure. The first integral represents the total entropy, the second
is the entropy production associated with the specific heat supply, the third is
the entropy production associated with the heat flux and the fourth represents
the entropy production due to the interaction between the matrix and perfusant
that is not accounted for in the other three terms. For example, this term may
represent the difference between the specific entropy of the added mass and the
specific entropy of the local porous structure.

The integral equations (1.6), (1.8), (1.9) and (1.10) can be converted to field
equations by use of the divergence theorem and the modified transport theorem
(1.7). The results of these manipulations are

(1.11) v+ +ywV - v = ¢,
(1.12) ywv =V -T+~vb+p,
(1.13) ywé=T:L+yvr—-V-q+h,
(1.14) iy > Z-Z—T en s (%) + %,

which are field equations representing the balance of mass, momentum, energy,
and the local form of the entropy inequality. It is convenient to use the specific
free energy v,

(1.15) Y=ec—nb

rather than the internal energy ¢, and to introduce h to denote the difference
between h and h,

(1.16) h=h—h.

A reduced entropy inequality is obtained by using the energy field Eq. (1.14)
to eliminate the radiation supply r from the entropy inequality (1.14) and then
introducing the notation (1.15) and (1.20), thus

(1.17) —7V¢—7Vﬂé+T:L—%q-V0+h_>_0.

This reduced entropy inequality is one of the arguments used in Sec. 5 to
restrict constitutive assumptions made in Sec. 4.
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4. CONSTITUTIVE ASSUMPTIONS

The objective was to develop a model for bone as a porous elastic solid and
to model the normal adaptive processes that occur in bone remodeling as strain-
controlled mass deposition or resorbtion processes which modify the porosity
of the porous elastic solid. Constitutive assumptions similar to those made for
elastic solids, but with the addition of an independent variable which is a measure
of the volume fraction of matrix structure, were assumed. We let ¢ denote the
volume fraction of the matrix material in an unstrained reference state. The
density v of the material composing the matrix is assumed to be constant. Thus
the conservation of mass will give the equation governing £.

Our first important constitutive assumption is that, at constant temperature
and zero action-at-a-distance force, there exists a unique zero-strain reference
state for all values of £. Thus £ may change without changing the reference state
for strain. One might imagine a block of porous elastic material with the four
points, the vertices of a tetrahedron, marked on the block for the purpose of
measuring the strain. When the porosity changes, material is added to or taken
away from the pores, but if the material is unstrained it remains so and the
distance between the four vertices marked on the block does not change. Thus
¢ can change while the zero-strain reference state remains the same. A formal
definition of £ can be made in terms of the volume fraction v associated with
the strain state characterized by F, thus

(1.18) & = vDetF = vJ, J = DetF.

The definition (1.18) only makes sense for a constant density 7y of the ma-
trix structure. If the definition (1.18) is substituted into the statement of mass
balance (1.11), a relation between £ and c is obtained,

(1.19) £ = (c/7)DetF = (c/7)J.

Constitutive equations are needed for the specific free energy v, the entropy
n, the heat flux q, the stress tensor T, the entropy production term h, and the
rate ¢ at which mass per unit volume is added or removed. The constitutive
assumptions made in 1976 were that each of these quantities depends on the
temperature 6, the temperature gradient V@, the zero-strain volume fraction &
and the deformation gradients F; thus ¢, n, T, q, h, and c are all functions of
0,V0,¢ and F.

Y = 1/)(9a Veag)F)a T = U(o,vo,f,F)» ¢ 3 T(eaveyva)$
q(8, V0,5, F), s k. = h(0,V0,F),. . .c.= c(0,V8,¢,F).

(1.20)

q
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5. A SUMMARY OF THE THEORY

Using the constitutive assumptions, balance equations and thermodynamic
arguments it is possible to show that

0
a2)  p=wOEF), n=-2 mopilr= L

or detF'a?F‘

An additional constitutive assumption is that there exists a unique zero-strain
reference state for all values of ¢; this is expressed in equation form as

(1.22) Y (60,6,1) = 0

for a fixed value of 6. To these constitutive equations the balance equations
are added. These are the balance of mass in the form (1.18), the balance of
momentum (1.16) in the form

(1.23) 0=V-T+~vb,

where the inertia term has been neglected because of the quasistatic assumption
and where the force p due to the perfusant has been neglected, and the balance
of energy (1.13) with 1 substituted for € by (1.15),

(1.24) wW+nf+00)=T:L+ywr—V-q+h.

The entropy inequality is reduced to

oy 1
1.2 —¢é—c—--q-VO+h2=>0.
(1.25) 6856 6)qV+ >0
For an isothermal process this system of equations simplifies considerably.
The mass balance is still expressed by (1.18), the momentum balance by (1.23),
the constitutive relation for stress by (1.21)3, but ¢ and ¢ are now only functions
of £ and F.

(1'26) Ce C(f, F)a Y= ¢(£,F)a

where ¥ must still satisfy (1.22). Equations (1.18), (1.23) and (1.21)3 are a
system of 10 scalar equations in the ten unknowns &, x and T.

6. SMALL STRAIN THEORY OF ADAPTIVE ELASTICITY

A non-traditional notation is employed for symmetric second order tensors
and for the fourth order tensors in three dimensions (fourth order tensors with
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the symmetry of the elasticity tensor), in this and subsequent sections. This no-
tation is explained in the Appendix. It consists of representing quantities that
are symmetric second order tensors in three dimensions as vectors in six dimen-
sions and representing quantities that are fourth order tensors in 3 dimensions as
second order tensors in 6 dimensions. The six-dimensional quantities are distin-
guished by a circumflex over the kernel letter; thus T represents the second rank
tensor in three dimensions and T represents the same quantity as a vector in six
dimensions. The three-dimensional fourth order elasticity tensor is represented
as the second rank tensor € in six dimensions. This notation thus permits a con-
sistent representation of these three-dimensional fourth rank tensors in matrix
notation.

In the case of small strain the basic strain measure is the strain tensor E that
is related to the displacement vector u by

(1.27) E=%(V®u+(V®u)T).

The basic system of equations for isothermal small strain adaptive elasticity
consist of the equilibrium condition (1.23) where, to terms of first order in strain,
v is given by

(1.28) v = (& +e)(1 - trE);
the stress-strain relations,
(1.29) T = (¢ +e)é - E,

where € is the elasticity tensor (see Appendix A for a detailed explanation of
this notation); the rate of reaction-strain relation

(1.30) é=ale)+A:E=a(e)+A-E;

and the strain displacement relations (1.27). This is a system of 16 scalar equa-
tions involving the 16 scalar unknowns, T, E, u and e. The inverse of the elas-
ticity tensor € is the compliance tensor §, thus

(1.31) (b0 +e)s(e)e =1.

Using the compliance tensor, the stress-strain relations (1.29) can be inverted
for the strains

~ ~

(1.32) E=5()-T.

The expression (1.30) for é can also be written in terms of stress; thus from
(1.32),

(1.33) é=a(e)+A -5 T.
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Finally, we note that the small strain approximations for é and 1 were
B i RIS TP RUGY &£
(1.34) é(e,E) = a(e) +A(e)-E+ §E -b(e)-E + ...

(1.35) ¥(e,E) = 1(e,0) + %ﬁ(e) B+ é‘%ﬁ -&(e)-E+...

7. SPECIFICATION OF BOUNDARY-INITIAL VALUE PROBLEMS FOR SMALL
STRAIN THEORY OF ADAPTIVE ELASTICITY

In order to specify a displacement boundary value problem in infinitesimal
adaptive elasticity, the following data must be given:
a) the geometry of the object O and its material properties v, a(e), A(e)
and ¢,
b) the time interval [0, t9) for which a solution is desired,
c) the action-at-a-distance force field b,
d) the continuous surface displacement ii(x, t), specified on O for t C [0, to),
and
e) the continuous initial displacement field ug(x) and the continuous initial
relative volume fraction field ep(x) for all x C O.
With these data, the displacement boundary value problem of quasi-static,
isothermal, infinitesimal elasticity is to determine the fields T(x, t), E(x, t), u(x, t)
and e(x, t) corresponding to b which satisfy the initial conditions

(1.36) u(x,0) = up(x), e(x,0)=ep(x) forall xcC O,
the boundary conditions
(1.37) u(x,t) = u(x,t), forall xcC 90,

and the differential Egs. (1.23), (1.27), (1.29) and (1.30). The traction boundary
value problem is described in a similar way in HEGEDUS and COWIN (1976).

CowIN and NACHLINGER (1978) proved a uniqueness theorem for the theory
described above as well as two theorems establishing sufficient conditions for
stability. The asymptotic stability theorem on small perturbations requires that
the derivative of the remodeling rate Eq. (1.30) with respect to e satisfy an
inequality depending upon A and the derivative of the stress T with respect
to e. From a mathematical viewpoint the theory appears to be well behaved.
The question of existance and uniqueness for this theory is throughly analyzed
by MONNIER and TRABUCHO (1998 a, b) and TRABUCHO (1999).

8. HOMOGENEOUS PROCESSES

For a boundary-initial value problem involving a homogeneous, isothermal,
adaptive infinitesimally elastic material object that is subjected to homogeneous
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initial data and no action-at-a-distance forces, two results can be proved. First,
one can show that a homogeneous strain field implies a homogeneous stress field
and homogeneous adaptation. Second, one can show that a homogeneous stress
field implies a homogeneous strain field and homogeneous adaptation.

To see the validity of the first statement one has to observe from (1.30)
that if the material is homogeneous (i.e., a(e) and A(e) are not functions of
position), the strain is homogeneous, and since the initial condition on the field
ep is homogeneous, then e is homogeneous for all time. Since the e field and the
strain fields are homogeneous for all time, it follows from (1.29) that the strain
field is also homogeneous.

9. APPROXIMATION OF THE COEFFICIENTS

The infinitesimal theory involves the functions a(e), A(e) and the elasticity
tensor &(e), or the compliance tensor §(e), characterizing the material properties.
From the specification of the two traditional types of boundary value problems,
it is clear that knowledge of these functions is necessary in order to solve the
boundary value problems. On the other hand there are no experimental data on
these functions. To break this unproductive circularity the functions a(e), A(e)
and &(e) are approximated for small values of e. To accomplish this approxi-
mation we return to the Taylor series expansions (1.34) and (1.35) for é(e, E)
and (e, E), respectively, and replace our previous series expansions by joint
expansions in e and E. In the series expansions, terms of the order €3, |E|e?,
and |E|%e will be neglected and terms of the order e, |E|,|E|e and e? retained.
This approximation is a balance between physical plausibility and mathematical
tractability. While there is substantial physical justification for assuming that
|E| < .001, the value of e is certainly not required to be that small. By its defi-
nition e is only required to satisfy the inequality 1 — & > e > —&p, 1 > & > 0.
It appears reasonable to assume that for healthy bone one can pick &y so that
le] < 0.1; however, for pathological situations which are of interest in the present
work, |e| is known to exceed this value. Using the approximation stated above,
the expansions (1.34) and (1.35) are replaced by

£ > = - % RS
(1.38) ¢é(e,B) = c0+c1e+czez+A°-E+eAl-E+§E-b1-E+...,
and

= Y oaa = &
(139) (e B) =bo +bre+bye’ + = {DO +eD'} B
1~ o5
+5E-{é°+e(él—é°)}-E+...,
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respectively. Note that the remodeling rate equation (1.35) for é depends not
only upon strain, but also has a second order dependence upon a strain energy-

like term, ~E-b!-E. Later investigators focused on this strain energy term as the

stimulus for é and suppressed the dependence upon strain (FYHRIE and CARTER,
1986; HUISKES et al. 1987). The argument for strain energy over strain in this
situation was that strain energy was easier to compute. That option was not
taken in the work reported here because the directional information contained
in the strain tensor is lost when the strain energy is computed.

With these approximations outlined above, the stress-strain relation (1.29)
takes the form

(1.40) T =68 E +eé! - E,
and the rate of reaction-strain relation (1.30) becomes
(1.41) é(e, I/1;') =co+cie+cee? + A% E+eAl - E,

both of which depend upon strain and not strain energy. When this equation is
viewed as an ordinary differential equation in time for e it is a Riccati differential
equation. The importance of this remark is that, while the Riccati differential
equation is a nonlinear first order differential equation, it can be reduced by a
simple substitution to a homogeneous linear second order differential equation.

- Thus if we introduce u(t) such that
U

1.42 e= ———

(142) -,
then (1.41) can be recast as a homogeneous linear second order differential equa-
tion in u,

(1.43) ii— (e + Al - E)i + co(co+ A% - E)u = 0.

If E is continuous with respect to time, the initial boundary value problem
for this differential equation has a unique solution for specified u(0) and (0).
Comparison of (1.40) with (1.29) and (1.41) with (1.33) shows that the consistent
approximations for the material functions a(e), A(e) and &(e) are

(1.44) a(e) = co+cie+coe?, Ae) = A%+eAl, &(e) = (€08 +edl),

1
&ot+e
where co,cl,cz,AO,Al,éo, and &! are all constants representing the material

properties. To terms of the order e, the inverse §(e) of (& + e)&(e) is given by
(1.31) as

(1.45) §(e) =8 —e8” &' .8 where £38°-&°=1.
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10. SOLUTIONS OF THE REMODELING RATE EQUATION FOR STEADY STRAIN
AND STEADY STRESS

Not all the solutions of the remodeling rate Eq. (1.30) will yield functions
e(x, t) satisfying the inequality 1 — & > e > —&. Solutions of the remodeling
rate Eq. (1.30) which predict values of e(x,t) tending to 1 — &, or —&p, might
have physiological interpretation in that well known pathological conditions in
bone are characterized by the bone becoming much less porous or much more
porous than normal bone. The results of the present analysis are of interest in
this regard because the conditions under which the remodeling rate equation
(1.30) predicts solutions of e tending to 1 — &y, or —&p, can be calculated and
associated with the physical conditions giving rise to these pathologies.

To illustrate the varieties of behavior of e(x,t) as a function of time we
consider the approximate theory of the previous section and the approximate
remodeling rate Eq. (1.41) in place of (1.30). The results of the following analysis
are then limited by the assumed smallness of e. We consider a point x in an
adapting object where, for ¢ < 0, the adapting object is in mechanical and
remodeling equilibrium. By mechanical and remodeling equilibrium we mean
that there exist steady stresses T(x), steady strains E°(x) and a steady field
eo(x) satisfying Eqgs. (1.23) for zero action-at-a-distance force, the stress-strain
relation (1.40), the strain displacement relation (1.27) and the remodeling rate-
strain equation (1.41) in the form

(1.46) 0 = co+ cre(x) + coe(x)? + A% EO(x) + e(x)A! - E%(x).

For t > 0 we consider two different situations, the first where the strain is
steady and second where the stress is steady. Suppose that at t = 0 the strain
at the point x is changed from E°(x) to E*(x) and held steady at E*(x) for all
t > 0. In this situation e(x,t) is determined by the differential Eq. (1.42) and
the initial condition on e(z,t), thus

(1.47) é=a(e? — 2be +¢), e(x,0) = ep(x),
where

bl e S . A
Ve SRRy gl R A (g V. cl(co + A B (x)),
2

20
and where a,b, and c are independent of time. In formulating (1.46) we have
assumed that cp is not equal to zero. The solution to the problem when c; is
zero is very simple, relatively uninteresting, and not recorded here.

