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At present, it is possible to carry out a structure analysis using various calculation systems
based mainly on the Finite Element Method (FEM). These systems mostly include finite ele-
ments, which can be used for geometrical and material nonlinear analysis of civil-engineering
structures. Most of these elements are derived and used especially for the analysis of steel
structures. For the analysis of structures made of cement based composite materials are devel-
oped and special elements are used. The article describes the methods of analysis of structures
made of cement based composite materials with respect to material non-linearity. The ANSYS
analysis system is further described in the article and the beam element implemented in this
system. '

The beam element detailed derivation, including the presentation of material models that
can be used for an analysis with this element is presented. Some numerical examples are shown
at the end of the article.
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1. INTRODUCTION

The current state of computer technology and programs enables the solu-
tion of both statically and dynamically loaded civil-engineering structures, tak-
ing into account the effects of material, geometric and structural non-linearity.
These analyses could also include the rheological properties of materials such
as, for example, the analysis of bridge structures made with the use of TDA
system [22, 23] or TDV system [25] etc. To model structures made of cement-
based composite materials, special finite elements and material models are gen-
erated for the FEM [8, 15, 18, 20, 21]. These special elements have the ability
to include many effects important for both the quality of the design and the
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evaluation of complex framed, shell and three-dimensional structures. For the
development of two-dimensional or three-dimensional analysis, models of some
civil-engineering structures in applied design work, for example bridges, towers,
industrial assembly halls etc., beam elements, are mainly utilized.

Today, to analyze the civil-engineering structures, a designer can use several
analysis systems, for example ABAQUS, ANSYS, MARC, NASTRAN, COS-
MOS, SBETA, ATHENA, NEXIS 32/TDA, TDV etc.

Of the mentioned analysis systems, ANSYS [3] is widely used all over the
world. The system is employed in engineering offices and also used for education
of students at technical universities. The system can also be used in the de-
sign of civil-engineering structures and especially mechanical constructions and
machine components. For the solution of material nonlinear problems, the AN-
SYS system provides several beam elements (BEAM23, BEAM24, BEAM44),
shell elements (SHELL43, SHELL93) and solid elements (SOLID45, SOLID65,
SOLID92, SOLID95) [1]. For material nonlinear calculations made by means of
the mentioned elements, there is a relatively wide range of material models to be
used, based on the rate-independent plasticity, rate-dependent plasticity, creep,
swelling, nonlinear elasticity, hyperelasticity and viscoelasticity. With the use of
these material models and standard elements, material models of cement-based
composite materials can not be defined, mainly because it is impossible to model
softening in the tensile part of the material models (stress-strain diagrams) or
material models that use fracture mechanics for description of construction be-
haviour before and after its rupture (description of crack propagation). Unlike
the “traditional” elements for nonlinear material analysis, the ANSYS system
allows the utilization of “layered” elements — a shell element (SHELL91) and a
three-dimensional element (SOLID191). These elements can be used for the cal-
culation of layered composite structures involving materially nonlinear behaviour
and using the above mentioned material models.

For modelling plane, reinforced concrete and prestressed structures, i.e. struc-
tures made of cement-based composite materials, the ANSYS system provides
only one three-dimensional element (SOLID65), which uses the material model
of concrete according to WILLIAM and WARNKE [2]. The beam elements used for
modelling reinforced concrete and prestressed structures are not included in the
ANSYS system. For this reason, it is appropriate to incorporate special beam
elements together with the material models into the ANSYS library of elements
and material models.

2. MATERIAL NON-LINEARITY

Nonlinear problems generally result from material equations following the
respective nonlinear dependence between the stress vector {o} and strain vec-
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tor {€}, which, if we consider the influence of temperature and shrinkage etc., is
reduced by the vector of the initial deformation {eg}; this means that the stress
is a nonlinear function of the strain. This relationship, which is path-dependent,
so that the stress depends on the strain history as well as on the strain itself,
can be written using the stiffness matrix of the material [D], whose terms are
generally dependent on the components of deformation and on time, as follows:

(2.1) {o} = [D]- ({e} = {eo}).

