ENGINEERING TRANSACTIONS e Engng. Trans. ¢ 52, 1-2, 5-22, 2004
Polish Academy of Sciences e Institute of Fundamental Technological Research
10.24423 /engtrans.466.2004

ANALYSIS OF LOAD-CAPACITY AT COLLAPSE OF I-SECTION
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The aim of the paper is to analyse the load-capacity at collapse for thin-walled beams
under the assumption of static approach. I-section beams subjected to torsion and bending with
torsion are studied. The general formula for an interaction surface was derived. The comparison
of the examples solved analytically with the finite element calculations and experimental results
confirms the assumed hypotheses concerning statically admissible distribution of stresses in a
plastic hinge. The analysis revealed also that normal stresses have a decisive influence on the
value of load-carrying capacity in the case of thin-walled beams.

Key words: thin-walled beam, load-capacity at collapse, interaction surface.

1. INTRODUCTION

The presented analytic approach is based on the thin-walled beam theory
formulated by VLAsOV [1]. The static models of plastic hinge, which are used in
the paper and a general algorithm of determination of load-capacity at collapse
for thin-walled beams, are based on the work of STREL'BITSKAYA [2]. The pre-
sented formulae are derived in accordance with the new approach to thin-walled
beams theory given in PIECHNIK [3]|. It means that all variables are defined in
the local co-ordinate system related to the middle line of cross-section. The ex-
perimental data, which are used in the analysis, are taken from STREL'BITSKAYA
and IEVSIEIENKO [4]. The basic information of theory of plasticity that is nec-
essary for solution of the considered problem is given in the monographs of
ZYCZKOWSKI [5] and HEYMAN [6]. The former one provides also comprehensive
overview of the works related with elastic-plastic analysis of thin-walled beams.
The contribution of GAWLOWSKI and PIECHNIK (7] presents details of the algo-
rithm, which leads to analytic determination of the static and kinematic quanti-
ties for thin-walled beams. It shows in particular a new way of definition of the
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boundary conditions. Numerical modelling of thin-walled beams was presented
e.g. in BATHE and WIENER [8] and RAMM and OSTERRIEDER [9]. The recent
works, which analyse the behaviour of thin-walled beams beyond the elastic range
are IzzZUDDIN and LLOYD SMITH [10], MURRAY [11] and KOTELKO [12]. The first
paper presents distributions of normal and shear stresses in elastic-plastic state.
The stress diagrams are created, however, especially for numerical application
and are not used for determination of the load-capacity at collapse. Two remain-
ing contributions deal with kinematic approach to the problem of calculation of
the load-carrying capacity for thin-walled beams. It appears that static approach
has not been studied so intensively as the kinematic one. This encourages the
authors to develop the static method, which can give the better insight into the
limit analysis and provides lower estimate of load-capacity at collapse.

2. MAIN ASSUMPTIONS

The presented study is based on the VLASOV thin-walled beams theory [1].
The Vlasov hypothesis results in a new cross-sectional forces: bimoment — B,
Vlasov torsion moment — M, and Saint—Venant torsion moment (torque) — M;.

Following [3], it is assumed that two co-ordinate systems are used, the global
one (zyz), and the local one (zsn), which appear to be helpful in the analysis of
thin-walled beams — Fig. 1. The components of stress tensor are defined in the
local system.

Fic. 1.

The z-axis of the global system is the beam centre line, while the y and 2-
axes are the principal axes of the cross-section. Therefore the point CG is the
cross-section centre of gravity. The system zsn can be defined at any point IT of



ANALYSIS OF LOAD-CAPACITY AT COLLAPSE... 7

the middle surface. The z-axis of the local co-ordinate system is parallel to the
beam centre line, the s-axis is tangential to the middle line, and the n-axis is
perpendicular to the z and s-axes. The natural co-ordinate s is measured from
point Q. CS denotes the shear centre and also the origin of vector p, which
determines the locus of point I7. For the analysed bisymmetrical I-section, the
points CS and @ coincide with the cross-section centre of gravity CG.