The second situation of interest, that of steady stress, leads again to the
differential equation (1.46). We change the above argument for ¢ > 0 and, rather
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than holding E*(x) steady, we change the stress TO(x) to T*(x) at t = 0 and
hold T*(x) steady for all time ¢ > 0. From (1.32), (1.44) and (1.40) we again
obtain (1.47), but b and ¢ are now given by

b _% (c1 +AL.80. T (x) = A?.80. ¢! -é"-’f*(X)),
(1.49) A

-~

c=—C};(c0+AO-§°-T*(x)).

Thus, for both the steady stress and steady strain situation the differential
equation (1.47) is the object of study.

The solution to the differential equation (1.47) is straightforward. Using the
substitution (1.42), (1.47) can be reduced to a linear differential equation of
second order with constant coefficients,

(1.50) i + 2abi + a®cu = 0.

This differential equation has an associated plane autonomous system ob-
tained by introducing v such that

du

i S o
(1.51) v 7

then the matrix equation

i HEEENN

is equivalent to (1.50). We let e, ez denote the solutions to the quadratic equation
e —2be+c=0,

(1.53) €1,e2 = b+t Vv b2 — C,

and employ the convention e; > ey when e; and e are real. The solutions to
Eq. (1.47) are then

(1.54) i e1(eo —e2) + (e1 — eo)eze—a(ex—ez)t
| (eq.—€3).+ (6.7 eo)e“a(ex—ez)t

for e; and ey real and e; > esg;

(é1°= €o)
1.55 =e1———
(J:5%) HIEL TR a(e1 — eo)t
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for e; and ey real and e; = es; and

130 e=b+ V=P far/ G LD

b—ep

for e; and e3 complex conjugate. An inspection of these solutions shows that in
certain cases e can become infinite in finite time. Specifically, for a > 0, e tends
to +o00 as

1 (€0 — €2)
a(e; — eg) o (eo —€1)

(1.57) t—

for e; and ey real and ey > e > eg;

1

(1.58) t— ——a(el o

for e; and e; real and ey > e; = eg; and

fTe =08
(1.59) SRR o g R i i
a/(c—b2) \ 2 b—eo
for e; and ez complex conjugate and all values of ey. Also, for a < 0, e tends
to —oo as
-1 (62 - 60)
a(er —e2)  (e1—ep)

(1.60) t—

for e; and e; real and e; > ey > ep; as
-1

(1.61) ok e

for e; and e; real and e; = ey > ep; as

=1 n ok V(c—b)
(1.62) t—»————am <2+ta ——_b—eo )

for e; and ez complex conjugate and all values of ey. Inspection of the solutions
(1.54), (1.55) and (1.56) also shows that e tends to certain finite values in infinite
time under certain conditions. Specifically e — es as t — oo for a > 0, e; > e
and e; and e real. Also e — e; as t — oo for a < 0,ep > e3 and e; and es real.

Some insight into the behavior of these solutions to the remodeling rate
Eq. (1.47) can be obtained by considering their representation in the phase plane.
In Fig. 2 the solution to the remodeling rate equation (1.47) is plotted in the
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case when e; and ey are real and unequal for both a > 0 and a < 0. In this
case the remodeling equation is a parabola in é and e which crosses the e axis at
two points and opens up or down depending on the sign of a. These parabolas
are sketched in Fig. 2. The arrowheads on the parabolas indicate the direction a
solution will evolve in positive time for a given value of e. Thus, for example, the
fact that e — e in infinite time for e; and e real, a > 0 and e; > ep is indicated
by the arrowheads on the parabola to the left and the right of ez being directed
towards es. That the arrowheads to the right of e; are oppositely directed is
consistent with the fact that e — oo in finite time for e; and e3 real, a > 0 and
eo > e1. A completely analogous description holds for the case a < 0 shown in
Fig. 2. When e; and ep are complex conjugates, the parabola described by the
remodeling rate Eq. (1.47) does not cross the e axis. This situation is illustrated
in Fig. 3. The fact that all solutions of (1.47) tend to +oo for e; and ez complex
conjugate is indicated by the unidirectionality of the arrowheads. When e, and
ey are real and equal the parabola described by (1.47) is tangent to the e axis at
the point e = e; = e2. This situation would be illustrated by parabolas exactly
like those in Fig. 2, except that they would be tangent at their extremum points
to the e axis.

e

e
A X

—>»€

v
o
o

€ €, €

a>0 a<0

F1G. 2. A phase plane plot of the solution to the remodeling Eq. (1.47) when e; and ez are
real and unequal.

We have observed that there are two situations in which the solutions of the
remodeling Eq. (1.47) tend to finite values. In the first of these situations e — e
ast — 00, e; > eg and e; and ez real. In the second e — e; as t — o0 for
a < 0,e > ez and e; and ez real. An analysis of the Liapunov type for the
stability of these solutions shows that in the first situation (a > 0) the solution
e1 = eg is unstable and all others are stable, while in the second situation (a<0)
the solution ez = eg is unstable while all other solutions are stable. The solutions
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>
>

2>0 a<(

F1G. 3. A phase plane plot of the solution to the remodeling Eq. (1.47) when e; and e; are
complex conjugates.

that are stable are, in fact, asymptotically stable. This stability analysis is given
in the dissertation of Hegedus. The instability of the solutions e — ez ast — 0o
for a > 0, e > e and e — ey ast — oo for a < 0, e3 = ey can be inferred
from Fig. 2. In Fig. 2 we see that these solutions correspond to the points where
the system is started with an initial datum corresponding to the single point
where the directionality of the arrowheads on the parabola reverse themselves.
An arbitrarily small change in initial datum completely changes the response of
the system. A simple mechanical analogy of this unstable situation is a sphere
in unstable equilibrium on top of a second sphere.

It is now possible to state the conditions under which the differential Eq. (1.47)
yields stable solutions which tend to finite, physiologically possible values. The
solution for a > 0 ise — ey ast — oo for a > 0 if er and ey are real,
e1 2> e, 1 -6 > e > —§pand 1 — & > ey > —&. The solution for a < 0
ise — e ast — oo if e; and ey are real, ey > ey, 1-¢& > e > —& and
1 —&o > ep > —&o. In terms of the coefficients a, b and ¢ occurring in Eq. (1.47)
these conditions are

(163) a>0, di>vc b+ /(6% —c) > e, 1—6 >b—+/(b?-c) > =&,

or

(164) a<0, ¥*>c, e>b—/(2—c), 1-&>b+/(B2=¢) > —&.

Since the coefficients a, b, ¢ are expressed by Egs. (1.48) or (1.49) in terms
of the material properties and the applied steady strain or steady stress, the
conditions (1.63) and (1.64) can be rewritten in terms of these variables. Thus,
for a specified material and a specified steady strain or steady stress, it can be
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determined at any point of a object whether the value of e will remain finite or
tend to one of its pathological extremes.

11. THE COMPLETE SOLUTIONS TO TWO CLASSES
OF BOUNDARY VALUE PROBLEMS

The results of the previous section concerning solutions of the remodeling
rate equation for steady strain and steady stress may be combined with the
results concerning homogeneous processes given in Part I, Sec. 8 to solve two
general classes of boundary value problems. The two classes of problems are the
same as the two classes considered in the previous section with the exception
that the applied strain or applied stress is now homogeneous as well as steady.
When this homogeneity assumption is made concerning the applied steady strain
or applied steady stress, it follows from Sec. 8 that if the action-at-a-distance
forces vanish and the initial data are homogeneous, then all the variables are
homogeneous and all the basic equations of the approximate theory of adaptive
elasticity are satisfied. In the following paragraphs more details on these solutions
are presented.

We consider an object O which for ¢ < 0 is in mechanical and remodeling
equilibrium under zero action-at-a-distance force with a homogeneous stress T?,
a homogeneous strain E? and a homogeneous volume fraction ey and a zero rate
of remodeling. The situation in which the homogeneous strain E° is changed to
the homogeneous strain E* at ¢ = 0 and held constant at its new value for all
t > 0 is called the homogeneous steady strain problem. The situation in which
the homogeneous stress T? is changed to the homogeneous stress T* at t = 0
and held constant at its new value for all ¢ > 0 is called the homogeneous steady
stress problem.

The homogeneous steady strain problem requires the solution of the differ-
ential Egs. (1.23), (1.27), (1.40) and (1.41) in O for t > 0 given v, ¢, ci, cg,
A0 Al &% &l &, b = 0, the initial conditions

(1.65) e(x,0) = e, u(x,0) = E*x+ W*x +c, x €0,
and the boundary conditions
(1.66) u(x,t) = E*x + W*x +c, t >0 x €00,

where E* is a constant symmetric tensor, W* is a constant skew-symmetric ten-
sor and c is a constant vector. The tensor W* represents a rigid object rotation
of the object and the vector c represents a rigid object translation. We assume
that the strain everywhere in the object is constant and equal to E*. The solu-
tion for the field e(z,t) is that given in the previous section with a,b and c as
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given by (1.48), the position dependence of E* being suppressed. The resulting
homogeneous unsteady stress is, from (1.40),

(1.67) T = £8° - B* + 2! - B,

The strain field E*, the stress field given by (1.67) and the e field specified in
the previous section then satisfy the basic system of equations for the approxi-
mate theory of adaptive elasticity and constitute a class of complete solutions.

The homogeneous steady stress problem required the solution of the dif-
ferential Eqgs. (1.23), (1.27), the compatibility conditions and the strain-stress
relations

(1.68) B 8% T = 8% 4L 8% Te,
and the remodeling rate equation in the form
(1.69) é=(co+A%-8° - T)+(c; +A'-8°-T—A%-8%.¢' 5% Te + cpe.

Equation (1.68) is obtained by substituting (1.45) into (1.32), and (1.69) is
obtained by substituting (1.45) into (1.41). The problem is then to solve this
system of equations in O for ¢ > 0 given

(1.70) e(x,0) =ep, u(x,0)=0, x€O0,
and the boundary conditions
(1.71) t(x,t) =T":mn, t20, x€0,

where T* is a constant tensor and n is the unit normal to the boundary of the
object. We assume that the stress everywhere in the object is constant and equal
to T*. When the stress is set equal to T* in the differential Eq. (1.69), it reduces
to (1.47) with b and c given by (1.49), the position dependence of T* being now
suppressed. The resulting homogeneous unsteady strain is, from (1.68),

(1.72) Bi)=°. 7" -2°- 2 - 8% Te(t).

The stress field T* the strain field given by (1.72) and the e field specified in
the previous section then satisfy a basic system of equations for the approximate
theory of adaptive elasticity and constitute a class of complete solutions.

TsiLI (2000) applied the theory described above to the problem of internal
bone remodeling induced by casting a broken femur. It is shown that, after
the removal of the plastercast, the healing bone became more porous and less
stiff. The general nature of the solutions to jumps in the constant, homogeneous
applied stress is illustrated in Fig. 4. The responses of the strain, de/dt, e and
bone stiffness are shown as functions of time.
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Fi1G. 4. Internal adaptation responses to jumps in the constant, homogeneous applied stress.
The response of the strain, de/dt, e and bone stiffness as functions of time.

12. DEVOLUTION OF INHOMOGENEITIES UNDER STEADY
HOMOGENEOUS STRESS

We consider an inhomogeneous, adaptive elastic material object which is in
mechanical and remodeling equilibrium for time ¢ < 0. By mechanical and re-
modeling equilibrium it is meant that there exists a steady stress T%(x), a steady
strain E°(x) and a steady volume fraction eo(x) which satisfy Eqs. (1.27 Y, (1123
(1.40) and (1.41) identically. To study the devolution of this inhomogeneous ob-
Ject into a homogeneous one, we subject an inhomogeneous object which is in
mechanical and remodeling equilibrium for ¢ < 0 to a homogeneous steady stress
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state for ¢ > 0. Specifically at ¢ = 0 the stress field T?(x) is changed to the steady
homogeneous field T*, and the action-at-a-distance force, if it was not zero for
t <0, is set to zero for ¢t > 0. Since the object force is zero and the stress is ho-
mogeneous, the equation of equilibrium (1.23) is satisfied identically. The strain
tensor for ¢ > 0 can be determined by inversion of (1.40), thus

(1.73) BicH =0T — % a1

The representation (1.73) for the strain tensor is then substituted into the
remodeling rate Eq. (1.41) to obtain the differential equation governing the evo-
lution of e(x,t), thus

(1.74) é(x,t) = a(e?(x,t) — 2be(x,t) + c), e(x,0) = ep(x),

where @ = ¢z and b and c are constants defined by (1.49). The initial condition
indicated as the second part of (1.74) requires that the inhomogeneity at time
t = 0 be that associated with the mechanical and remodeling equilibrium state
that existed for ¢t < 0. The solution to the differential Eq. (1.74) is presented and
discussed above where it was shown that the solution to (1.74) is stable only if
e; and eg are real and distinct and, under those conditions on e; and es, e(x,t)
is given by (1.54)

_ei(eo(x) — e2) + (e1 — eo(x))ege~%e1—€2)t
(1.75) e(x,t) = (eo(x) — €2) + (€1 — eo(x))e—aler—eat

In the special case of a cylinder in which the inhomogeneity only lies along the
axis of the cylinder, then the x in (1.75) may be replaced by z3, the coordinate
axis along the axis of the cylinder. If the initial inhomogeneity is sinusoidal in
form,

I3
bl

(176) 60(1133) = 0.1sin T

where the cylinder is of length 2/ and appropriate choices are made for the other
coefficients, FIROOZBAKHSH and COWIN (1980), then

(0.129) (4.4 —sin T2 + (0.44) (sin =2 — 1.29) eget/7

(1.77)  e(zs,t) = L e :
o=, % ki A ety —t/T
(4.4 sin ] ) -+ (sm ;i 1.29) e

where 7 = 147 days. This result is plotted in Fig. 5 for various values of time.
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Fi1G. 5. Devolution of the initial inhomogeneity, a graphical representation of the solution
e(zs, t) given by Eq. (1.77).

13. INTERNAL BONE REMODELING INDUCED BY A MEDULLARY PIN

When a metallic pin is fitted into the medullary canal of a long bone as
part of a prosthetic device, the bone in the vicinity of the pin will remodel and
alter its local structure. A mathematical analysis of the internal bone remodeling
induced by a medullary pin according to the theory developed above was given
in CowIN and VAN BUSKIRK (1978). The problem is illustrated in Fig. 6. This
analysis shows that the force fitting of a medullary pin will necessarily induce one
of three following situations: (a) a reduction in stiffness of the bone surrounding
the pin, and therefore, a loosening of the pin, (b) osteopetrosis, a pathological
bone structure of low porosity or (c) osteoporosis, a pathological bone structure
of too high porosity. Although (c) is highly unlikely, it is mathematically possible
at the present state of this predictive science. The results of this analysis show
that the grip of the bone on the medullary pin will, most likely, loosen in time.
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MEDULLARY PIN

F1G. 6. A bone with a medullary pin inserted in its the medullary canal.

Recall that the distinction made by FROST (1964) between surface and in-
ternal remodeling is followed here. The problem of internal remodeling induced
by a medullary pin considered here will be considered again using the surface
theory (COWIN and VAN BUSKIRK, 1979).

14. AN ANALYTICAL MODEL OF PAUWELS’ FUNCTIONAL ADAPTATION
MECHANISM IN BONE

FIROOZBAKHSH and COWIN (1981) argued and partially demonstrated that
the features of Pauwels’ qualitative theory of functional adaptation of bone tis-
sue are expressed mathematically by the cubic approximation to the theory of
internal remodeling presented by CowIN and HEGEDUS (1976) and described
above. The cubic remodeling rate equation is shown to correspond closely to the
remodeling equation suggested by Kummer for the qualitative theory of Pauwels,
and to a later remodeling suggestion of FUNG (1990).