The linear or nonlinear behaviour of the material in Eq. (2.1) is described
by the stiffness matrix of material [D)]. If the material behaviour is linear elastic,
the stiffness matrix of material [D] is symmetric and is called elastic. The border
between the linear elastic behaviour of the material and the plastic behaviour is
determined by the surface of plasticity, i.e. the condition of plasticity. Depending
on the material type, the surface of plasticity may remain constant or it may
change. For example, if the material exhibits hardening, the surface of plasticity
increases depending on the load history [5]. To describe the behaviour of the
material, a number of conditions of plasticity can be used, for example those of
Drucker-Prager, Mises, Mohr-Coulomb, Mises-Huber-Hencky, Tresca, Hoffman,
Chen, Kupfer, Hill, William and Warnke, etc. To describe the deformational
characteristics of concrete or materials that have different tensile and compressive
plasticity limits, it is possible to use the Drucker-Prager, Chen, Kupfer, William—
Warnke, etc. conditions. If the material can be defined in terms of the Drucker-
Prager stability postulate as stable, then the stiffness matrix of material [D] can
be called elasto-plastic and it is symmetric and includes the associated law of the
plastic transformation. Otherwise, e.g. with materials with internal friction (2],
which are not connected with the Drucker—Prager stability postulate, the elasto-
plastic stiffness matrix of material | D] is asymmetric and contains non-associated
law of the plastic transformation.

Equation (2.1) of nonlinear dependence between the stress vector o and strain
vector ¢ is preferred especially in calculations and integration of the elements for
materially nonlinear systems. In these systems, as well as in the ANSYS system,
the analysis of Eq. (2.1) is usually done using the method of incremental strains.
The procedure for the calculation can be summarized in the following points |2,
9, 10]: (i) computation of incremental displacements, (ii) updating of incremen-
tal displacements from the last converged equilibrium state, (iii) computation
of the incremental strains from incremental displacements, (iv) computation of
incremental stresses, (v) updating of the stresses and (vi) computation of inter-
nal forces.

To solve materially nonlinear problems using Eq. (2.1), it is necessary to
define and describe the material characteristic and, above all, to clarify the non-
linear character of the material models (possible dissimilarities in the tensile and
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compressive behaviour of the material), the possibility of unloading and recurring
loading, etc. For concrete (plain, reinforced and prestressed), which is classified
as a non-homogeneous material, it is useful to consider in the calculation its
imperfections such as pores, air voids, lenses of water under coarse aggregates,
shrinkage cracks, etc., which originate in the material before its mechanical load-
ing and also the failures originating during the external loading. Generally, the
material models used to describe the behaviour of materials in non-linear analy-
sis can be divided into (i) material models based on the theory of plasticity, (ii)
material models based on the principles of fracture mechanics and (iii) cohesive
fracture material models.

Models that follow the theory of plasticity are based on the stress or strain
failure criterion; this means that only the ultimate stress or the ultimate strain
determines the failure of the material. These material models are used in most
national codes and regulations, for example in EC 2, CEB-FIP MC 90, CSN,
ON, DIN, etc. As for concrete, the material models presently used to design
concrete structures do not enable exploitation of the tensile carrying capacity
of concrete, because most of them consider only the possibility of compressive
stress of concrete, i.e. the tensile part of the material model is not defined. This
shortcoming is removed by models using fracture mechanics for the description
of the material behaviour. These models are based on the energy failure criterion.
The models enable the description of the behaviour of the material after reaching
the ultimate stress or the ultimate strain that results in the formation of cracks.
At the same time, they enable specification of the way in which these cracks are
going to propagate in the structure. Other types of material models are cohesive
fracture models, which are based on the cohesion theory. This theory considers
fracture to be a gradual process in which separation between incipient material
surfaces is resisted by cohesive tractions. The models can be used to describe
and predict the fracture processes occurring in engineering materials loaded in
tension.

3. MATERIAL NONLINEAR ANALYSIS OF PLANE STRUCTURES

For material nonlinear analysis of structures made of cement-based composite
materials, the ANSYS program system is used with the beam element and ma-
terial models. The element, which assumes uniaxial state of stress and material
models, is implemented into the ANSYS library of elements and material models.

To model the supporting elements of civil-engineering structures, e.g. rein-
forced concrete girders prestressed by tendons, the “adapted layered” approach
is used, Fig. 1. In this approach the supporting elements are, in the longitudinal
direction, divided by vertical sections into a finite number of structural parts. In
each structural part, the concrete cross-section is vertically divided into a finite
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number of parts, so-called layers, while reinforcement and tendons are usually
considered as one unit. Each concrete layer, reinforcement and tendon is modelled
separately as an individual beam element. This is the basic difference between
the “classical layered” and “adapted layered” approaches. In the case of “classical
layered” approach, the structural part is modelled as one beam element.
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Fig. 1. Structure modelling - longitudinal section (a), real cross-section (b), cross-section
and longitudinal section in case of the use of “adapted layered” approach (c).