In further analysis, the elastic-ideally-plastic material with the Huber—Mises—
Hencky yield criterion is considered. For thin-walled beams the yield condition
reads

(2.1) o2 4302, = of,

where oy is the tensile yield limit.

It should also be mentioned that the diagrams of statically admissible normal
and shear stresses in plastic hinge are assumed as rectangles.

Buckling is not included, what restricts the presented considerations to the
cases of cross-sections with limited slenderness ratios of legs.

3. INTERACTION SURFACE FOR BENDING AND TORSION OF I-SECTION
THIN-WALLED BEAM

Taking the diagrams of normal — o, and shear — 7,4 stress components for
bending and torsion of I-section thin-walled beam in elastic state as a motivation,
the distributions of statically admissible stresses in the plastic hinge for the
considered case are assumed in the form depicted in Fig. 2.
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It is important to note that in this study the cross-sectional forces that all
have positive values generate the assumed diagrams of stress distribution. Oth-
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erwise, the inconsistencies by the derivation of interaction surface appear. For
example, in the interaction surface formula of (STREL'BITSKAYA [2]) the discon-
tinuities can be detected.

In the considered problem the following five cross-sectional forces appear:
bimoment — B,, and bending moment — M, which induce normal stresses, and
also the Vlasov torsional moment — M,,, Saint—Venant torsional moment — M,
and shear force — F},, which generate shear stresses. As a result, the general form
of interaction surface formula can be written as follows:

(31) f (BvayaMw‘)Msz) =1

In order to derive the interaction surface formula, the relations between cross-
sectional forces and pertinent stress components should be found. Application
of the concept of kinematical equivalence of the system of external and internal
(cross-sectional) forces presented in [3] enables us to derive the suitable expres-
sions. In the case of a bimoment, the equivalence relation assumes the form

(3.2) s s / A TR

d

Formula (3.2) presents a curvilinear integral over the whole middle line d of
the cross-section. In the general approach presented in [3] the concepts of graph
theory are applied. In such a case the integral (3.2) is calculated over the dendrite
d. Function w(s) is a sectorial co-ordinate, whereas d(s) denotes the cross-section
thickness. Application of Eq. (3.2) for the diagram of normal stresses, given in
Fig. 2a, leads to the following relation:

g A

The parameters in formula (3.3) are explained in Fig. 2. For bending moment
M, the equivalence relation can be written as follows:

(3.3) B, - améfhuz.

(3.4) ML / oul8)2(a)5(0)0A

d

If the considered distribution of normal stresses is applied to (3.4), the following
relation is obtained:

2

(3.5) M, = azéwhz + 2056 shu.

Both the equations (3.3) and (3.5) contain the parameter u, which determines
the distribution of normal stresses. This quantity can be eliminated from the
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equivalence relations what leads to a quadratic equation for o, the solution of
which reads

212
5, - Mibuh | \/Bg, _ BuMybuh | M3

2.6 84 44y 4
(36) 55 Sphb? 5L H3
251320y

This gives the value of normal stress for limit state.

In order to find the expression for shear stress 7,4 in the limit state, the fol-
lowing analysis is made. In the case of Vlasov torsional moment, the equivalence
relation has the form [3]:

(3.7) B / / ARy
A

In formula (3.7), the double integral over the whole cross-section is used,
because the variation of the shear stresses across the thickness of thin-walled
cross-section should not be neglected. The quantity p,, denotes projection of the
vector p on direction n. Application of the shear stress distribution from Fig. 2b
in expression (3.7) leads to:

(3.8) M,, = 2755hbn.