As a consequence of many studies documenting anatomical bone remodel-
ing effects, PAUWELS (1965, 1980) developed a qualitative theory of the bone
remodeling process that he referred to as functional adaptation. In a chapter en-
titled “Short Survey of the Mechanical Stressing of Bone and Its Significance for
Functional Adaptation” Pauwels suggests an analytical model for his qualitative
observations of bone remodeling. Pauwels let u denote bone remodeling and o
the actual stress experienced by the bone. Positive values of u indicate apposi-
tion and negative values indicate resorption. Pauwels suggested that u and o are
related by
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(1.78) u= f((o —04)")

where o, is the ideal stress at remodeling equilibrium, n is an exponent, and f
stands for function. KUMMER (1972) developed a special form of this law for a
computational study of bone remodeling; KUMMER (1972) suggested that the
qualitative observations of Pauwels could be represented by a cubic equation in
which bone remodeling is expressed as a function of the third degree in stress.
The cubic relation that we call the Kummer—Pauwels equation for brevity is

(1.79) u=a[(0s — 0u)’(0 — 05) — (0 — 05)°]

where o, is the optimal stress, o, is the lowest stress the bone tissue can tolerate,
00 is the highest stress the bone tissue can tolerate, and a is a remodeling rate
coefficient. For simplicity, Kummer assumed that o, was halfway between o, and
00, thus (09 — 05) = (05 — 0y). This is the reason g does not appear explicitly
in Eq. (1.1). The Kummer-Pauwels equation is plotted in Fig. 7.

U =a[(,— o) (01 = 0,) = (01 = 0)°]

+U

FI1G. 7. Plot of the Kummer-Pauwels equation, KUMMER (1972).

The main point of this section is that the qualitative model of PAUWELS
(1965, 1980), particularly as described by KUMMER (1972), is essentially the
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same as the cubic approximation to the theory of internal remodeling developed
by CowIN and HEGEDUS (1976) and described above. The theory presented
by COwIN and HEGEDUS (1976) is a general, nonlinear theory. HEGEDUS and
CowIN (1976) approximated this general theory so that only terms linear in the
strain and quadratic in the change in solid volume fraction e were preserved. This
approximation led to a quadratic remodeling rate equation for steady stress or
steady strain problems (1.47). This differential equation governed the temporal
evolution of the volume fraction change e under new stress or strain conditions
imposed at ¢ = 0 and held steady indefinitely thereafter. FIROOZBAKHSH and
CowIN (1981) developed the next higher approximation of the general theory
because it has more of the features of the functional adaptation mechanism of
Pauwels, particularly as described by the Kummer—Pauwels Eq. (1.1). In this
higher approximation, terms quadratic in strain and cubic in the volume frac-
tion change are retained in the remodeling rate equation. The remodeling rate
equation for steady stress or steady strain in problems is then

(1.80) é = a(e3 + be? + ce + d),

where a is a material constant and b,c, and d depend upon material constants
and the applied steady stress or steady strain. The phase plane plot of this
remodeling rate equation is illustrated in the case of three real and distinct roots
in Fig. 8.

e

a>0

Fi1G. 8. The cubic remodeling rate equation in the case of three real and distinct roots and
a>0.
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A significant difference between b and ¢ in Eq. (1.47) and b,c and d in
Eq. (1.80) is that b and ¢ in (2.1) are linear in the applied steady stress or the
applied steady strain, while b, ¢, and d in (1.3) are both linear and quadratic in
the applied stress or the applied strain. This particular difference in dependence
of the coefficients leads to two important differences in the predictions of the
approximate theories associated with the quadratic and cubic remodeling rate
equations. First, it was noted in HEGEDUS and COowIN (1976) that, according
to the quadratic remodeling rate equation (1.47), pure torsion of an orthotropic
adaptive elastic material about one of its preferred material axes will not induce
remodeling. This conclusion is not applicable in the case of the cubic remodeling
rate Eq. (1.80) because of the dependence of b, ¢ and d in (1.80) upon the square
of the applied stress or the applied strain. Second, the approximate theory associ-
ated with the quadratic remodeling rate Eq. (1.47) will not predict enhancement
of depositional remodeling due to cyclic loading over equivalent steady loading,
but the approximate theory associated with the cubic remodeling rate Eq. (1.80)
will make such predictions because of its dependence on the terms quadratic in
the applied stress or the applied strain. Third, the remodeling rate (1.35) will
depend upon strain energy as well as upon strain.

However, these three differences between the approximate theories associated
with the quadratic and cubic remodeling rate equations are not the reason for
the study of the cubic case presented here. The main point is the suggestion
that the qualitative model of PAUWELS (1965, 1980), particularly as described
by KUMMER (1972), is close in spirit to the cubic approximation of the theory of
internal remodeling described by CowIN and HEGEDUS (1976). This suggestion
cannot be established or argued as a thesis because of the essentially qualitative
nature of Pauwels’ ideas on functional adaptation.

In his 1990 book Y. C. FUNG put forward a hypothesis on the remodeling of
blood vessels that is very similar to the Kummer-Pauwels model. He proposed
for blood vessels that the rate of growth 7 is related to the stress by

(1.81) 1 = Clo = a)* (o = b)**(o — o),

where C, a, b, ¢, k1, ko2, k3 are constants. The plot of this curve is similar to
those in Figs. 7 and 8. Fung viewed the normal physiological condition for blood
vessels to be represented by the point a. At point b the stress becomes so high
that resorption occurs. Growth occurs at a value below c.

15. SUCCESSES AND DEFICIENCIES OF THE THEORY OF ADAPTIVE
ELASTICITY

Seen from the perspective of a quarter of a century, there were major suc-
cesses in the 1976 theory of adaptive elasticity and there were things that should
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be done differently if the theory is to be renovated. The largest success was the
development of a thermodynamic open-system model of tissue adaptation. This
model has been followed, or assumed as a starting point, by most subsequent
models of tissue adaptation. Features of this model are illustrated in the dis-
cussions of Fig. 1. One of the strongest assumptions made was the assumption
that the internal energy of the mass added to the porous tissue was equal to
the internal energy of the porous tissue at the site where the mass is added.
In retrospect this is a fairly easy assumption to justify if one recalls how bone
tissue is deposited and if the bone adaptation is viewed on two time scales. New
bone deposition begins with a deposit of osteoid on an existing bone surface. The
osteoid is of much lower modulus than the existing bone. Over a time period of a
month the osteoid will become mineralized and its modulus will increase approx-
imately linearly with the mineralization. Since the mechanical loading time scale
is much, much shorter than the adaptation time scale, the osteoid/bone will un-
dergo many million cycles of mechanical loading in the course of the adaptation
tissue deposition time period. It follows that the internal energy can be grad-
ually increased with the mineralization in the tissue deposition time period so
that, when viewed from the long term adaptation time scale, it will be equivalent
to having the new mass deposited at the same internal energy as the existing
mass in the porous bone structure. Other features common to most of the later
models of internal adaptation include the formulation of the theory in terms of a
constitutive relation for the mass supply term c introduced by the open system
formulation of the mass balance equation:

D
E/'yudv —/cd'u.
0

0

The volume fraction £ of the porous structure in various unloaded adaptation
states is related to ¢ by

& = (c/v)DetF = (c/7)J,

and a constitutive equation is then developed for ¢ = ¢(§, F). The increased or
decreased mass is then assumed to influence the elastic constants through the
constitutive assumption for the free energy ¥ = ¥(§, F). Constitutive assump-
tions like these distinguish a phenomenological theory, like adaptive elasticity,
from mechanistic or physiological theories that attempt to explain the mecha-
nism (rather than to just postulate it). These different types of theories were
discussed in the introduction.

The 1976 model contained a further simplification. As the porosity of the
porous structure changes, the area of the interface between the porous structure
and the perfusant also changes. There is not a direct relation between the porosity
and the area of the interface. In 1976 we considered only porosity changes and
did not introduce the area of the interface into the model as a variable. Also, we
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did not consider the thermodynamic properties of the interface as different from
the thermodynamic properties of interior points in the matrix structure.

One of the assumptions made in the adaptive elasticity theory is acceptable
for bone, but not for soft tissue. That is the assumption of a unique zero-strain
reference state for all values of &; this is expressed in equation form as

o =
é_ﬁ(omga 1) & 0,

for a fixed value of 6y. The existence of a unique zero-strain reference state
is acceptable for bone tissue because new bone tissue is always laid down on
existing bone tissue, that is to say bone adaptation occurs by surface adaptation.
This is not the case for soft tissues that may grow by volumetric deposition
within existing tissues. When volumetric deposition occurs it changes the existing
reference state for the adapting tissue; if material is being continuously added
or removed, the possibility of defining a reference state does not exist. Thus,
for adapting soft tissue it is not possible to define a reference configuration for
strain.

The changes to be recommended if the theory of adaptive elasticity were to be
reformulated will now be discussed. A major change would be the introduction
of two time scales. These two time scales differ by many orders of magnitude
(CowIN et al., 1993). Let T4 denote the time that biological processes take
to complete significant growth (or remodeling) associated with a mechanical
loading, and let T}, denote the characteristic period of mechanical loading. Rough
estimates of these numbers are from two weeks for soft tissue to about six months
for mineralized tissue for T4 and about one second for T ; thus 77, /T4 is a small
number, on the order 1076 to 10~7. In order to keep these time scales separate
let t denote time on the loading time scale and 7" denote time on the remodeling
time scale (COWIN, 1996).

Measures of tissue strain may be constructed using the fact that the tissue is
strained on the time scale T and that the gauge length changes on the time scale
T, a million times longer. Growth is usually inhomogeneous, and it is possible
that the gauge length used for the sensing of strain does not change as the tissue
grows. For example, the cell may sense the strain itself and not change its length
on the time scale T'. Bone cells (osteocytes) do not change their length on the
time scale T as the bone grows. (Actually bone growth occurs by apposition on
free surfaces and thus many possible gauge length selections do not change on
the time scale 7T'.) A gauge length equal to the size of a cell raises the question
of strain sensitivity because a change in a specified length must be determined
to measure a strain. If the gauge length is as small as a cell, then the change in
length will be smaller and greater sensitivity is required. COWIN et al. (1991)
contains a discussion of the sensitivity of cells to strain. It is noted there that
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the behavior of certain marine invertebrates suggests that they are sensitive
to changes in their ambient hydrostatic pressure environment corresponding to
strains as small as 1075, far beyond the sensitivity of any human strain measuring
device.

The loading rate of deformation of an object is an instantaneous kinematic
measure independent of reference configuration or gauge length, and thus does
not have the disadvantage that might exclude strain as a remodeling or growth
stimulus. The rate of deformation, D = (1/2)(L + LT) where the tensor of
velocity gradients L is defined by (1.4), is suggested as a remodeling stimulus
for endothelial and bone cells in the sense that the shear stress due to fluid
motion over these epithelial cells is a stimulus for their activity and shear stress
is proportional to the rate of deformation of a fluid. It is an open question as
to how much of the shear rate versus the shear stress is actually transferred to
the epithelial cells. The cell layer is compliant and the undulations of the cell
contour are observed in laminar shear flows in which the cells are attached to a
supporting plate.

The reformulated theory of adaptive elasticity should allow the mass supply
c and the free energy 1 to depend upon the remodeling time 7" and the history
of deformation, thus (1.26) should be replaced by functionals of the history of
reference solid volume fraction and deformation gradients

(1.8 c= F {0 F0), w=_G {&r),Fr).

Such strain history dependent relationships are familiar from non-linear vis-
coelasticity. The reformulated theory would then consist of the usual equations
for an elastic object and equations (1.82), which change on a time scale T, very
slowly adding or subtracting mass and free energy and, thereby, changing the
elastic constants.

Perhaps the point most in need of revision in the theory of adaptive elastic-
ity is the stimulus for remodeling. The model pointed to time-averaged-strain
and strain-energy as the first measures of stimulus. The experimental literature
suggests however that it must be a stimulus that involves the rate-of-strain or
the rate-of-loading. SCOTT (1957) has shown that a moderate periodic strain ap-
plied to living bone is more effective in causing remodeling than a static strain
of the same magnitude. LANYON and RUBIN (1984) showed that a constant load
applied with fixed springs to isolated living bone caused it to resorb as if there
were no load placed on the bone. In other words, the living bone showed no effect
from the constant, non-time varying loading. O’CONNOR et al. (1982) gave ev-
idence that the effective stimulus was strain rate. See also RUBIN and LANYON
(1984). The mechanistic models (see the Introduction) that relate the effect of
mechanical load bone fluid flow around the cells buried in bone to the bone
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adaptation process strongly suggest strain rate as a strong mechanical stimulus
(WEINBAUM et al., 1994; CowIN and Moss, 2000).

Part II. Surface adaptation

1. THE THEORY OF SURFACE REMODELING

The phenomenological model for surface remodeling postulates a causal re-
lationship between the rate of surface deposition or resorption and the strain in
the surface of the bone. This postulate can be put into equation form using a
Cartesian coordinate system at a point on the surface of the bone. Let n denote
the normal to the bone surface at a surface point P and let t and a be two
orthogonal unit vectors in the tangent plane at P. These three orthogonal unit
vectors constitute a local Cartesian coordinate system as shown in Fig. 9. Let
U denote the speed of the remodeling surface normal to the surface, that is to
say U is the velocity of the surface in the n direction. The velocity of the surface
in any direction in the tangent plane is zero because the surface is not moving
tangentially with respect to the object.

e S

F1G. 9. The local Cartesian coordinate system on the surface of a long bone.

Let E(P) denote the Cartesian components of the strain tensor at the surface
point P. Small strains are assumed. The hypothesis for surface remodeling is that
the speed of the remodeling surface is linearly proportional to the strain tensor,
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(2.1) U =C(n,P): [E(P) - E°(P))],

where E°(P) is a reference value of strain where no remodeling occurs and
C(n, P) are surface remodeling rate coefficients which are, in general, dependent
upon the point P and the normal n to the surface at P. The surface remodeling
rate coefficients and the reference values of strain are phenomenological coeffi-
cients of the bone surface and must be determined by experiment. One would
hope that these quantities turn out to be independent of the particular surface
point at which they are determined. It is postulated above that surface remod-
eling rate coeflicients are independent of strain. If these coefficients turn out to
be strain dependent, the theory will become much more difficult from a manip-
ulative viewpoint. Equation (2.1) gives the normal velocity of the surface at the
point P as a function of the existing strain state at P. If the strain state at P,
E(P), is equal to the reference strain state, E°(P), then the velocity of the sur-
face is zero and no remodeling occurs. If the right-hand side of (2.1) is positive,
the surface will be growing by deposition of material. If, on the other hand, the
right-hand side of (2.1) is negative, the surface will be resorbing.

The complete surface remodeling theory is formed by assuming that bone
is a linearly elastic material and that the surface movement of an object is
governed by (2.1). Thus, at any point in time the bone is an elastic object whose
external boundaries may be moving very slowly. Using the surface remodeling
theory COwIN and VAN BUSKIRK (1979) reconsidered the remodeling problem
associated with a metallic pin fitted into a medullary canal of a long bone as
part of a prosthetic device, returning to the same problem considered only a year
earlier (COWIN and VAN BUSKIRK, 1978) and described in Part I, Sec. 13 above.
The results in this case were more reasonable as they showed that the observed
loosening could be modeled by surface movement more easily than by changes
in internal structure of the bone with no surface movement.