4. BEAM ELEMENT

Civil-engineering structures include a variety of supporting elements (girders,
columns, reinforcement, tendons, etc.) that can be made of various materials
(ceramics, masonry, concrete, reinforcement, prestressing steel, etc.). For these
reasons, when choosing an element for the analysis of these structures, it is
advisable to choose one which enables modelling of all the previously mentioned
types of materials and supporting elements.

An example of a two-dimensional beam element which can be used for mod-
elling the mentioned types of materials and supporting elements, is that which is
used in the TDA modulus of the NEXIS 32 system [14]. After modification and
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completion of this element, it is possible to use it for material nonlinear analysis
together with the material models in the ANSYS system described below.

4.1. Beam element description

The derivation and modification of the described beam element is based on
literature [2, 4, 12, 13, 24]. It is a straight, three-node (3, j, k), two-dimensional
element which is situated and loaded in plane zz. The element can be placed at
the end nodes (i, j) on eccentricity i, Es to the nodes in reference axis (1, 2),
Fig. 2a. This element takes into account the influence of the work done by normal
forces, bending moments, and shear forces on the element deformation. An ad-
vantage of the beam element is that it ensures continuous deformation com-
patibility on the eccentrically joined element surfaces. This means that in cases
when more than one beam element is placed between two nodes on the reference
axis, these elements start a continuous deformation process. This is done with
the use of degrees of freedom (d.o.f.) corresponding to internal node k, which
lies in the centre of the element. These d.o.f. are common for all beam elements
situated between two nodes on the reference axis (1, 2). The uniformity of d.o.f.
is assured by static condensation. This property is used in the selected method
of supporting elements modelling.
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Fic. 2. Beam element with coordinate systems (a), vector of degrees of freedom {A} and its
components (b), longitudinal section before and after element’s deformation (c).
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4.1.1. Vector of displacements {u(z)} and vector of degrees of freedom {A}.
The vector of displacements {u(z)} of a beam element includes three compo-
nents: u(z) — displacement of nodes in z, axis direction (second degree polyno-
mial), w(z) — displacement of nodes in 27, axis direction (third degree polynomial)
and 7(z) — shear strain (zero degree polynomial); {u(z)} = {u(z), w(z), ¥(z)}".
Selection of the polynomials of the vector of displacements is conditioned by
deformation compatibility.

Components of the vector of degrees of freedom {A} are defined using the
vector of displacements {u(z)}, depending on the node of the beam element,
Fig. 2b. At the end nodes i, j, three d.o.f. are reflected, namely movement of
nodes in z; and z; axis direction and rotation of nodes around the y; axis. In
the internal node k, two d.o.f. are reflected, namely, movement of node in z;
axis direction and shear strain. The total number of the element’s d.o.f. is eight,
so the dimensions of vectors or matrices are (8,1) or (8,8).

The influence of shear forces on element deformation is allowed for by the
assumption that the cross-sections of the beam element, which are normal to the
z; axis in the undeformed state, remain plane but not necessarily normal to the
z, axis in the deformed state, Fig. 2c.

4.1.2. Strain vector {e(z)}. The strain vector {e(z)} includes three compo-
nents: strain in z;, axis direction e,(z), curvature v(z) and shear strain y(z).
This strain vector {e(z)} is defined by means of vector of displacements {u(z)}
and matrix of partial differentiation [0] in the form:

(4.1) {e(@)} =[0] - {u(2)},
where {e(z } {ez(z), v(z), y(x)}T, [0] = diag[0/0z, 8?/8z?, 1] and
{u(2)} = {u(2), w(z), v(z)}".

4.1.3. Stiffness matriz [K]. The stiffness matrix [K] is derived from the
potential energy of the internal forces in the form:

42 (K] = [ (N" [0 - (D] 0] (N] de

L

where [D] is the stiffness matrix of the material including the cross-sectional
characteristics; [D] = diag[FA, EI, GA7|T (A is cross-sectional area, Ay is cross-
sectional area reduced by shear factor and I is moment of inertia) and [N] is the
matrix of the shape functions.
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4.1.4. Mass matriz [M]. The mass matrix [M] is derived in the consistent
and lumped form [2]. Both forms are defined using density p, which is considered
to be constant along the length of the element, by the formula:

(43) )= [[[ 1" () av.
\%

For mass matrix in the consistent shape, it is assumed that all components
of the mass matrix are considered, but for mass matrix in the lumped form only
the diagonal components are considered.

4.1.5. Vector of internal forces {o(z)}. The vector of internal forces consists
of normal force N(z), shear force V(z) and bending moment M(z); {o(z)}=
{N(z), V(z), M(z)}T. This vector can be expressed by the stiffness matrix of
the material [D] and the strain vector {e(z)} or after the adaptation by matrix
of partial differentiation [0], matrix of shape functions [N] and vector of degrees
of freedom {A}, as follows:

(4.4) {o(2)} = [D] - {e(z)} = [D]- (9] - [N]- {4}.