For the Saint-Venant torsional moment the equivalence relation can be written
as follows:

(3.9) M, =-2 // Tzs(8, n)ndA.
A

Formula (3.9) connects the torsional moment M; and the shear stresses diagram
in plastic hinge presented in Fig. 2b. After transformations, equation (3.9) takes
the form:

52 52
(3.10) M; = 21;5h (Tw o N2) + 47,5 v 7]2 :

In the case of shear force F,, the equivalence relation reads:

(3.11) By= //Tzs(s,n)z'(s)dA.
A
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The quantity 2(s) in the above relation is a derivative with respect to the s
co-ordinate of the function z(s). For the analysed problem, expression (3.11)
assumes the form:

(3.12) Fow Prgs b

From Egs. (3.8) and (3.12), values n and g, which define the diagram of shear
stresses in plastic hinge, can be calculated. Substitution of these quantities to
(3.10) leads to the quadratic equation for 7,4, the solution of which has the form:

B2 M3
2 i g
M+\/M +4 h +b5f) (2h+bh2)

(%)

Expressions (3.6) and (3.13) determine the values of normal and shear stresses
in the plastic hinge. It means that if both stresses will be substituted to the yield
criterion (2.1), the interaction surface formula will be obtained. After transfor-
mations, this interaction surface formula assumes the following form:

M2 M2 M2 [F2 M2 1B MR
PR St 30_Y[E+W T 0% |2k T2
sY Msy\/§ MSY

(3.13) A

+2

(B.—DM)* \/ (Bo— DMy)"  (Bu—DM,)*MZ =M
R? ’

R2%0% R2S0?, 8a3:

where M,y = E <_h_t25_ + bo f> is the limit value of Saint—Venant moment,
D—m, B= 5 _325f’ S-5fhb o

It should be underlined that Eq. (3.14) is a new result, which correctly de-
scribes the interaction surface for the considered case.

4. NUMERICAL EXAMPLE — BENDING AND TORSION OF [-SECTION
THIN-WALLED BEAM

The numerical example for cantilever I-section beam shown in Fig. 3 will
be solved. The boundary conditions are idealised by means of the constraints
imposed upon the six degrees of freedom of the body and additionally, upon the
warping of the cross-section.
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The load-capacity at collapse will be determined for the following numerical
data:

Data: Length of beam: L = 1.275 m, material constants: £ = 210 GPa,
G = 80 GPa, v = 0.3, dimensions of cross-section — Fig. 3b: h = 11.4 cm,
b=T7.4cm, d; = 0.6 cm, 6, = 0.5 cm, yield stress: oy = 231.4 MPa.

First of all the most exerted cross-section should be found. It will deter-
mine the place where plastic hinge will appear. To this end the functions of all
cross-sectional forces should be analysed. The way of calculation of the bending
moment M, (z) and shear force F,(z) functions is the same as that used in the
solid beam theory and is well known. The remaining relations are obtained from
the following differential equations [3]:

B,(z) = EI,d"(z),
(4.1) M, (z) = —EI,o"(z),
M,(z) = GLd (z).

Function a(z) in expressions (4.1) describes changes of the angle of rotation
of the cross-section along the beam axis. This function is a solution of the dif-
ferential equation (4.2), which plays the crucial role in the Vlasov thin-walled
beams theory

(42) o"(a) ~ Ko/ (z) =~ M2*(2),
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where
Ty HELBE e

T i 4
M (z) - function of total torsional moment (in relation to the shear centre CS),
I, — torsional moment of inertia, I, — sectorial moment of inertia.

Solving of (4.2) and substitution of the obtained function a(z) to formulae
(4.1) leads to determination of the functions of cross-sectional forces. Diagrams
of all these functions are presented in Fig. 4. Numerical values, which are read
from those diagrams, should be multiplied by P in the case of bending and by
Pe in the case of torsion.
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It appears that the most exerted cross-section corresponds to z = 0. It means
that the plastic hinge appears in the fixed end of beam. At this point, the bend-
ing moment, bimoment and Vlasov torsional moment assume maximum values.
Precise values of all cross-sectional forces in the plastic hinge are presented by
Eq. (4.3).
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M,(0) = 1.275P, B, (0) = 0.4907Pe,
(4.3)
Fz(O) = —P, Mw(o) = Pe, Ms(o) =0.