2. ESTABLISHING in vivo VALUES FOR SURFACE REMODELING
RATE COEFFICIENTS

Values of the remodeling rate coefficients that appear in the Eq. (2.1) for sur-
face remodeling are necessary if the surface remodeling theory is to be of use for
predicting the in vivo shape evolution of long bones subjected to changes in their
mechanical loading environment. COWIN et al. (1985) applied surface remodeling
theory to the analysis of five animal bone adaptation experiments in which the
temporal evolution of a change in bone shape was documented after a significant
change in the mechanical loading environment of the bone. For each of these
studies, preliminary estimates of the in vivo values of the surface remodeling
rate coeflicients were established. The preliminary parameter estimates of these
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parameters were established by comparison of the published animal experimen-
tal results with surface remodeling theory predictions generated by computation.
The results of the animal experiments that induced significant net surface remod-
eling were taken from the literature (UHTHOFF and JAWORSKI, 1978; JAWORSKI
et al., 1980; WoO et al., 1981; LANYON et al., 1982; GOODSHIP et al., 1979).

After a brief description of the animal experiments considered in this study,
and a brief review of the surface remodeling theory, a description is presented of
the conceptual formulation for the application of surface remodeling theory to
the five animal experiments considered in this study. A section on the procedures
used to estimate the remodeling parameters follows, then a section on the com-
putational formulation of the problem. Following a presentation and discussion
of the results, the limitations of the technique as applied here are addressed.

3. THE FIVE ANIMAL EXPERIMENTS CONSIDERED

Five animal experiments were considered in this comparison study. These five
experiments were divided into two groups on the basis of whether we assumed
the axial loading on the bone to be centric (i.e. to act along a line passing
through the centroid of the cross-section) or eccentric (i.e. to act along a line not
passing through the centroid). In three of the experiments, the loading change
that initiated the net bone surface remodeling was assumed to be a change in the
time-averaged centric axial load. For the remaining two experiments, the loading
change was assumed to be a change in the time-averaged eccentric axial load.

The first of these experiments is that of UHTHOFF and JAWORSKI (1978)
involving disuse atrophy in young beagles. In this study one forelimb of one-year
old beagles was immobilized in a plaster cast for from 2 to 40 weeks. The other
forelimb was used as a control. Following sacrifice, the metacarpal bones were
examined for evidence of surface and internal remodeling. The results showed
significant bone resorption at the periosteal surface, but little net movement of
the endosteal surface, and little net internal remodeling. Figure 10 (top) shows
the cross-section of a metacarpal bone from the contralateral control limb of one
of the experimental animals, and Fig. 10 (middle) shows the cross-section of a
metacarpal bone from one experimental limb following 40 weeks of immobiliza-
tion.

The second comparison experiment is that of JAWORSKI et al. (1980), an ex-
periment that repeated the study described above, but used 8 year old beagles. In
contrast to the results with young beagles, the study with older animals showed
little net remodeling on the periosteal surface, but significant bone resorption on
the endosteal surface. Again, there was little net internal remodeling. Figure 11
(top) shows the cross-section of a metacarpal bone from the contralateral control
limb of one of the experimental animals, and Fig. 11 (middle) shows the cross-
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F1G. 10. The young beagle experiment (UHTHOFF and Jaworski, 1978). Each illustration

represents the cross-section of a metacarpal. (a) (top) The contralateral control metacarpal at

40 weeks. (b) (middle) The experimental metacarpal at 40 weeks, showing marked periosteal

resorption and slight endosteal deposition. (c) (bottom) The calculated remodeling. The solid

lines represent the surfaces of the control bone, (a, top) above, and the dashed lines represent

the predicted geometry at 40 weeks using the constants shown in Table 1. The indicated length
is one mm.

section of a metacarpal bone from an experimental limb following 40 weeks of
immobilization.

The third experiment considered was that reported by Woo et al. (1981).
This experiment showed that increased exercise activity in young pigs can result
in net bone deposition on both the endosteal and periosteal bone surfaces of the
femora. The exercise program consisted of forced jogging for one hour every day,
and for 30 additional minutes every other day, over a period of one year. Figure 12
(top) shows the cross-section of the femur from one pig in the control group, and
Fig. 12 (middle) is the cross-section of a femur from one of the exercised animals.
Notice that the periosteal surface appears to have increased slightly in size, and
there is also significant new bone deposition on the endosteal surface.
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FiG. 11. The old beagle experiment (JAWORSKI et al., 1980). Each illustration represents

the cross-section of a metacarpal. (a) (top) The contralateral control metacarpal at 40 weeks.

(b) (middle) The experimental metacarpal at 40 weeks, showing marked endosteal resorption.

(c) (bottom) The calculated remodeling. The solid lines represent the surfaces of the control

bone, (a, top) above, and the dashed lines represent the predicted geometry at 40 weeks using
the constants shown in Table 1. The indicated length is one mm.

In each of these three experiments, the observed remodeling is approximately
symmetric with respect to the control cross-section. Consequently, the theoretical
models for these experiments have assumed that the changes in activity have
influenced only the magnitude of the centric axial load, but have not changed
the point of application of the load. Thus, in the model the axial loading is
assumed to be centric during the entire experimental period.

The fourth and fifth experiments were ulnar ostectomy studies. LANYON
et al. (1982) conducted a study with the objective of measuring the change
in bone strain while inducing the functional adaptation to hyperphysiological
stress states. Mature sheep were subjected to an ulnar ostectomy (removal of
a section of the ulnar diaphysis) on their right limb, and the left forelimb was
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F1G. 12. The exercised young swine experiment (Woo et al., 1981). Each illustration repre-

sents the cross-section of a femur. (a) (top) A femur from the control group. (b) (middle) The

femur of an experimentally exercised animal after 1 year showing both endosteal and periosteal

bone deposition. (c) (bottom) The calculated remodeling. The solid lines represent the sur-

faces of the control bone, (a, top) above, and the dashed lines represent the predicted geometry
at one year using the constants shown in Table 1. The indicated length is one mm.

used as a control. The strain in the radii was monitored by means of in vivo
strain gauging at the cranial and caudal periosteal surfaces. Figure 13 (top) is a
photograph of the cross-section of the intact ulna and radius from the left control
limb. Figure 13 (middle) shows the radius from the right experimental limb one
year after the removal of the ulna.

Immediately following surgery to remove the ovine ulna, there was, on av-
erage, an 8% increase in the compressive strain on the side facing the missing
ulna (caudal side), and, on average, a 20% increase in the tensile strain on the
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F1G. 13. The ulnar ostectomy experiment with mature sheep (LANYON et al., 1982). Each il-

lustration represents the bone cross-sections in the sheep forelimb. (a) (top) The contralateral

control limb at one year showing the radius with the intact ulna. (b) (middle) The exper-

imental radius at one year, showing marked asymmetric periosteal deposition. (c) (bottom)

The calculated remgdeling, The solid lines represent the surfaces of the control bone, (a, top)

above, and the dashed lines represent the predicted geometry at 9 months using the constants
shown in Table 1. The indicated length is one mm.

opposite (cranial) side, Fig. 13. One year later, the compressive strain on the
face of the radii facing the removed ulna was 10% less than the strain on the
control radius. On the opposite side of the radius, the measured tensile strain
was 19% less than the opposite control radii. Thus, although most of the bone
deposition occurred on the compressive side of the radius that faced the missing
ulna, both tensile and compressive strains were reduced to below that recorded
on the control radii.

The fifth animal experiment considered here is a similar study conducted by
GOODSHIP et al. (1979). Again in vivo strain gauging was employed to quantify
the strains associated with an ulnar ostectomy, but immature pigs were the
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experimental animals. The bones of the pig forelimb differ from those in the
sheep in that the porcine ulna represents a much larger proportion of the total
forelimb cross-section. Thus, an ulnar ostectomy in pigs produces a greater strain
increase than for the case of the ovine forelimb. The strain in the radii of both
forelimbs was monitored by means of in vivo strain gauging. The strain gauge
results, for the single strain gauge location used in this study, showed that the
magnitude of the peak strain in the right radius one week following surgery was
approximately twice that in the left control radius. Figures 14 (top) and (middle)

Fi1G. 14. The ulnar ostectomy experiment with young swine (GoobpsHIP et al., 1979). Each
illustration represents the bone cross-sections in the forelimb of a pig. (a) (top) The contralat-
eral control limb at one year showing the radius with the intact ulna. The ulna is proportionally
much larger than for the sheep forelimb shown in Fig. 4a. (b) (middle) The experimental radius
at 3 months, showing marked asymmetric periosteal deposition. (c) (bottom) The calculated
remodeling. The solid lines represent the surfaces of the control bone, (a, top) above, and the
dashed lines represent the predicted geometry at 3 months using the constants shown in Table 1.
The indicated length is one mm.
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show reproductions of photographs of the cross-sections of the radii from one of
the experimental animals. Figure 14 (top) is the cross-section of the intact ulna
and radius from the left control limb. Figure 14 (middle) shows the radius from
the right limb three months following removal of the ulna. Comparison of the
two photographs shows significant deposition of bone tissue on the right radius
on the side facing the missing ulna. The deposition is on the concave side of
the radius, where the compressive stress has been increased as a result of axial
and bending loads. It is suspected that the bone tissue response observed in this
study was enhanced by the normal growth and development of bony tissue since
the experimental animals were not yet skeletally mature. The inlet shaped hole
in the deposited tissue is where the attachment of the interosseous membrane
inhibited new bone development (LANYON, 1982).

4. CONCEPTUAL FORMULATION OF THE MECHANICS PROBLEM

In this section we describe the conceptual formulation of the surface-remodeling
problem in long bones subjected to eccentric axial loads. A schematic of the
ovine ulnaectomy accomplished by LANYON et al. (1982) is shown in Fig. 15.

Fi1G. 15. A schematic diagram of the bone tissue removed in the ulnar ostectomy experiment

with mature sheep (LANYON et al., 1982). Above right: The contralateral control limb at one

year showing the radius with the intact ulna. Below right: The experimental radius at one year,
showing the calculated remodeling.

In the lower right panel of Fig. 15 the remodeling induced by the ulnaectomy is
indicated by the shaded area. The mechanics problem with centric axial loads
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=p
F1G. 16. Model of axial loading. This figure shows an axial load applied via platens to the two
right cylinders representing the limb bones. If the axial load, —P, acts through the combined
centroid of the two bones, indicated by a solid dot, the load is said to be centric. Otherwise,
the load is eccentric.

is a special case of the eccentric loading mechanics problem. The midsection
of the long bone is modeled as a right cylinder with an initial cross-section
coincident with the control cross-section in each of the five animal experiments
described above. As an example, Fig. 16 shows a model of the midsection of the
control ovine radius and ulna using this prescription. The control cross-section
is moved along an axis perpendicular to the cross-section to generate the pair
of right cylinders illustrated. Similar right cylinders are generated for the other
four animal experiments considered. The axial loading that is assumed to act on
the model of the midsection of the long bone is different for each of the animal
experiments considered. Figure 17 shows an axial load applied to platens that
transmit the load to the right cylinder representing the bone. If the axial load,
—P, in Fig. 16 acts through the combined centroid of the two bones, indicated
by a solid dot, the load is said to be centric. Otherwise, the load is eccentric.
The loading changes induced by the immobilization and exercise experiments are
modeled by changing the magnitude of the centric axial load, but assuming that
it remains centric. The load change in ulnar ostectomy studies are modeled by
the removal of the ulna from the model shown in Fig. 16. The resulting model
situation is illustrated in Fig. 17. The same load, — P, continues to be applied,
but only the radius remains to carry it and the loading eccentricity relative to
the remaining bone has been increased. In the special case of centric loading,
the point of application of the load remains at the centroid and the magnitude
of the time-averaged load changes.
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F1G. 17. Model of axial loading. The load change in ulnar ostectomy studies is modeled by

the removal of the ulna from the model shown in Fig. 15. The same load, —P, continues to

be applied, but only the radius remains to carry the load. Since the point of application of

the load is no longer the centroid, the loading is eccentric relative to the remaining bone, the
radius.

5. ESTIMATION OF PARAMETERS

The previous section explains our general and qualitative method of de-
termining the altered stress state that induces the surface remodeling shape
changes. In this section we explain our methods of determining quantitative es-
timates of both the stress state responsible for inducing the surface remodeling
response as well as the remodeling equilibrium stress state.

5.1. Immobilization experiments

In order to determine the magnitudes of the centric load and changes in the
magnitude of the centric loading during the immobilization experiments, some
assumptions are necessary since no load or strain data were obtained during these
experiments. These assumptions concern the magnitude of the time-averaged
physiological loads on the forelimbs. For the immobilization studies (UHTHOFF
and JAWORSKI, 1978; JAWORSKI et al., 1980), the convention that two-thirds
of the body weight is distributed over the upper torso of a canine was used
(VAN COCHRAN, 1982). Assuming that the load on the upper portion of the
body is distributed equally between the left and right sides, one third of the
entire body weight is therefore carried by each forelimb. The bone under study
in these experiments is the third metacarpal of the right forelimb. Assuming that
the load on the limb is distributed equally among the four metacarpals in the
canine, then the load on the third metacarpal would equal one twelfth of the
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body weight. The mean body weight of the young beagles was 10 kg, while the
mean body weight of the older beagles was 13.5 kg. Using these assumptions
concerning the time-averaged load on the metacarpals and the cross-sectional
areas of the control metacarpals, the equilibrium stresses were calculated to be
—0.43 MPa for the younger beagles, and —0.73 MPa for the older beagles.

After immobilization, the bones were subjected to hypophysiological loads
that resulted in bone resorption. The loads on the metacarpals following im-
mobilization were assumed to be significantly reduced, but not zero due to the
assumptions that some muscle forces were still present, and that casting did not
totally prevent use of the limb. Therefore, the change in the loading magnitude
was assumed to have decreased in proportion to the loss of the cross-sectional
bone area by means of resorption. The time-averaged load following immobiliza-
tion was thus 45% of the time-averaged load for the control bone in the young
beagle, and was 51% of the time-averaged load on the control bone for the old
beagle.

Some error may be associated with this scheme if, during the course of the
immobilization experiments, the load experienced by the bones was significantly
closer to zero than we have assumed for computational purposes. It could be that
the experimental bones have reached some genetically determined minimum bone
mass (LANYON, 1984a). Experimental measurements of the bone strain would
be required to accurately determine the actual loads due to the immobilization
created by the plaster casting.

5.2. Ezxercise experiments

The exercise experiments of WOO et al. (1981) led to increased loads on the
femora and to hypertrophy of that bone. The centric load magnitude and the
change in the centric loading magnitudes were calculated by assuming that one
third of the body weight is distributed equally across the two hind legs, so that
the normal time-averaged physiological load on each femur was calculated to
be one-sixth of the body weight. From the mean body weight of the exercised
swine (66 kg) and from calculated cross-sectional areas of the control femora,
the equilibrium stress was calculated to be —0.49 MPa.