The calculation of Eq. (4.4) is done by the method of incremental strains.
The resulting internal forces are obtained by integration over the volume V
of the element. The integration is carried out using numerical methods - for
integration over the element’s length, the Gauss three points quadrature is used
and for integration over the element’s cross-section, the five point Newton—Cotes
method is used.

The pattern of internal forces along the element’s length depends on the
selected substitutive polynomials of the vector of displacements {u(z)} and on
provision of continuous deformation compatibility on the eccentrically joined
element surfaces, and it is done by use of the d.o.f. corresponding to the internal
node k (ug, ). These d.o.f. are common to every element situated between
two nodes on the reference axis, Fig. 1c. The uniformity of the d.o.f. is assured
by static condensation. Due to the condensation, the resulting pattern of the
normal force is constant, the bending moment is linear and the shear force is
also constant along the element’s length. The influence of static condensation is
displayed also in the change of size of the matrices and vectors whose dimensions
before the condensation were (8,8) - [K], [M] or (8,1) — {A}, while after the
condensation their dimensions are (6,6) or (6,1).

4.2. Material and rheological models

The material nonlinear analysis of structures made of cement based com-
posite materials using the described beam element can be applied for the real
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behaviour modelling of materials (concrete, reinforcement, tendons, masonry,
ceramic blocks, etc.). Derivation of the material models is based on the require-
ment of the most general process of set-up, i.e. possibility of standard material
models set-up or material models obtained from experimental tests.

To model the reinforcement or tendon and concrete behaviour it is possible to
use multi-linear material models defined by general points of coordinates [¢;; o]
for 4 = 1 to number of general points, Fig. 3, 4. An advantage of this definition is
the possibility of modelling the material models described in the national codes
and also models obtained from experimental tests.

Fi1G. 4. Material models of of concrete.

4.2.1. Material models of reinforcement and tendon. For modelling the re-
inforcement and tendon behaviour it is possible to use four types of material
models indicated in Fig. 3 as types A to D. For every material model it is as-
sumed that the unloading path is parallel to the tangent leading through the
origin of the material model.

The material model of type A is a bilinear isotropic material model built up
according to [4], which uses the Mises condition of plasticity with the associated
law of plastic deformation and with the isotropic criteria of strengthening (20,).




80 J. PENCIK

The material model of type B is a bilinear kinematic material model which uti-
lizes the Mises condition of plasticity with the associated law of plastic deforma-
tion (20y). The material models of type C and D are multi-linear models defined
by general points of coordinates [¢;;0;]. These two material models are defined
by 6 or 10 general points, which can be obtained from experimental testing. All
models enable modelling of tensile and compressive hardening.

4.2.2. Material models of concrete. To model the behaviour of concrete, it
is possible to use four types of material models indicated in Fig. 4 as type A
to D. For every material model it is assumed that unloading is a linear function
to the origin, so the relation between the stress o and strain ¢ depends on the
loading history.

All material models are multi-linear models defined by general points of coor-
dinates [e;; 0;]. These multi-linear models differ one from another in the arrange-
ment of the tensile and compressive parts and in the number of general definition
points. The model of A and B types is defined by 11 points, where 3 of them
define the tensile and the others-the compressive parts of the model, indicated
(11/+43/-8). Using the model of type A it is possible to define the material mod-
els described in national codes, e.g. CSN (4-1), EC 2 (A-2) a CEB-FIP MC 90
(A-3) by arrangement of the tensile part, Fig. 4. Type B, unlike type A, enables
modelling of linear tensile softening. The model of C and D types is defined by 22
(22/+8/-14) and 30 (30/+8/-22) general points. Both of them enable modelling
the exponential tensile softening and linear or exponential compressive softening.

4.2.3. Rheological models of concrete. The described beam element can be
applied to analyse the rheological properties of concrete. These properties are
the properties of the given material and their principle can be derived from their
microstructure and from the behaviour of their elements and components. The
behaviour of the rheological properties (creep, shrinkage) can cause an enlarge-
ment in the structure’s deformations and redistribution of the stress among the
individual supporting elements or among parts of the cross-section or the whole
structure. To analyse the influence of the rheological properties on the struc-
tures it is necessary to apply a numerical method, for example time-dependent
method in combination with the FEM. The time-dependent method is based on
the successive calculation of the structures in discrete times called time nodes,
into which the full interval analysed is divided. If the principle of viscoelastic-
ity theory is valid, the given problems can be solved using the time dependent
method in combination with the FEM. All changes of the structure configuration
(progressive assembly, tension of prestressing tendons, change of static system,
etc.) have to be respected in the analysis.
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For modelling of the rheological properties of concrete it is possible to use
models which are specified in the national codes CSN 73 1201-86 and CSN P
ENV 1992-1-1.