Substitution of expressions (4.3) and the remaining numerical values to for-
mula (3.14) leads to calculation of the load-carrying capacity. Values of the load-
capacity at collapse in the case when eccentricity e is equal to 10 cm are shown
in Table 1. The first magnitude is calculated for the case when influence of the
normal and shear stresses is taken into account, whereas the second value corre-
sponds to the situation when the existence of normal stresses only is considered.

Table 1.

P.ap(with shear stresses) [kN] | Peap(without shear stresses) [kN] | APeap (%]

4.310 4.318 0.186

The difference between the values of load-capacity at collapse — APy, is very
small what shows that the influence of shear stresses on the value of load-carrying
capacity is negligible.

Load-capacity at collapse is also calculated for e = 4 cm. This value is con-
fronted with the experimental data given by Strel’bitskaya (STREL’BITSKAYA
and IEVSIEIENKO [4]) — Table 2.

Table 2.

Pzrel [kN] | Pexpe [kN] | APesp [%]
8.830 9.316 5.501

The difference AP,p is not a large value, what confirms correctness of the
considered analytical approach.

The numerical example (for eccentricity e = 10 cm) is also analysed by using
a finite element system (ABAQUS [13]). The beam is loaded by a concentrated
force, the value of which is equal to the load-carrying capacity obtained from
the analytical approach. In order to attain a reliable comparison of the results
obtained from the analytic and the finite element methods, in ABAQUS procedure
the same elastic-ideally-plastic material is used as in the analytical calculations.
The model of beam consists of quadrilateral shell elements.

The boundary conditions for the finite element analysis are defined by elimi-
nation of three degrees of freedom for each point located at the beam end. These
constraints correspond to the support of the beam, which is assumed in analyti-
cal approach — Fig. 3a. This is in accordance with the Vlasov theory, because the
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cross-section of a thin-walled beam behaves in its plane as a rigid frame and four
non-collinear, parallel to beam axis constraints block warping (deplanation).

Figure 5 presents the deformations of the beam at the beginning of collapse.
These deformations are not large what confirms that the analysis of limit state
in the case of thin-walled beams can be based on the assumption of small dis-
placements and small displacement gradients. This approach has been assumed
in the present paper.

Viewport: 1 ODE: hv/sgyBen_tor.odb

/'\‘ ODB: Ben_tor.odb ABAQUS /Stendard 6.2-1 Fri Jul 26 10:08:29 Burcpa centralna (czas letnd)
3

Step: Ben tor
Increment 4: Step Time = 1.000

Deformed Var: U Deformation Scale Factor: +1.000e+00

Fic. 5.

8, s11
SNEG, (fraction = -1.0)
(Ave. Crit.: 754)

ZZ.273e408
2.734a408

Ina (czas letni)

Fia. 6.
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Picture 6 shows a view on the fixed end of the analysed beam, which corre-
sponds to the place where plastic hinge appears. This figure presents the distri-
bution of normal stresses. The regions where the yield stress oy = 231.4 MPa
is reached are indicated by the applied finite element procedure as the range of
values equal to 227.8 +273.4 MPa. It is visible that diagram of o, in the plastic
hinge is very similar to the distribution assumed in analytic approach — Fig. 2a.
It confirms that the model of plastic hinge in the analytical approach is built
correctly.

Figure 7 presents the distribution of equivalent plastic strains at fixed end of
the considered beam. This picture shows the shape of yielding zones. Yielding
does not cover all the width of flanges what proves that the values of load-
capacity at collapse obtained in analytical assessment are lower estimates. In-
deed, the considered analytic procedure provides the values lower than the real
values of load-carrying capacity, because it is a static approach.

PR BB bk R R R R R

PREQ
SNEG, (fraction = -1.0)
(Ave. Crit.: 75%)

08:29 Europa centralna (czas letni)

Fic..7.