The exercise program consisted of forced jogging that was an average of 11 h
of running each day for 1 year. Since the loads used in this study are time-
averaged, the hyperphysiological load was averaged over a 24 h period. It was
assumed that for 22.75 h of each day, the load on the femur was one sixth of the
body weight, while for the remaining 1.25 h the load was the hyperphysiological
load due to exercise. Using the concept of a dynamic load factor to relate the
strains due to dynamic loads to the strains that would be caused by a static
load of the same magnitude, the dynamic load was assumed to be twice the
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static load (VAN COCHRAN, 1982). When a four-legged animal breaks stride, the
forelimbs are on the ground, followed by the hind limbs on the ground. Thus, the
total dynamic load is equally distributed on the two femora. The time-averaged
hyperphysiological load due to the exercise was calculated to be

(3:2) Pavg = (1/24)[ts Ps, +tqFu),

where t; = length of time of static load application per day (h); t; = length of
time of dynamic load application per day (h); Ps = magnitude of average static
load; P; = magnitude of average dynamic load.

The time-averaged load calculated in this manner was —141.5 N, and the ini-
tial hyperphysiological stress for the experimental bone cross-section considered
was thus —0.64 MPa. This represents a time-averaged increase in stress of 31%
when compared with the control group.

5.8. Ulnar ostectomies

Before the ulna is removed, the radius and the ulna are assumed to be loaded
by an axial compressive load, —P. In our, now rejected, preliminary analysis the
compressive axial load was assumed to act through the centroid of the original
combined areas. As described subsequently, the experimental strain gauge data
show that there must be an original eccentricity of the axial load due to the dis-
tribution of tensile and compressive strains in the control radius. This eccentric
loading gives rise to a remodeling equilibrium stress that varies linearly across
the cross-sections of the two forelimb bones. The situation before the ulna is
removed is illustrated in Fig. 16.

The ulnar ostectomy is then modeled by the removal of the ulna from between
the platens, as shown in Fig. 17. The platens are assumed to be constrained to
move vertically, allowing no rotation. Therefore, a further eccentricity is added
to the initial eccentric axial load now carried entirely by the radius. The effect
of this additional eccentricity is an additional bending moment applied to the
radius due to the moment arm created by the distance between the current point
of load application and the point of initial load application. The magnitude of
the time-averaged load is assumed to be constant.

In addition to the experimental strain gauge data reported, several assump-
tions were required to find the magnitude of the time-averaged load, the change
in the average load, as well as the point of load application. The method of
determining these time-averaged loads is described below.

5.4. Ouine ulnar ostectomy

The initial assumption of a compressive axial load acting through the cen-
troid of the original combined areas was checked by comparing the calculated
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strains with the peak strains measured by LANYON et al. (1982) on the cra-
nial and caudal surfaces and found to be inadequate. The strain data showed
the radius must sustain significant bending loads while remaining in remodeling
equilibrium because tensile strains were measured on the cranial side while com-
pressive strains were measured on the caudal side of the radius. Since the data
from only two strain gauges were reported, one on the caudal surface and one
on the cranial surface, the approximate locations are represented by the arrows
on Fig. 18 — the point of load application could not be uniquely established from
the published data (the results from the two experimental radii that had three
gauges around the circumference of the bone were not published). Therefore, in
order to place a limit on the possible locations of the point of application of the
load resultant, a line was constructed connecting the centroids of the radius and
the ulna, and it was hypothesized that the point of load application would lie
on this line.

Fic. 18. Cross-section of intact ovine forelimb. Line connects centroids of the radius and
ulna, and the point of application of the resultant load is represented by the X . Arrows indicate
location of strain calculations corresponding to location of experimentally applied strain gauges.

The point of load application was then re-positioned along this centroidal
line (Fig. 19) until the strains calculated were close to the peak strains measured
by LANYON et al. (1982). Since sufficient data were not provided to accurately
determine either the magnitude of the peak loading corresponding to the peak
strains measured or the point of application of the resultant force, various loading
magnitudes were tested as well. It was found that re-location of the point of load
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application, represented by an X symbol on Fig. 18, along the line joining the
centroids of the radius and ulna, resulted in a linear variation of the strains
calculated at cranial and caudal surfaces. The final location chosen shown on
Figs. 18 and 19 gave calculated strains close to the peak strains measured with
the loading magnitude set equal to 3.5 times the body weight. Further confidence
in this choice for the position of the eccentric axial load comes from the lateral
view of the longitudinal geometry of a sheep forelimb (LANYON et al., 1982).
A line drawn from the middle of the upper joint to the middle of the lower
forelimb provides a rough estimation of the line of action of the force due to the
weight of the animal. Since there is a gradual curvature of the shaft of the radius
at the level where the gauges were attached, the line places the load just outside
the periosteum of the radius on the caudal side. This position corresponds closely
to the position found by moving the load along the centroidal line and comparing
calculated strain with experimentally measured strain.

b <

F1G. 19. Cross-section of intact ovine forelimb after the ulnaectomy. Line connects the centroid
of the radius and the point of application of the resultant load, represented by the X. The
dashed line represents the calculated remodeling at one year.

Using the point of load application as indicated on Fig. 18 with a magnitude
of 3.5 times body weight gave the calculated values for strain, at the point on the
caudal surface corresponding to a strain gauge location, of —1182 microstrain as
compared to a measured strain of —1172+14 microstrain. Strain calculated at the
point on the cranial surface was 419 compared to a measured strain of 635 + 5
microstrain. The loading of 3.5 times body weight was the minimum loading
that could generate tensile strains on the cranial surface close to those measured
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by LANYON et al. (1982). Since for humans (normally with two-legged stance)
SEIREG and ARVIKAR (1975) report peak reaction forces of 7.1 times body weight
in the knee, the value of 3.5 times body weight for the sheep (normally four-legged
stance) did not seem unreasonable. A further assumption required to find the
remodeling equilibrium stresses on the radius was that, although the magnitude
of the load associated with the remodeling equilibrium stresses would be less
than the load associated with the peak strains described above, the point of load
application of the two loads would be the same. The load magnitude associated
with the remodeling equilibrium stress level was a time-averaged estimate of the
dynamic loads, based on strains measured on the radius.

LANYON et al. (1982) published plots of the measured principal strains and
directions for three gait cycles of normal sheep. The compressive strain on the
caudal cortex fluctuates from nearly 0 to a peak value of —1172 microstrain. The
area between the compressive strain curve and the time axis was approximated
giving a time-averaged strain level of approximately 0.4 times the peak value. The
previously discussed loading analysis for finding the peak loading gave 3.5 times
body weight, or —1375 N, to provide calculated peak caudal strains near the
experimentally measured —1172 microstrain. Hence, a constant force of —550 N
provides the time-averaged strain for one gait cycle. During one hour of steady
walking, the forelimb experienced approximately 3500 loading cycles, and during
the other 23 hours each day the limb experienced a total of 950 loading cycles
when casual limb movements are taken into account (LANYON et al., 1982). It
follows that during the 23 hours of relative inactivity, the forelimb experienced
(950/3500) hours of effective walking. Thus, the limb was estimated to have
experienced 1.27 hours of loading at —550 N, and 22.73 hours with no load,
giving a time-averaged load over one day of —29.1 N.

5.5. Porcine ulnar ostectomy

Loading parameters for use with the model of the porcine ulnar ostectomy
were chosen largely by analogy with the remodeling analysis of the sheep fore-
limbs since the quantity of load and strain data from the porcine experimental
study is rather limited.

For the sheep study, the time-averaged load used to determine the equilibrium
and remodeling stress levels was 7.4% of the body weight. The same factor was
also used for this porcine model since experimental data are not available to the
contrary. The average body weight of the ostectomized group was 44 kg, thus
the time-averaged load was set equal to —32.0 N.

The location for the loading point was also unknown for this study, and again
it was hypothesized that the point of load application was on the line joining
the centroids of the ulna and radius.
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Due to the lack of strain data and the fact that the experimental animals were
not yet skeletally mature, the remodeling parameters could not be rigorously
quantified. The main emphasis was thus to choose remodeling parameters and
rate constants similar to those used in the sheep study and achieve a remodeled
shape similar to that shown in Fig. 14b.

Several locations on the loading line connecting the bone centroids were used
to determine the equilibrium and remodeling stress levels on the radial surface.
The optimum combination of loading position and remodeling shape is shown in
Fig. 14c.

6. COMPUTATIONAL FORMULATION OF THE PROBLEM

In this section we employ elementary mechanics and the theory of surface
remodeling to develop a computational formulation to predict the surface move-
ment in the models of the five animal experiments described above. We consider
the right cylinder representing the midsection of a long bone to be subjected
to only axial loads and therefore only axial stresses. We select the z-coordinate
direction to coincide with the axial direction, and therefore the only non-zero
component of the stress tensor is T},. It then follows from equation (1.5) that
the surface velocity is

(2.3) U = By:(P) : [1:(P) — T2, (P)] -

This result shows that the remodeling speed at P, U(P), is determined from
the difference between the actual stress at point P, T},,(P), and the remodeling
equilibrium stress at that point, 7,(P) by the single surface remodeling stress
rate coefficient B,,(P).

In the following, we calculate the bending and axial components of the stress
T,.(P) using the beam theory. However, before making this calculation the ma-
terial symmetry of bone must be specified because beam theory is not simple
in the many cases involving anisotropic materials. For example, in general, in
anisotropic materials a bending moment will induce a twisting of the beam as
well as the deflection due to bending alone, and, conversely, a torque on a shaft
will induce a bending deflection as well as a twist. However, if the long axis of
the beam or shaft, the z axis, is an axis of material symmetry, and if the elastic
coefficients §34 and 335 vanish, then bending of a beam about the 8 or r axis does
not introduce any twisting of the beam, and beam theory can be applied. This
result is originally due to Lekhnitskii and is described in books by HEARMON
(1961) and LEKHNITSKII (1963). It follows then that if the long axis of bone is
an axis of material symmetry and if $34 and 835 vanish, then beam theory can
be applied. In fact, the long axis of the midsection of a long bone is an axis
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of material symmetry, and bone can be considered to have orthotropic mate-
rial symmetry (ASHMAN et al., 1984), a type of symmetry for which both 334
and 335 vanish. We shall therefore assume the bone tissue to have orthotropic
material symmetry and calculate the axial stress, T},(P), using beam theory.
This result, coupled with the result shown in equation (1.9) simplifies the com-
putational problem considerably. The only material parameter involved in the
problem will be the surface remodeling stress rate coefficient, B,,(P). This is
the only constant to be determined from each of the five animal experiments,
but it is assumed to be different for deposition and for resorption.

To use beam theory to calculate T,,, the cross-section of the bone is oriented
in a global coordinate system (z,y) as shown in Fig. 20. The coordinates of the
centroid are given by (z.,y.), and the centroid is the origin of the centroidal
coordinate system (Z,y) with axes parallel to the global coordinate axes. The
point of load application is given in the global coordinates by (z,, y,). The general
case is that of a beam loaded in unsymmetrical bending with an axial load.

ECCENTRIC AXIAL LOAD

F1G. 20. Cross-sectional bone model. The global coordinate system is the (z,y) system. The

coordinates of the centroid are given by (z., yc), and the centroid is the origin of the centroidal

coordinate system (Z,y) with axes parallel to the global coordinate axes. The point of load

application is given in the global coordinates by (zp, yp). The general case is that of a beam
loaded in unsymmetrical bending with an axial load.
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The analysis of this situation is discussed, for example, by TIMOSHENKO (1955).
The axial stress is calculated by the formula

P P(xp—xc)Izgly — yc) — Iiz(z — zc))
2.4 P L
( ) 2z A Ij-:ngg — Ii"gIEﬂ

P(yp — ye) Izg(T — Tc) — Iﬂﬂ(y )
Izlyy — Inglag

L

where T}, is the magnitude of the axial stress (acting in the global z-direction)
at the point defined by global coordinates (z,y), P is the magnitude of the axial
load which acts in the z-direction, A is the total cross-sectional area of bone in
the z—y plane, (z,, yp) are the global coordinates of the point of load application,
(z¢,yc) are the global coordinates of the centroid of bone lying in the z—y plane,
I is the area moment of inertia of the cross-sectional area with respect to the
centroidal Z axis, Iy is the area moment of inertia of the cross-sectional area
with respect to the centroidal § axis, and Iz is the area product of inertia of
the cross-sectional area with respect to the centroidal  and § axes.

7. SUMMARY OF SURFACE REMODELING RESULTS

The results of the computations consist of the computed remodeling coef-
ficients for each of the five animal experiments considered in this study, and
the corresponding calculated shape of the remodeled cross-section obtained for
each of the experiments. The constants obtained in this study are contained
in Table 1. The calculated remodeled cross-sections using the theory of surface
remodeling with the constants contained in Table 1 are shown in Figs. 10 left,
11 left, 12 left, 13 left and 14 left. In one case the remodeled cross-section was
calculated at two years to see how much it differed from the one-year prediction
(Fig. 21).

For each of the five cross-sections, there is good qualitative agreement be-
tween the experimentally remodeled shape, shown in Figs. 10 middle, 11 middle,
12 middle, 13 middle and 14 middle and the calculated shape, shown in Figs. 10
left, 11 left, 12 left, 13 left and 14 left. This qualitative agreement prompts two
observations: first, the surface remodeling theory is an adequate tool for describ-
ing the remodeled bone geometry found from the in vivo experiments considered
here, and second, coupled with the initial geometry and the loading conditions,
the remodeling rate constants reported in Table 1 are adequate for qualitative
prediction of each of the remodeled geometries.

The values for the remodeling equilibrium stress, TO, are listed in Table 1.
T9 is a different constant for each of the three centric loading experiments, but
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F1G. 21. Cross-section of intact ovine forelimb after the ulnaectomy. Line connects the centroid
of the radius and the point of application of the resultant load, represented by the X. The
dashed lines represent the calculated remodeling at one and two years.

it varies with position on the bone cross-section for the eccentric loading ex-
periments, the ulnar ostectomies. In the case of the ulnar ostectomy studies,
the extreme values are listed in Table 1 for both the endosteal and periosteal
surfaces. Also listed is the calculated experimental “severity ratio” defined as
the ratio of the time-averaged stress calculated at the start of the experiment,
T, and the calculated time-averaged remodeling equilibrium stress, 7°. A neg-
ative number for this ratio means that a point on the surface of the bone with
a remodeling equilibrium stress that is normally compressive (tensile) is being
experimentally loaded so that the point is now in tension (compression). For
each of the first three experiments in Table 1, both the remodeling equilibrium
stress and the stress at the start of the experimental period were compressive.
The ulnar ostectomy experiment with mature sheep shows that a portion of
the periosteal bone (cranial surface) has a tensile remodeling equilibrium stress,
while the remaining bone has a compressive remodeling equilibrium stress. The
magnitude of the time-averaged stresses increased as a result of the ulnar ostec-
tomy, but the sign of the maximum and minimum stresses listed in the table was
unchanged. In contrast with the sheep study, the results of the ulnar ostectomy
on young swine show that the entire radius has compressive remodeling equilib-
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rium stresses. However, as a result of the ulnar ostectomy, portions of bone on
both the endosteal and periosteal surfaces were subjected to tensile loads, giving
negative numbers for two of the severity ratios listed. The severity ratios for the
ostectomy studies are significantly higher than those for the immobilization and
exercise experiments.