4.3. Implementation into the ANSYS

The problems of implementation of elements and material models into the
ANSYS system are described in detail in references [2, 16, 17]. To introduce new
components and functions into the ANSYS system, the standard programming
languages Microsoft C++ and Compaq Visual Fortran have to be used.

The proper implementation of the element (six elements can be implemented
into the ANSYS system as a maximum) uses prepared procedures and functions
that must be modified according to the type of the element. These are procedures
uec.f — definition of the basic characteristics of the element, i.e. geometry, type of
element (beam/shell/solid), number of element’s d.o.f., number of d.o.f. in each
node, number of nodes, number of real and material characteristics, etc.; uel.f
— definition and calculation of the stiffness, mass and transformation matrix,
internal forces, etc. The complete contents including all the available procedures
is listed in [2].

To integrate the material and rheological models, the prepared procedures
userpl.f, usercr.f and usersw.f can be used and modified as necessary. Another
method of introducing new material models into the ANSYS system is to pro-
gram the customized procedures describing the material and rheological models.
This method may be used to add new material models, which are described in
Sec. 4.2, into the system.

5. NUMERICAL EXAMPLES

Numerical examples show the possibility of using the ANSYS system, with
the described beam element and material models, for material non-linear anal-
ysis. In these examples, the calculated results are compared with the results

available in literature and with the results obtained by means of the standard
ANSYS elements.

5.1. Ezample No. 1

Numerical example No. 1 describes modelling of the three-point bending test
for a simply supported steel girder, which is introduced in [15]. The simply
supported girder of rectangular cross-section b x h = 0.15 x 0.30 m and span
L = 3.00 m is loaded at mid-span (at point A) by vertical force F, the value
of which is changed during the computation. The height h of the cross-section
is divided into 6 layers, Fig. 5, (A7 = 0.833x A). The real material behaviour
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is described as in [15] using the material model of type A without hardening
(E = 210GPa; p = 0.3; 0, = 250 MPa).
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FiG. 5. Disposition of loading test (a), material model and load-displacement diagram (b),
ANSYS models created using BEAM23 (c) and PLANE42 element (d).

The results are compared with those calculated using the integral and clas-
sical layered approach according to [15] and the standard ANSYS elements
BEAM?23 and PLANE42, Fig. 5. The same material characteristics, convergence
criteria, load steps, etc. are used as in the calculation done by standard elements.
A beam element internally divided also into six (NL = 6) layers is used in the
classical layered approach described in [15].

Load-displacement diagram is shown in Fig. 5b. Load-displacement (1.d.)
curve 1 shows that the girder fails as soon as a plastic hinge forms at the centre
of the girder. More realistic results can be obtained using the layered approach,
where yielding takes place gradually through the layers (smoother 1.d. curves).
Comparing 1.d. curves 2 and 3, which are determined by the classical and adapted
layered approach using [15] and ANSYS with beam element, we can declare a
very good correspondence of the obtained results. It is also possible to find good
agreement between the 1.d. curves 3 and 4, e.g. ANSYS with beam element and
ANSYS with PLANE42 element.

5.2. Ezample No. 2

Numerical example No. 2 describes the modelling of a simple bending test
on the steel girder fixed at both ends, which is introduced in [15]. The fixed
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girder of I shape cross-section b x h = 0.20 x 0.20m, ¢ = 0.0l m, d = 0.02m of
span L = 3.00m is loaded along the beam length by vertical forces F' (distance
between two forces £ = 0.30m), the values of which are changed during the
computation.

The height h of the cross-section is divided into 6 layers (top and bottom
flange — 1 layer each, wall - 4 layers), Fig. 6, (A7 = 0.002m?). The real material
behaviour is described as in [15] using the material model of type A without
hardening (E = 210GPa; u = 0.3; o, = 250 MPa). The results are compared
as in example No. 1 with the results calculated using the integral and the clas-
sical layered approaches according to [15] and the standard ANSYS elements
BEAM?23, PLANE42 as well as SOLID45, Fig. 6.
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FiG. 6. Disposition of loading test (a), material model and load-displacement diagram (b),
ANSYS models created using BEAM23 (c) and PLANE42 element (d).