The remodeling rate constants, B,,(P), reported in Table 1 are in units of
mm day — GPa~!. Thus, the initial surface velocity, U, in Eq. (2.3) can be found
by multiplying the difference between the actual value of stress at a particular
point and the equilibrium stress for that point by the remodeling rate constant,
B.,(P). The surface velocity found in this manner, Uy, is thus she initial sur-
face velocity, and as the bone adapts, the observed surface velocity will decrease
toward zero. The experimentally determined maximum average surface velocity,
Uavg, is estimated by measuring the maximum depth of the bone deposited or
resorbed on the surface and dividing by the remodeling time period. The max-
imum initial velocities as well as the maximum average surface velocities are
reported in Table 1. As would be expected, the maximum average surface ve-
locity measured from the photographs of the remodeled bone cross-sections are
smaller than the calculated initial velocity. Equality of the two velocity measures
would have implied that the remodeled cross-section had not yet approached the
equilibrium configuration since the initial velocity has remained constant.

The sign convention used in Table 1 is as follows. If new bone is deposited
on an external surface, then the velocity, U, is considered to be positive, while
negative surface velocity implies that bone on the external surface is resorbed. If
the difference between the actual stress and the remodeling equilibrium stress,
(T'—T9), is positive, then B,, positive leads to bone deposition, and B, negative
leads to bone resorption. On the other hand, if the difference between the stresses
is negative, then B,, positive leads to bone resorption, and B negative leads
to bone deposition.

The calculated surface remodeling represented in the left-hand panels of
Figs. 10 to 14 all show geometries that have evolved to a shape that is close to the
experimental geometry at the time listed with each figure. The evolution of the
calculated remodeled geometry is almost complete since, at the time shown, the
axial stress is almost equal to the remodeling equilibrium stress, T°. The change
in the periosteal surface position and the radius centroid in the time between
the predicted geometry at 9 months, shown in the left-hand panel of Fig. 14,
and the predicted geometry at 1 year, (not shown) from that value is small. This
indicates that the functional adaptation response was almost complete at the
end of the 9-month period used in the calculations. This computational result is
also in qualitative agreement with the experimental results that showed tetra-
cycline labeling at the end of the six-month experimental group, but an absence
of labeling on the twelve month group (LANYON et al., 1982).
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The remodeling rate constants have values that are all of the same order of
magnitude, although we are comparing experiments with several independent
variables. Among these are the animal species, age, severity of experiment in
terms of change from the normal strain environment, and the degree of data
extrapolation necessary for the calculations reported here. The factor that gov-
erns the relative activity of the endosteal and periosteal surfaces seems to be
the animal age and not the experimental methodology used to induce the net
remodeling response.

8. SUCCESSES AND DEFICIENCIES OF THE SURFACE REMODELING THEORY

Some of the success of the surface remodeling theory is inherited from the
internal remodeling theory, most importantly, the development of a thermody-
namic open-system model of tissue adaptation. As was noted in Part I, Sec. 15,
this model has been followed, or assumed as a starting point, by most subsequent
models of tissue adaptation. However the great simplicity of surface remodeling
theory is an independent factor for its success as well as the fact that real bone
deposition always occurs on an existing bone surface, so the bone remodeling
phenomena are accurately portrayed in the model. Some of the major changes
to be recommended for a reformulated surface remodeling theory are common
with the recommendations made for an internal remodeling theory in Part I,
Sec. 15. The common major changes would be the introduction of two time
scales, and the introduction of the rate-of-strain or the rate-of-loading as the
stimulus, both described in Part I, Sec. 15. A reformulated theory of surface
remodeling with a rate-of-strain stimulus was sucessfully developed and applied
by Luo et al. (1995).

There have been criticisms of the surface remodeling theory that are un-
justified from my perspective. PRENDERGAST and TAYLOR (1994) and PREN-
DERGAST (2001) criticize the fact that the remodeling rate coefficients for the
endosteal and periosteal surfaces are assumed to be different. Their argument
is that the remodeling rate coefficients on the endosteal and periosteal surfaces
should be the same. However if one looks carefully at the biological structure of
the endosteum and periosteum, one sees that the two biological structures are
not the same. The endosteum is a fragile single osteoblastic lineage cell layer on
the surface of the medullary canal while the periosteum is a relatively (relative
to the endosteum) thick fibrous structure whose innermost layer is a single os-
teoblastic lineage cell layer, but whose interior contains other cell types including
fibroblasts. Furthermore the animal experimental data are inconsisent with the
equality of the endosteum and periosteum remodeling rate coefficients. An in-
spection of the results of the animal experiments described here and illustrated
by Figs. 10, 11 and 12 demonstrates this inconsistency.
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A second unjustified criticism of the surface remodeling theory that is given
by MARTIN and BURR (1987). These authors make the following comments
(MARTIN and BURR, 1987; p.177): “Obviously, if any theory is to have any
practical application, the values of the remodeling rate coefficients must be de-
termined. To that end, Cowin’s group compared the predictions of their model
to the results of several animal experiments (Figs. 10 to 14). The results were
encouraging, but the model is far from biologically useful. The C tensor contains
coefficients for each component of strain; these must be determined for endosteal
and periosteal surfaces. It was found that different coefficients had to be used to
predict the results of each experiment. This means that the theory is incapable of
describing adaptation to mechanical usage in any sort of generalized way which
in turn indicates that the theory is flawed in some way”.

MARTIN and BURR (1987) criticize the theory while their real concern is with
the fact that the values of the remodeling coefficients determined from the var-
ious experiments (as shown in Table 1) are not sufficiently close. The fact that
the remodeling coefficients determined from the various experiments (as shown in
Table 1) are not sufficiently close is not due to a flaw in the theory as suggested,
but rather due to the lack of data on the mechanical loading history in the reports
of the animal experiments considered. For four of the experiments, little quanti-
tative data are provided to accurately determine the mechanical loading history
estimates on the normal bone or on the abnormally loaded bone (UHTHOFF and
JAWORSKI, 1978; JAWORSKI et al., 1980; WOO et al., 1981; GOODSHIP et al.,
1979). In addition, strain gauge data provided by LANYON et al. (1982) for the
sheep ostectomy study did not provide sufficient information to uniquely deter-
mine either the points of application or the magnitudes of the loading forces.
Consequently, only very approximate mechanical loading history estimates were
employed in the study. The ideal experimental information for use with a re-
modeling theory based on describing and predicting the mechanical objectives
of bone remodeling would include sufficient information to accurately determine
the loading history on both the experimental and control bones, the geometry
of both bones, the material distribution in the bones, and the time course of
the remodeling process. The work of COWIN et al. (1985) could only proceed
by making ad-hoc estimates of the mechanical loading history for each animal
experiment. The ad-hoc methods of estimating the mechanical loading history
were described in detail in COWIN et al. (1985) and these descriptions have been
repeated in Part II, Sec. 5 above. The reader should review the AD-HOC methods
under immobilization experiments, exercise erperiments and ovine and porcine
ulnar ostectomies. For example, the mechanical loading history for the exercise
experiments of WOO et al. (1981) were calculated by the method described in
the paragraph containing Eq. (2.2). These ad-hoc methods produce only gross
estimates of the mechanical loading history. They were used because there was
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little or no recorded data on the mechanical loading history during these animal
experiments. Despite the simplicity of the model and the lack of data that would
be required to uniquely define the load environments, the remodeling constants
for each of these animal experiments are of approximately the same magnitude.
This similarity, despite the differences in loading environment, animal species,
and age gives reason to be optimistic about the applicability of the surface re-
modeling theory as a tool for prediction of in vivo bone remodeling.

If MARTIN and BURR (1987) and PRENDERGAST (2001), who also criticized
the inconsistency in the values of the remodeling rate coefficients, would think
about the information that was available to determine the mechanical loading
history for these animal experiments, they will see that the results obtained in
COWIN et al. (1985) are really quite good and that the theory is simple and
not yet either proved or refuted. (The requirement implicitly specified in the
paragraph of MARTIN and BURR (1987) quoted above is that the remodeling rate
coefficients be the same, independently of the age and species of the animal, is
biologically unrealistic.) The unhappy aspect of reconsidering these issues almost
twenty years later is that our ability to improve our predictions of the remodeling
rate coefficients has not increased. To date there are no animal experiments that
report enough information to determine the mechanical loading history. Nothing
has changed. I would be happy if these authors will change their opinions. I also
would be happy if someone will undertake a properly designed set of animal
experiments to prove or refute some version of the surface remodeling theory.

Part III. Architectural adaptation

1. WOLFF’S LAW

An elastic constitutive relation for cancellous bone tissue with an explicit
cancellous bone architectural measure was developed in COwIN (1986). This
relationship, which only applied at remodeling equilibrium, involves the stress
tensor T, the strain tensor E and a measure of trabecular architecture called the
fabric tensor which is denoted by H. As discussed in the next section, the fab-
ric tensor is a symmetric second rank tensor that is a quantitative stereological
measure of the microstructural arrangement of trabeculae and pores in the can-
cellous bone tissue. The constitutive relation obtained is a part of an algebraic
formulation of Wolff’s law of trabecular architecture in remodeling equilibrium.
In particular, with the general constitutive relationship between T, E and H,
the statement of Wolff’s law at remodeling equilibrium is simply the requirement
of the commutability of the matrix multiplication of the stress tensor and the
fabric tensor at remodeling equilibrium, T*H* = H*T*. The asterisk on the
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stress and fabric tensors indicates their values in remodeling equilibrium. It is
shown that the constitutive relation also requires that EXH* = H*E*. Thus, the
principal axes of the stress, strain and fabric tensors all coincide at remodeling
equilibrium. In the Part III, Sec. 5 the constitutive relations for the evolutionary
form of Wolff’s law are recorded and graphically illustrated.

2. THE FABRIC TENSOR FOR CANCELLOUS BONE TISSUE

Cancellous bone tissue is an inhomogeneous porous anisotropic structure.
The cancellous structure is a lattice of narrow rods and plates (70 to 200 pm
in thickness) of calcified bone tissue called trabeculae. The trabeculae are sur-
rounded by marrow that is vascular and provides nutrients and waste disposal
for the bone cells. The distinctive structural anisotropy (or architecture) of can-
cellous bone tissue can be approximately measured by a variety of stereological
procedures that produce ellipses, ellipsoids or, equivalently, positive definite sec-
ond rank tensors. The mean intercept length tensor is one example of such a
measure. The mean intercept length L for cancellous bone tissue is measured
as a function of direction on polished plane sections. The mean intercept length
is the average distance between two bone/marrow interfaces measured along a
line. The value of the mean intercept length is a function of the slope of the line,
0, along which the measurement is made; Figure 22 illustrates making such a
measurement for a fixed value of 6.

Whitehouse showed that when the mean intercept lengths measured in can-
cellous bone for different values of # were plotted in a polar diagram as a function
of the direction (i.e., of the slope of the line along which they were measured), the
polar diagram produced ellipses (Fig. 23). If the test lines are rotated through
several values of § and the corresponding values of mean intercept length L(0)
are measured, the data are found to fit the equation for an ellipse very closely,

1
L2(9)

where My1, Moy and Mo are constants when the reference line from which the
angle 0 is measured is constant. The subscripts 1 and 2 indicate the axes of
the z1, 22 coordinate system to which the measurements are referred. In three
dimensions the mean intercept length is represented by ellipsoids and is there-
fore equivalent to a positive definite second rank tensor. The constants M;;
introduced in the foregoing are then the components of a second-rank tensor M
which are related to the mean intercept length L(n), where n is a unit vector in
the direction of the test line, by

(3.1) = My cos? 0 + Moy sin® 6 + 2Mj5 cosfsin 6,

(3.2) —EEI(T):n-M-n.
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F1G. 22. Test lines superimposed on a cancellous bone specimen. The test lines are oriented
at the angle 0. The mean intercept length measured at this angle is denoted L(0).

The fabric tensor is denoted by H and has components H;; relative to a
Cartesian coordinate system. H is related to the mean intercept length tensor
M by

(3.3) 2 g8 (\/1\71)_1 |

The positive square root of the inverse of M is well defined because M is
a positive definite symmetric tensor. M is a positive definite symmetric tensor
because it represents an ellipsoid. The motivation for defining a measure of fabric
that depends inversely on the mean intercept length will be discussed later.
The fabric tensor or mean intercept ellipsoid can be measured using a cubic
specimen. On each of three orthogonal faces of a cubic specimen an ellipse will
be determined from the directional variation of mean intercept length on that
face. The fabric tensor can be constructed from these three ellipses that are the
projections of the ellipsoid on three perpendicular planes of the cube.

The results presented here do not depend upon the precise details of the
definition of the fabric tensor. It is only required that the fabric tensor be a
positive definite second rank tensor that is a quantitative stereological measure of
the trabecular architecture, a measure whose principal axes are coincident with
the principal trabecular directions and whose eigenvalues are proportional to
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" F1G. 23. An ellipse is constructed by making a polar pole of the average value of the mean
intercept length L(6) for each value of the angle 6.

the massiveness of the trabecular structure in the associated principal direction.
The many ways to construct a fabric tensor for bone are described by ODGAARD
(1997; 2001).

3. THE RELATIONSHIP BETWEEN THE FABRIC TENSOR
AND THE ELASTICITY TENSOR

Bone tissue is modeled satisfactorily as an orthotropic, linearly elastic mate-
rial. The su(—dlmensmnal second rank elasticity tensor & relates the six-dimensio-
nal stress vector T to the six-dimensional infinitesimal strain vector E in the lin-
ear anisotropic form of Hooke’s law,

A~

(3.4) T = ¢E.

The elasticity tensor & completely characterizes the linear elastic mechanical
behavior of the cancellous bone tissue. If it is assumed that all the anisotropy
of cancellous bone is due to the anisotropy of its trabecular structure, that is to
say that the matrix material is itself isotropic, then a relationship between the
components of the elasticity tensor &¢ and H can be constructed. From previous
studies of cancellous bone it is known that its elastic properties are strongly
dependent upon its apparent density or, equivalently, the solid volume fraction
of trabecular structure. This solid volume fraction is denoted by v and is defined
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as the volume of solid trabecular struts per unit bulk volume of the tissue.
Thus € will be a function of v as well as H. COWIN (1985) has constructed the
general representation of € as a function of » and H. The development of this
representation was based on the notion that the matrix material of the bone
tissue is isotropic and that the anisotropy of the whole bone tissue is due only
to the geometry of the microstructure represented by the fabric tensor H. The
mathematical statement of this notion is that the stress tensor T is an isotropic
function of the strain tensor E and the fabric tensor H as well as the solid volume
fraction v. Thus the tensor-valued function

(3.5) T = T(v,E,H)
has the property that

(3.6) QTQ” = T(v,QEQT, QHQT)

for all orthogonal tensors Q. It is shown (CowiIN, 1985) that the most general
form of the relationship between the stress tensor and the strain and the fabric
tensors consistent with the isotropy assumption (3.6) described in the foregoing is

(3.7) T = a11trE + ap (HtrE + 1tr[EH]) + a3 (1tr[HEH] + (trE) H?)
+ biHtr[HE] + b, (Htr[HEH] + (trEH) H?) + b3 (H?*tr[HEH])
+2¢1E + 2¢; (HE + EH) + 2c3 (H?E + EH?),

where a1, ag, a3, by, b, b, c1, c2, and c3 are functions of v, trH, trH? and trH2.

4. WOLFF’S LAW AT REMODELING EQUILIBRIUM

The absence of bone remodeling is remodeling equilibrium. Specifically, re-
modeling equilibrium (RE) is the set of conditions under which there is no re-
alignment of trabecular architecture and no net deposition or resorption of can-
cellous bone tissue. RE is thus characterized by a particular equilibrium archi-
tecture, denoted by v* and H*, and a particular stress and strain state, denoted
by T* and E*, respectively. The RE stress T* and strain E* may actually be
ranges of stress and strain, or some special measures of stress and strain history.
When this theory was formulated, T* and E* were considered to be long time
averages of the environmental stress and strain, although they may be more
specific functions of the stress and strain history of the bone tissue.

In the introduction it was noted that Wolff’s law of trabecular architecture
states that the principal stress axes coincide with the principal trabecular di-
rections in cancellous bone in RE. This means that, in RE, the principal axes
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of stress T* must coincide with the principal axes of fabric H*. This coinci-
dence of principal axes is assured if the matrix multiplication of T* and H* is
commutative, i.e., if

(3.8) T*H* = H*T".

This appears to be the first mathematical formulation of what is considered
by many to be Wolff’s law of trabecular architecture in remodeling equilibrium,
namely that the principal stress directions are coincident with the principal di-
rections of the trabecular architecture. It is also generally agreed that the di-
rection associated with the largest (smallest) Young’s modulus in the cancellous
bone should be associated with the direction in which the massiveness of the
trabecular architecture is greatest (least). If the Young’s moduli are ordered by
FE, > E5 > E3 then this condition is satisfied if Hy > Hy > Hj.

Since the principal axes of T* and H* are coincident by Wolff’s law, it can
be shown that the principal axes of E* are also coincident with those of T* and
H*. To see why this is true, consider a principal coordinate system of H*. This
coordinate system is also a principal coordinate system of T*. Since the shear
stresses are all zero in this coordinate system, it follows that the shearing strains
are also zero, hence the coordinate system is also a principal coordinate system
of E*. These results are summarized by any two of the following three relations:

(3.9) TH* = H*'T*, T'E*=E'T*, E'H*'=H'E".

5. AN EVOLUTIONARY WOLFF’S LAW FOR TRABECULAR ARCHITECTURE
The constitutive relations for the evolutionary form of Wolff’s law are

(3.10) T = i1+ BE+ B3H + B4H? + B5(HE + EH) + Gs(H2E + EH?),
(3.11) H = oq1 + agH + a3H? + a4E + a5(HE + EH) + og(H?E + EH?),
(3.12) & = é(e, trE, trH, trH?, trH3, trEH, trEH?),

where all the a’s and 3’s are functions of e, trH, trH? and trH3 and some may
be functions of strain (trE,trEH and trEH?) if they are consistent with the
restriction of a linear dependence upon strain.

An example of the application of this evolutionary form of Wolff’s law will
now be described in order to illustrate the model. An illustration of the formu-
lation of the boundary value problem considered is shown in Fig. 24. Figure 24
(left) shows the remodeling equilibrium situation associated with a stress state
TP that exists for t < 0. Figure 24 (right) shows the situation at t = 0" when a
new stress state T* is applied and held constant for all subsequent time.
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Fic. 24. An illustration of the formulation of the boundary value problem considered.

(left) The remodeling equilibrium situation associated with a stress state T° that exists for

t < 0. (right) The situation at ¢ = 07 when a new stress state T* is applied and held constant

for all subsequent time. The subsequent evolution of the trabecular architecture is illustrated
in Fig. 25.

To aid the reader in the understanding of Eqgs. (3.10) to (3.12) to solve the
problem described in Fig. 24, Fig. 25 is employed. Figure 25 is a sequence of
four illustrations showing the temporal evolution of the trabecular architecture
from an RE situation characterized by states of stress, strain and fabric denoted
as TO, E° and H?, respectively, to an RE situation characterized by states of
stress, strain and fabric denoted as T*, E* and H*, respectively. Figure 25 (top)
illustrates the remodeling equilibrium situation that exists for ¢ < 0. The prin-
cipal axes of T?, E? and H? are coincident. Figure 25 (upper middle) illustrates
the situation when remodeling is initiated at ¢ = 0%. The applied stress is now
represented by the temporally constant stress tensor T*, whose principal axes
make an angle in the 1-3 plane with the principal axes of the previously ap-
plied stress tensor TC. Furthermore, the temporally varying strain tensor E(t)
has instantaneously assumed a new value while the fabric tensor H? remains at
its t < 0 value. Figure 25 (lower middle) illustrates the situation at a typical
time t as remodeling is proceeding. The principal axes of strain E and fabric H
make angles with the horizontal axes in the 1-3 plane. As time increases, the
principal axes of strain E and fabric H move into coincidence with the principal
axes of the applied stress T*. Figure 25 (bottom) illustrates the new remodeling
equilibrium situation that is achieved as t tends to infinity. A new RE situation
has been established; it is characterized by states of stress, strain and fabric with
coincident principal axes denoted as T*, E* and H*, respectively, and by a solid
volume fraction e*.
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F1G. 25. This sequence of four illustrations shows the evolution of the trabecular architecture

from an RE situation characterized by states of stress, strain and fabric denoted as T°, E°,

and H°, respectively, to an RE situation characterized by states of stress, strain and fabric

denoted as T*, E*, and H*, respectively. (top) The remodeling equilibrium situation that

exists for t < 0. (upper middle) The situation when remodeling is initiated at ¢t = 0*. (lower

middle) The situation at a typical time ¢ as remodeling is proceeding. (bottom) A new RE
situation is restored as t tends to infinity.
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6. SUCCESSES AND DEFICIENCIES OF THE ARCHITECTURAL
ADAPTATION THEORY

Some of the success of the architectural adaptation theory, as is true in the
case of the surface remodeling theory, is inherited from the internal remodeling
theory, most importantly, the development of a thermodynamic open-system
model of tissue adaptation. As was noted earlier, this model has been followed,
or assumed as a starting point, by most subsequent models of tissue adaptation.
Some of the major changes to be recommended for a reformulated architectural
adaptation theory are common with the recommendations made for internal
remodeling theory in Part I, Sec. 15. The common major changes would be the
introduction of two time scales and the introduction of the rate-of-strain or the
rate-of-loading as the stimulus, both described in Part I, Sec. 15.

The use of the fabric tensor to characterize the architecture of cancellous
bone has been treated with skepticism by some (KuoO and CARTER, 1991; JA-
COBS, et al., 1997), but in the last decade its effectiveness in representing the
local architecture of cancellous bone has been demonstrated by many investiga-
tors (TURNER et al., 1990; GOULET et al., 1994; VAN RIETBERGEN et al. 1996,
1998; ZYSSET et al., 1998; ZYSSET, 2002). It is rather universally recognized that
porosity or solid volume fraction is the primary measure of local material struc-
ture in a porous material. This means that in the purely geometric kinematic
description of the arrangement of the pore structure the porosity is the zero or-
der term and fabric tensors of even order are the higher order measures. Porosity
does not, however, reflect any directionality of the specimen’s pore microstruc-
ture. The fabric tensors for solid materials with pores are constructed using one
of the methods described by ODGAARD (1997 or 2001). Now there appears to
be a general agreement that a fabric tensor is the best second measure of local
material microstructure in bone. The general problem of the quantification of
structural anisotropy in materials with distinctive microstructure like geological
and biological materials is considered in a series of papers by KANATANI (1983;
1984 a, b; 1985). The problem of the determination of structural anisotropy of
solid materials with pores by the methods of quantitative stereology was con-
sidered by HILLIARD (1967). In some situations higher order fabric tensors are
necessary; this will be considered below.

The theory of architectural adaptation does not depend upon the precise
details of the definition of the fabric tensor. It is required only that the fabric
tensor be a positive definite tensor that is a quantitative stereological measure
of the microstructural architecture, a measure whose principal axes are coin-
cident with the principal microstructural directions and whose eigenvalues are
proportional to the massiveness of the microstructure in the associated principal
direction. The many ways to construct a fabric tensor for bone are described by
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ODGAARD (1997; 2001). These methods include the stereological methods known
as the mean intercept length method, the volume orientation method and star
volume distribution method. In cancellous bone, the unit vectors may represent
the orientation of the interface surface area or the inclusion volume orientation,
HILLIARD (1967).

The experimental procedure for the surface area orientation measurement of
cancellous bone is described by WHITEHOUSE (1974 a, b), HARRIGAN and MANN
(1984) and TURNER et al. (1990). The work of these authors, and ODGAARD
(1997; 2001), ODGAARD et al. (1997), VAN RIETBERGEN et al. (1996, 1998) and
others, has shown that the fabric tensor is a good measure of the structural
anisotropy in cancellous bone tissue. The methodology of making measurements
is easily adapted to an automated computational system as shown by HARRIGAN
and MANN (1984) and TURNER et al. (1990).

In developing the relationship (3.7) between the elastic constant tensor and
the fabric tensor, it was assumed that the matrix material of the porous elas-
tic solid was isotropic and that the anisotropy of the porous elastic solid was
completely determined by the fabric tensor representing the architecture of the
material microstructure (see COWIN, 1985 and TURNER and COWIN, 1987). It
was then shown that the material symmetries of orthotropy, transverse isotropy
and isotropy correspond to the cases of three, two and one distinct eigenvalues
of the fabric tensor, respectively. The symmetry of the material is orthotropic
if the three eigenvalues of H are distinct, transverse isotropy if only two are
distinct and isotropy if all three eigenvalues are equal. The paper of TURNER
et al. (1990) reports on the experimental determination of the coefficients in
the stress-strain-fabric relationship in the case of cancellous bone. See also VAN
RIETBERGEN et al. (1996, 1998).

As noted above, the result (3.7) is based on the assumption that the ma-
trix material is isotropic and that the anisotropy of the solid porous material
is determined by the fabric tensor. In the case of cancellous bone the validity
of that assumption has been experimentally verified by the work of ODGAARD
et al. (1997). These authors concluded that the elastic and fabric main directions
coincide in cancellous bone; cancellous bone is an elastic, highly porous material.
ODGAARD et al. (1997) make the following remark: “Cowin’s fabric mechanics
relations (COWIN, 1985, 1986) (equation (3.7)) implicitly assume mechanical and
fabric main directions must be aligned. This may seem an intuitively acceptable
assumption, but experiment support has not previously been given”. The fact
that the mechanical and fabric main directions coincide in (3.7) is a direct alge-
braic consequence of the constitutive assumption that the stress is an isotropic
function of the strain tensor and the normalized fabric tensor only. An explicit
meaning of this assumption is that the mechanical anisotropy of the material is
determined predominantly by architectural features measured by the normalized
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fabric tensor measure and it is influenced less by other features, such as the ac-
tual symmetry of the matrix material. This same assumption is explicit in the
related computation work of VAN RIETBERGEN(1996), and thus in ODGAARD
et al. (1997).

A few words about whether the assumption that the second order fabric
tensor is an adequate representation of the distribution of material of one phase
relative to the material of the second phase and whether fabric tensors of higher
order representing this distribution are necessary. Specifically, it is assumed that
tensors of fourth order are not necessary. This is not always true; in certain
situations the effect of the fourth order tensors can be of the same magnitude as
the second order tensors. An example of this in the case of granular materials
is given by MEHRABADI et al. (1988). In the case of solid materials with pores,
specifically the case of a solid with isolated fluid-filled pores, it has been shown
that, for oblate pores filled with fluid of low compressibility, the contribution
of a fourth order fabric tensor is comparable with the one of the second order
tensor (SHAFIRO and KACHANOV, 1997 and KACHANOV, 1999).

There is another misunderstanding of architectural adaptation theory recorded
in JACOBS et al. (1997). These authors write that “The simplifying restriction to
orthotropic material behavior common to other anisotropic remodeling formula-
tions is not required (COWIN et al., 1992)”. The architectural adaptation theory
of COWIN et al. (1992), described above is not restricted in the way suggested.
When the architecturally adapting material is not in remodeling equilibrium,
there are no restrictions on the material symmetry. When the architecturally
adapting material is in remodeling equilibrium, the material symmetry must be
either orthotropic, transversely isotropic or isotropic. This situation with respect
to material symmetry in COWIN et al. (1992) is no more restricted than it is in
the JACOBS et al. (1997) theory.

CARTER, ORR, and FYHRIE (1989) present a model for relating mechanical
load history to the angle of intersection of trabeculae at a point in cancellous
bone. The authors employ an initial mechanical state which is a two-dimensional,
homogeneous, isotropic elastic continuum representation of the proximal femur.
They apply a rule for determining an “equivalent normal stress” in a computa-
tionally iterative fashion to predict the angle of intersection of trabeculae. In
their model this angle depends upon the magnitudes of different loadings, the
number of cycles each loading is repeated, and an exponent that they take to be
one or four. At several points in their text CARTER et al. (1989) contrast their
approach to the development of a theory of trabecular bone remodeling with the
approach taken by COWIN (1986):

A. On page 235 of CARTER et al. it is suggested “...that it may not be possi-
ble to correctly represent the local stimulus which determines bone orientation
using the stress tensor calculated from a single loading condition, or any type of
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‘equilibrium’ stress tensor (COWIN, 1986) that is representative of the loading
history”.

B. On page 241: “An important difference between our equivalent normal
stress approach to estimating bone orientations and the trajectorial theory ad-
vanced by Wolff (1892), PAUWELS (1980), and COWIN (1986) is that we believe
that the local stimulus to bone remodeling cannot, in general, be represented by
a single stress tensor”.

C. Also on page 241: “The trajectorial theory advanced by many previous
investigators (VON MEYER, 1867; WOLFF, 1892; Roux, 1880, 1895; HAYES and
SNYDER, 1981; CowIN, 1986; FYHRIE and CARTER, 1986) can therefore be
viewed as an approximation and is a degenerate case of the multiple-loading
theory”.

These remarks might leave the reader with incorrect impressions concerning
the nature and assumptions underlying the bone remodeling theory proposed by
CowiIN (1986). Discussion is restricted here to two such points.

Point 1. Quote A suggests that the angle of intersection between individual
trabeculae can be determined from a stress analysis of the authors’ type, but
not from one of the type employed by CowIN (1986). There is a fallacy in the
suggestion of CARTER et al. that their stress analysis, or the continuum model
proposed by COWIN (1986), can predict the angle of intersection of individual
trabeculae.

The reason for the inability of these two models to make such a prediction
is that the assumption of material continuity is not satisfied at the scale the
prediction is made. That is to say that, in continuum models for cancellous bone,
the continuum assumption restricts the resolution so that a material feature as
small as the angle of intersection between trabeculae cannot be predicted because
homogenization has been applied to make a continuum model.

The debate over the prediction of the angle of intersection of individual tra-
beculae from a stress analysis is not new. It began in 1866 when it was ob-
served that the directions of the trabeculae in the proximal femur coincided
closely with the directions of normal stress extrema predicted by a stress analy-
sis of a homogeneous and continuous elastic object of the same shape as the
bone, and loaded in the same way (CowiIN, 2001). It was well known that
the directions of normal stress extrema must be orthogonal. These observa-
tions led WOLFF (1892) to his rigid interpretation of the law that bears his
name, the interpretation that requires real trabeculae to intersect orthogonally.
Acknowledging the data which established that real trabeculae do not always
intersect orthogonally, MURRAY (1936) pointed out the fallacy in Wolff’s rigid
interpretation by observing that the prediction of orthogonality in the direc-
tions of normal stress extrema is based on the assumption that the bone tissue
density is continuous while, in reality, the density of trabecular architecture
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is discontinuous. The fallacy that underlies the rigid interpretation of Wolff’s
law promulgated by WOLFF (1892) is to apply the results of a stress anal-
ysis, based on the assumption of a continuous material, to the prediction of
discontinuous or discrete features whose characteristic length is smaller than
the minimum length for which the assumption of material continuity is satis-
fied.