The load-displacement diagram is shown in Fig. 6. L.d. curve 1 shows the loss
of stiffness, which corresponds to the yielding of the end sections followed by a
reduction when the central section becomes plastic, resulting in the girder failure
mechanism. It is possible to get more realistic results, like those in example No.1,
using the layered approach, where the yielding takes place gradually through the
layers (smoother 1.d.). Comparing l.d. curves 2 and 3, which are determined by
the classical and adapted layered approaches using [15] and ANSYS with beam
element, we can observe a very good agreement between the obtained results.
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Comparison of these results with those obtained using ANSYS with BEAM23
or PLANE42 element is possible only at the initial part of load-displacement
diagram. The results can be compared also with those obtained by means of the
ANSYS with SOLID45 element (l.d. curve 6).

5.8. Example No. 8

Numerical example No. 3 describes modelling of an experimental test of ten-
sion and compression for a concrete specimen with dimensions bx h x L = 0.10x
0.10x 0.40 m. A material model with a linear softening tensile line is used for the
calculation (type B), Fig. 4. Modulus of elasticity of the softening tensile part
E; of this material model is determined by the principle of fracture mechanics, in
which the crack onset is governed also by the strength criteria. It is assumed that
a crack develops at the point when the calculated stress o, exceeds the tensile
strength R; of the concrete. The modulus of elasticity of the softening tensile
part E; has to be individually determined, according to [6], for each element
using the equation:

(5.1) (1/Ey) = (1/Ec) - (1= (2- N)/L),

where E, is the initial elastic modulus of concrete (modulus of elasticity in the
compressive part of the material model), \ is the characteristic length expressing
the value of stiffness, and L is the crack band width (magnitude of an element).
In cases where the value of the fracture energy G is unknown, it is possible to
use the algorithm described in [6] and [26] to determine the modulus of elasticity
of the softening tensile part F;. The calculation is based on the width of the crack
opening wy. It is assumed that the crack opening is approximately invariant to
the properties of the concrete and it can be expressed by fracture energy Gy and
by tensile strength of the concrete R;. Thus, for the case of linear softening it
can be written that:

(5.2) wy = 2G /Ry = 0.000051m, A= E.G;/R}.

Calculation of the modulus of elasticity of the tensile softening part Ej is done
using the initial elastic modulus, E. = 27.0 GPa, the concrete tensile strength
R; = 1.15 MPa, and the concrete compressive strength R, = 11.0 MPa. Insert-
ing the input values into the Eq. (5.2) it is possible to determine the magnitude
of fracture energy G; = 29.325 N/m and also to define the magnitude of char-
acteristic length A = 0.598 m. If the characteristic length is known, then the
length L of every element has to be found prior to the calculation of E;. Let
us consider the model being divided along its length with the average element
length L = 0.075 m. Substituting it into the Eq. (5.1), the modulus of elasticity
of the softening tensile part E; = 1.804 GPa can be calculated, Fig. 7.
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FiG. 7. Disposition of loading test (a), material model (b), load-displacement diagram (c).

Another method of determining the modulus of elasticity of the tensile soft-
ening part E; is to use the relations given by standards, e.g. the CEB-FIP MC
90 is based on the cube strength of concrete in compression R.,, which can de-
termine the cylindrical strength of the concrete in compression R, in tension
Ry, initial modulus of elasticity E., and the modulus of elasticity of softening
tensile part E; according to relations:

R.=-085R.,  R.=024R

cu

(5.3) E. = (6000 — 15.5 Rey) - v/ Reu,
E, = —0.25E,.

In the tensile and compression test, the numerical analysis is made by means
of the incremental forces (1.d. curves 1, 3) and the incremental deformations
(1.d. curves 2, 4), Fig. 7.

5.4. Ezample No. 4

Numerical example No. 4 describes the modelling of experimental loading
tests on reinforced girders with labels G1, G2 and G3. The tested girders are
made from B30 concrete according to the code CSN 73 1201-86. The girders
are reinforced in the tensile area by three reinforcing bars ¢J12, and in the
compressive area by two auxiliary reinforcing bars ¢ E6, Fig. 8,

The model is formed by a simply supported girder with a span of L = 3.00 m
and with overhanging ends 0.15 m in length, Fig. 8. The cross-sectional width
is b = 0.18 m and the height A = 0.30 m. The cross-section in the model is
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divided along its height into 12 layers (NL = 12). Each layer is modelled as an
individual beam element on the eccentricity, and the reinforcing bars (3¢ J12)
and auxiliary reinforcing bars (2¢ E6) are modelled as one unit.

a)
50100 10 x 150 = 1500 10 x 150 = 1500 100 50
AL 500 |F 500 T secTioNAA
20E6 ! v | %@wa @ 150mm
/ d“_‘ rm = cover 16mm
] €)

3 v 5 W 0 S I B o e e e A b el L)
3912 < cover 26mm f\

150 1000 | 1000 | 1000 150

3300

FiG. 8. Reinforcement diagram (a) and disposition of the loading test (b).