The resolution of the fallacy lies in the establishment of the length over which
the material properties of cancellous bone microstructure are to be averaged to
form a continuum model. It is only at that length, and at no smaller length
scales, that the theoretically predicted directions of normal stress extrema can be
compared with real trabecular architecture. The minimum value for this length
is at least several trabecular widths. HARRIGAN et al. (1988) observed that
the precise length is dependent on the stress gradient and suggested that, if the
results of a stress analysis “...vary by more than 20-30% over a distance spanning
three to five trabeculae, the results are suspect”. A resolution length restriction
for the trajectorial theory is that the directionality in the trabecular architecture
of bone coincides with the predicted directions of normal stress extrema (i.e., the
principal stress trajectories) only for lengths equal to or larger than the length
on which trabecular bone can be considered as a continuous material (COWIN,
1989). This restriction prevents the trajectorial theory from the contradiction
with nature embodied in Wolff’s rigid interpretation, while it preserves the basic
idea of the trajectorial theory.

CARTER et al. introduced the concept of an “equivalent normal stress” de-
termined by a non-tensorial composition rule for combining a number of ten-
sorial normal stress components, each normal stress being associated with a
single loading condition. The extrema of the “equivalent normal stress” as a
function of spatial direction are not, in general, orthogonal as they must be
for a normal stress that is a tensorial component. The authors suggest that
real trabeculae intersect at angles determined by the difference between the ex-
trema directions of the “equivalent normal stress”. Since these directions can,
in general, be nonorthogonal, the authors suggest that real trabeculae need not
intersect orthogonally. The authors do not discuss the fact that their “equiv-
alent normal stress” rule predicts the angle of trabecular intersection to be
dependent upon the number of cycles of the various loadings experienced by
the bone, as well as upon the exponent that they take to be either one or
four.

The fallacy in Wolff’s viewpoint (CowIN, 2001) is repeated in the approach
of CARTER et al., even though the theory proposed by CARTER et al. is in-
terpreted by them as predicting non-orthogonal intersection of individual tra-
beculae, rather than the orthogonal intersection of individual trabeculae ar-
gued by WOLFF (1892). The fallacy incorporated in both the interpretations
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of WOLFF and of CARTER et al. is that, when the angles of intersection of
real trabeculae are compared with the theoretically predicted directions of nor-
mal stress extrema, the cancellous bone is assumed to be both continuous and
discontinuous on the same length scale. The prediction of directions of nor-
mal stress extrema requires the assumption of a continuous material. How-
ever, when the intersections of real trabeculae of a specimen are viewed with
the eye, the viewer is visually acknowledging the discontinuity of the mate-
rial structure. The fallacy (or contradiction) is that the theory assumes con-
tinuity and the visual inspection assumes discontinuity, on the same length
scale.

Point 2. The approach of CowIN (1986), which characterizes remodeling
equilibrium by a stress or strain tensor, does not exclude the possibility of the
consideration of multiple loading stress histories.

It is possible to misinterpret the phrase “single loading condition” or “single
stress tensor” in the quotes A and B given above from CARTER et al. The possi-
bility for an incorrect interpretation arises from the authors’ use of the adjective
“single” to modify “stress tensor”. The characterization of remodeling equilibrium
by a stress tensor does not require or imply that only a single loading has been
considered. A stress tensor can be determined at each point in a bone due to
a single loading if the reasonable assumption that bone is a linearly elastic ma-
terial is made. If multiple loadings are considered (OXNARD and YANG, 1981),
the stress tensors for each single loading can be added together at any instant
of time to obtain the stress tensor for the multiple loading. This composition
is an application of the superposition principle of linear elasticity. When the
time history of stress is considered for multiple loadings, the tensorial character
preserving composition rules developed in the theories of hereditary phenom-
ena (e.g. viscoelasticity, dielectric behavior, etc.) can easily be adapted so that
the tensorial character of stress is preserved for multiple loading stress histories.
Therefore, whether it is a single loading, or a multiple loading, or a multiple
loading history, it is always possible to preserve the tensorial character of stress.
The existence of a remodeling equilibrium stress tensor does not imply a single
loading situation. The “equivalent normal stress” rule suggested by Carter et al.
does not preserve the tensorial character and, from the restricted viewpoint of
that rule, the authors’ statements reject any combination of stress tensors that
are not composed by their rule as a stimulus for bone remodeling. The quote
C given above from CARTER et al. is open to a similar misinterpretation; the
authors would have been clearer if they had prefaced the sentence that is quote
C with the phrase “From the perspective of our nonlinear, nontensorial theory...”
The way the sentence of quote C reads it could be misinterpreted as suggesting,
in error, that the theories of many previous investigators are restricted to single
loading situations.
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APPENDIX A. SPECIAL VECTORS AND TENSORS IN SIX DIMENSIONS

The developments in these notes will frequently concern the relationship be-
tween symmetric second rank tensors in three dimensions. The symmetric second
rank tensors of interest will include stress and stress rate and strain and strain
rate, among others. The most general form of a linear relationship between sec-
ond rank tensors in three dimensions involves a three-dimensional fourth rank
tensor. In general the introduction of tensors of rank higher than two involves
considerable additional notation. However, since the interest here is only in three-
dimensional fourth rank tensors that relate three-dimensional symmetric second
rank tensors, a simple notational scheme can be introduced. The basis of the
scheme is to consider a three-dimensional symmetric second rank tensor also as
a six-dimensional vector and then three-dimensional fourth rank tensors may
be associated with second rank tensors in a space of six dimensions. When this
association is made, all of the algebraic machinery associated with the linear
transformations and second rank tensors is available for the three-dimensional
fourth rank tensors.

The definition of a second rank tensor in a space of three dimensions T is
written in the form

j=3 i=3 B=3 a=3
(A1) T=) ) Tje®ej=) > TaseaDes
j=1i=1 B8=1a=1

where e; and e; are the (Latin) base vectors in a 3-dimensional vector space and
where e, and eg are the (Greek) base vectors in the same 3-dimensional vector
space. Executing the summation in the Latin system,

(A.2) T =Ti1e1 ® 1 + Tazes ® e2 + T33e3 @ €3 + Trz(e2 @ e3 + e3 ® e3)

+ T13(e1 RXez+e3® e1) + T12(61 ®Xex+ex® el).

If a new set of base vectors defined by

e = e ®ey,
€ = ex®ey,
é3 = e3®e3,
1
A3 é4 = —(ea®e3+e3®ey),
(A3) , 4 \/5( 2 ®e3 +e3Q ey)

il
& = E(e1®es+es®el),

1
€ = E(el ®ext+ex®e;),
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are introduced as well as a new set of tensor components defined by

(A4) T, = Tu, Ty = Ty, Ty = Tig,
Ty = V2T, Ts = V2Ti3, Te = 2Ty,

then (A.2) may be rewritten as

(A.5) T‘ = Tlél s Tgéz ot T3é3 o f4é4 + f‘5é5 + T\Gés,
or
2 1=6 - a=6 5
(A.6) S AL
i=1 a=1

which is the definition of a vector in six dimensions. Consider next a fourth rank
tensor c in three dimensions defined by

m=3 k=3 j=3 i=3

(Xl = Z Z Z Z Cijkme€i®e;Qer & ep

m=1k=1 j=1 i=1

é=I ~=I p=I a=I

and having symmetry in its first and second pair of indices, cijkm = Cjikm and
Cijkm = Cijmk, but not another symmetry in its indices; in particular cijxm #
Ckmij in general. The results of interest are for a fourth rank tensor in three
dimensions with these particular symmetries because it is these fourth rank
tensors that relate symmetric second rank tensors in three dimensions. Due to
the special indicial symmetries just described, the change of basis (A.3) may be
introduced in (A.7) and it may be rewritten as

Jj=6 i=6 B=VIa=VI

(A.8) =) &8i® =Y Y tapta®ép,

j= B=I a=I

2

-
I
—

where the 36 components of c¢;jkm, the fourth rank tensor in three dimensions
(with the symmetries cijjkm = Cjikm and Cijkm = Cijmk) are related to the 36



components of ¢;;, the second

11
C32
é21
Ca5
(A9) s
C51
C42

C62

Cs3

C1111,
€3322,
C2211,
2¢2313,

2c1312,

V2ci311,
V2c2322,
V2c1222,
\/501333,
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C2
€13
C44
Cs4
Ce5
C15
Coq
Co6

35

€2222,

1133,

2¢2323,
= 2c1323,
= 2c1213,
= \/561113,
= V2c2003,
= V2c12,
= v2c3313,

C33

C31

rank tensor in six dimensions, by

C3333,
= (3311,
2¢1313,

= 2c2319,

T \/502311,
= V2cio1,
= V2c132,
= V2cy333,
= V2c1933,

23
C12
Ce6
Coa
C14
C16
Co5
C34

C36

185

C2233,
C1122,
2c1212,

2c1223,

V2c1123,
V2ci112,
V2c2213,
V2c3323,
V2c3312.

Using the symmetry of the second rank tensors, T = TT and J = JT, as well
as the two indicial symmetries of cjjxm, the linear relationship between T and J,

(A.10)

may be expanded to read

Ty
Ty
e
Ty
Ty

Tr2

j=3 i=3

T%j = Z Z Cijkakm»

j=1i=1

= c1111Jd11 + cr122Jo2 + c1133J33 + 2¢1123J23 + 2¢1113J13 + 2111212,
= coo11J11 + ca222J22 + €2233J33 + 2¢2223J23 + 2¢2213J13 + 2¢2012J12,

= c3311J11 + €3322J22 + €3333J33 + 2¢3323J23 + 2¢3313J13 + 2¢3312J12,

ca311J11 + c2322J22 + 233333 + 2¢2323J23 + 2¢2313J13 + 2¢2312J12,

= c1311J11 + 132222 + c1333J33 + 2¢1323J23 + 2¢1313J13 + 2¢1312J12,

c1211J11 + c1222J22 + 123333 + 2¢1223J23 + 2¢1213J13 + 2¢1212J12,

The corresponding linear relationship between T and J :

(A.12)

<.
Il
(=]

Tied g

<.
Il
—



186 S.C. COWIN
may be expanded to read
T1 = éndi + é1ada + e13J3 + é1aJs + é15J5 + 16,
Ty = &n1J1 + éaaa + Ea3J3 + Coada + 55 + 265,
(A.13) T/:s = 5‘31{1 +* 532{2 + 533J:3 i 534{4 -3 635{5 + é36J:6a
Ty = eq1J1 + CaaJa + Ca3J3 + CaaJa + Ca5J5 + Ca6Je,
Ts = és1J1 + Esada + E53J3 + Esas + Es5J5 + e s,
Ts = éo1J1 + Eoado + o33 + Eoaa + Ea5J5 + oo
The advantage to the notation (A.12) or (A.13) as opposed to the notation
(A.10) or (A.11) is that there is no matrix representation of (A.10) or (A.11)
that retains the tensorial character while there is a simple, direct and familiar

tensorial representation of (A.12) or (A.13). The Egs. (A.12) or (A.13) may be
written in matrix notation as the linear transformation

(A.14) T = CJ.

Recalling the rule for the transformation of vectors in a coordinate transfor-
mation, the transformation rule for T or J may be written down by inspection,

(A.15) D =Q¥® and IO =QTIV,

where the superscripts L and G refer to the bases denoted using the Latin or
Greek alphabets for subscripts. Furthermore the second rank tensor C in the
space of six dimensions transforms according to the rule

(A.16) 6(L)=Qa(G)QT st @(G)zdra(m@

In short, the second rank tensor C in the space of six dimensions may be treated
exactly like a second rank tensor in the space of three dimensions as far as the
usual tensorial operations are concerned.

The relationship between components of the second rank tensor in three
dimensions and the vector in 6 dimensions contained in (A.4) may be written in
n-tuple notation for T and J (T and J),

T = [T1, T, T3, Ts, Ts, To)” = [T11, Taz, Ts3, V2Ti3, V2Ti3, V2T12) 7,

(A.17) T e e O
= [, Ja, 3, Ja, Js, J6|T = [J11, Jaz, Jaz, V203, V213, V2J12] .

[ 1Y

These formulas permit the conversion of three-dimensional second rank ten-
sor components directly to six-dimensional vector components and vice versa.
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The /2 factor that multiplies the last three components of the definition of the
six-dimensional vector representation of the three-dimensional second rank ten-
sor, (A.4), assures the scalar product of the two six-dimensional vectors is equal
to the trace of the product of the corresponding second rank tensors,

(A.18) T-J=trTI=T:J.

The transformation rules (A.15) and (A.16) for the vector and second rank
tensors in six dimensions involve the six-dimensional orthogonal tensor transfor-
mation Q. The tensor components of Q are given in terms of Q by

-Qu le @13 Qm Q/:m QA\m-
Q21 Q2 Q23 Qa2 Qs Q26
= Q31 Q32 Q33 Q31 Q35 Q36
A. = |ot AT iy A K
#19).9 Qa1 Qa2 Qa3 Qu Qus Que
Q51 Qs2 Qs3 Qss Os5 Qse
| Q61 Qo2 Qo3 Qs Qo5 Qes |

g Q3 Q5 V2Q21Q3
Q% Q3 Q3, V2Q22Q32
i Qs Q33 Q3 V2Q23Q33

V2Q13Q12  vV2Q22Q22 V2Q32Q33 Q22Q33 + Q32Q23
V2Q1uQ13  vV2Q21Q22 V2Q31Q33 Q21Q33 + Q23Q31
| V2QuQ12  V2Q2Q2 V2Q31Q3  Q21Q32 + Q2@

V2Q11Q31 V2Q1Qa ]
V2Q12Q32 V2Q12Q2
V2Q13Q33 V2Q13Q23

Q12Q33 + Q32Q13  Q12Q23 + Q13Q22
Q11Q33 + Q13Q31 QuQ23 + Q21Q13
Q11Q32 + Q12Q31 QuQ22 + Q12Q21 |

To see that Q is an orthogonal matrix in six dimensions requires some algebraic
manipulation. The proof rests on the orthogonality of the three-dimensional Q:

(A.20) 9 Q7= Lia Q8 ~RIQ = 1.

In the special case when Q is given by

cosa —sina 0
(A.21) Q= | sina cosa 0
0 0 1
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Q has the representation

[ cos? a

sin® o

~ 0
(A22) Q= 0
0

2cos asina

S.C. COWIN
sin® a 0
cos? a 0
0 1
0 0
0 0
V2cosasina 0
0 0
0 0
0 0
cosa —sina
sin « CoS &
0 0

V2cosasina ]
2cosasina
0
0
0

cos?a — sin®a

-

It should be noted that while it is always possible to find Q given Q by use
of (A.19), it is not possible to determine Q unambiguously given Q Although
Q is uniquely determined by Q, the reverse process of finding a Q given Q is
not unique in that there will be a choice of sign necessary in the reverse process.
To see this non-uniqueness note that both Q = 1 and Q = —1 correspond to
Q = 1. There are 9 components of Q that satisfy 6 conditions given by (A.20);.
There are therefore  only three independent components of Q. However, there are
36 components of Q that satisfy the 21 conditions given (A.20)2 and hence 15
independent, components of Q Thus, while (A.19) uniquely determines Q given
Q, the components of Q must be considerably restricted in order to determine
Q given Q, and selections of signs must be made.
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