The material characteristics of the concrete and of the reinforcing bars are
incorporated into the calculation with the help of material models, Fig. 9. For
modelling of concrete behaviour, two material models of type B are used, Fig. 4,
which differ from one another in the shape of the softening tensile part. For the
first one, the modulus of elasticity of the softening tensile part is determined
according to CEB-FIP MC 90 regulation (E; = 8.304 GPa) and for the second
one with the help of fracture energy Gy (E; = 2.868 GPa), Fig. 9a. Defini-
tion points of the compressive part of the material models are determined with
the help of experimentally obtained average cube strength of concrete (Re, =
31.96 MPa) and initial elastic modulus of concrete (E, = 33.218 GPa; u = 0.15).
For modelling the reinforcing and auxiliary reinforcing bars, material models of
type C are used, Fig. 5. The definition points of the material models are deter-
mined with the help of the following experimentally derived figures: average yield
(oy(J) = 368.40 MPa; oy(E) = 234.26 MPa) and limit (op(J) = 579.20 MPa;
op(E) = 370.86 MPa) stresses and initial modulus of steel (E; = 210 GPa;
p = 0.3), Fig. 9b.
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F1G. 9. Material models of concrete (a), material models of reinforcement (b).

The loading tests of reinforced girders are also modelled using the standard
three-dimensional ANSYS concrete element SOLID65 with the same convergence
criteria as in the case of the beam element. The calculation model is shown in
Fig. 10. Except for the SOLID65 element, the SOLID45 and LINKS8 elements
are used. The LINKS8 element is used for modelling the reinforcing bars (3¢J12),
auxiliary reinforcing bars (2¢E6) and stirrups (¢J8), Fig. 10b. The SOLID45
element is used for modelling the spread footing (), the area under the spread
footing (x) and the bearing area (+), which are areas with a steep stress gradi-

ent, Fig. 10a.

a)

boundary condition

FiG. 10. Calculation model (half of the girder with symmetrical boundary condition) (a),
reinforcing bars, auxiliary reinforcing bars and stirrups (b).
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The material characteristics of the reinforcing bars are incorporated into the
calculation with the help of a bilinear isotropic model with hardening (BISO;
Ep =0.1 x E;). To model the concrete behaviour, the WiLLIAM and WARNKE
material model [2] is used. This model is defined by the uniaxial tensile cracking
strength (f; =2.69 MPa), uniaxial crushing strength (f.= 31.96 MPa), stiffness
multiplier for cracked tensile condition (7} = 0.6), and shear transfer coefficients
for an open and closed crack (8, = 1E-7).

Load-displacement diagrams obtained using the beam element are shown in
Figs. 11. The figures show the experimentally found values of vertical deflections
of the mid-span section of girders G1, G2 and G3 (discrete points) and numer-
ically found 1.d. curves form 1 to 5. The 1.d. curves 1, 2 and 5 are calculated
using incremental forces, and l.d. curves 3 and 4 are calculated using incremen-
tal deformations. L.d. curves 1, 2 and 3, 4 differ in terms of the magnitude of
modulus of the softening tensile part of the concrete material model of type B.
The load-displacement diagram obtained using the SOLID65 element is shown
in Fig. 11a (1.d. curve 5).
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FiG. 11. Load-displacement diagrams obtained using incremental forces (a) and incremental
deformations (b).

In the load test, all girders failed when the load F = 60.00 kN was applied.
In the nonlinear analyses made by means of the beam finite element, the com-
putation stopped due to solution divergence at the force action F = 60.25 kN
when calculating with incremental forces, and at the force action F' = 61.50 kN
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when calculating with incremental deformations. Using the standard ANSYS
SOLID65 element, the computation stopped due to solution divergence at the
force action F' = 57.15 kN. Comparing all the resulting 1.d. curves with the mea-
sured vertical deformations, it may be concluded that the obtained results are
within the limits of the measured results. i

6. CONCLUSION

The paper describes a beam element, which is implemented together with
material models into the ANSYS system. The beam element and material models
are used to analyse the numerical examples. The results are compared with
those published in other literature, calculated by means of the ANSYS standard
elements, or found by experimental tests. Using these results, it is possible to
claim that the beam element with material models can be used for nonlinear
material analyses of structures made of cement-based composite materials.

7. ACKNOWLEDGMENTS

The work was realized under the scientific research program JN MSM 261100007
and the grant project GACR 103/02/P083 “Development of finite elements for
structural analysis from composite materials on cement base”.

REFERENCES

ANSYS Element Reference r. 5.5, Ansys, Inc., SAS IP, Inc., Houston, September 1998.
ANSYS Theory Reference r. 5.5, Ansys, Inc., SAS IP, Inc., Houston, September 1998.

Www.ansys.com

et A

K.J. BaTHE, K. JURGEN, Finite element procedures in engineering analysis, Prentice-
Hall Inc., ISBN 0-13-317305-4, 1982.

5. Z.J. BITTNAR, J. SEINOHA, Numericke metody mechaniky (in Czech), Vol. 1, CVUT
press, ISBN 80-01-00855-X, Prague 1992.

6. CERVENKA Consulting, SBETA Computer program for nonlinear finite element analysis
of reinforced concrete structures in plane stress state, Prague 1996.

7. V. CERVENKA, J. CERVENKA, Computer simulations as a design tool for concrete struc-
tures, ICCE-96, The Second International Conference in Civil Engineering on Computer
Applications Research and Practice, Bahrain, April, 1996.

8. C.0O. Cnow, E. HINTON,A. H. H. RAHMAN, Analysis of creep and shrinkage effects in
reinforced concrete beams, Procedings of the International Conference, Split, Yugoslavia,
September, 1984.

9. M. A. CRiSFIELD, Nonlinear finite element analysis of solids and structures, Vol. 1 Ad-
vanced Topics, John Wiley & Sons, 2001, ISBN 0-471-97059-X.




90

10.

11

12.

13.

14.
15.

16.

T

18.

19.

20.

21.

22.

23.

24.

25.

26.

J. PENCIK

M. A. CRISFIELD, Nonlinear finite element analysis of solids and structures, Vol. 2 Ad-
vanced Topics, John Wiley & Sons, 2001, ISBN 0-471-95649-X.

B.L. KARIHALOO, Fracture Mechanics & Structural Concrete, Longman Scientific &
Technical, 1995, ISBN 0-582-21582-X.

V. KOLAR, J. KRATOCHVIL, F. LEITNER, A. ZENISEK, Vypocet plosnych a prostorovych
konstrukci metodou konecnych prvku (in Czech), SNTL Praha 1979.

J. NAVRATIL, Casove zavisla analyza ramovych konstrukci (in Czech), Stavebnicky ca-
sopis, 10, 7, Slovac Academic Press, Bratislava 1992.

SCIA - nexis 32 - TDA manual (in Czech).

J. OWEN, E. HINTON, Finite elements in plasticity, Theory and practice, Pineridge Press
Limited, Swanseam, ISBN 0-906674-05-2, 1980.

J. PENCIK, Materially nonlinear analysis of concrete plane frame structures (in Czech),
PhD Thesis, Brno University of Technology, Brno 2001.

J. PENCIK, Ways of user modification of ANSYS (in Czech), Vedecka konferencia, 226~
229, TU Kosice, ISBN 80-7099-815-6, 2002.

F.G. RAMMERSTORFER, Nonlinear analysis of shells by finite elements, Springer Verlag,
ISBN 0-387-82416-2, 1992.

A.H. H. RaHMAN, E. HINTON, Linear and nonlinear finite element analysis of reinforced
and prestressed concrete voided slabs, Procedings of the International Conference, Split,
Yugoslavia, September, 1984.

A.C. ScorDELIS, Computer analysis of reinforced and prestressed concrete boz girder
bridges, Procedings of the International Conference, Split, Yugoslavia, September, 1987.

A. C. ScorpELIS, Computer models for nonlinear analysis of reinforced and prestressed
concrete structures, PCI Journal, 1985.

J. STRASKY, J. NAVRATIL, Time-dependent analysis of the Wisconsin avenue viaduct,
Wisconsin, USA, 3'¢ International Kerensky Conference, Singapore 1994.

J. STRASKY, P. MIKULASTIK, V. JUTTNER, Design of segmental structure with a cast-
in-place deck slab, fib Symposium 1999, Prague 1999.

A. TESSLER, S.B. DoONG, On a hierarchy of conforming Timoshenko beam elements,
Computers & Structures, 14, 3-4, 1981.

Technische Datenverarbeitung GmbH. TDV software - book of examples, example No. 6
Kao Ping HSI-Bridge, Taiwan 2000.

E. Vos, Influence of loading rate and radial pressure on bond in reinforced concrete, PhD
Thesis, Delft University, 1983.

Received December 2, 2002; revised version January 12, 2004.