5. INTERACTION SURFACE FOR TORSION OF I-SECTION THIN-WALLED BEAM

In this case, while deriving the interaction surface formula, the same assump-
tions are used as in the first problem analysed. Only a model of plastic hinge
is specified for the new loading conditions. The new diagrams of the distribu-
tion of normal and shear stresses in a plastic hinge for the analysed problem are
presented in Fig. 8.

Normal stresses o, exist only in flanges and have antisymmetric distribution,
what is confirmed by the diagram of these stresses in elastic state. The total shear
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stresses distribution is composed of the average value along the cross-section
thickness, produced by the Vlasov torsional moment, and of the antisymmetric
part generated by the Saint—Venant torsional moment. In the case of I-section,
the stresses in the web are created only by the Saint—Venant moment. It causes
that full plastic state in web is achieved by antisymmetric limit shear stresses dis-
tribution - Fig. 8b, and interaction takes place only in the flanges. The quantity
Ty denotes the shear yield limit and in accordance with the Huber-Mises-Hencky
yield criterion, it is equal to oy / V3.

a) Az b)
Txs n
o, Ty g E:
P N g
Txs
’ -
cS y
ho:t b o
- Bey
ke e
FiG. 8.

In the considered problem, three cross-sectional forces exist. They are: the bi-
moment — B,,, the Vlasov torsional moment — M, and the Saint—Venant torsional
moment — M;. It means that the general form of interaction surface formula can
be written as follows:

(51) f(Bw)MwaMS) =1

Algorithm of deriving of interaction surface formula is identical to that used
for the previously analysed problem. Analysis of normal stresses is very simple,
because only the bimoment generates o,. In this case, using the equivalence
relation (3.2) for stress distribution which is presented by Fig. 8a, leads to:

— Bw
AR

T

In the case of the shear stress analysis, the equivalence relations for M, and
M, should be written. In the considered case expression (3.7) assumes the form:

(5.3) M, = 27,5hbn.

(5.2) Oz
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The equivalence relation for the Saint—Venant torsional moment is derived for
flanges and web, separately. It enables to derive the interaction surface formula
only for flanges, which due to (3.9) reads

62
(5.4) M/ =4r,b (Zf = nz) ;

For the web, relation (3.9) takes form

hé2
(5-5) is 5 W—Z}‘U‘

Index Y in (5.5) means that the full plastic state in the web is created only
by the Saint-Venant torsional moment. Total Saint-Venant torsional moment
M, consists of M{ and M, . Then due to (5.4) we have

5
(5.6) M, — MY, = 47,,b (I - n2) .

Elimination of the variable n from expressions (5.3) and (5.6) leads to a
quadratic equation for 7,5. Solution of this equation takes the form:

35
h2

(Ms — MY%,) + \/(Ms - M;,“Y)2 +4

(5.7) Tay =2 2b6f,

The relations (5.2) and (5.7) describe the state of stresses in a plastic hinge.
If these equations are substituted to the yield criterion (2.1), the following in-
teraction surface formula will be derived:
B2 M. — MY 2
(5.8) S PG 8Y2)
Byy o ( Mfy)

(M, — M%) M2 (M, - M%) M2

+ 1 2 5= 1
1 (M) Miv' (Ml My
where:
hb? P :
Bt — UYT of — limit value of bimoment,
Msfy = 'rybég — limit value of the Saint—Venant moment - for flanges,

M,y = Ty hbi; — limit value of the Vlasov moment.
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Equation (5.8) presents the interaction surface, which is depicted in Fig. 9.
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H \\
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Hatls S'Y il ¥ Si, $ASY
/ WA parabola
(D
Fic. 9.

6. NUMERICAL EXAMPLE — TORSION OF AN I-SECTION THIN-WALLED BEAM

The beam, which is shown in Fig. 10a, will be analysed. The numerical data
for this example are presented below:

Data: Length of beam: L = 2 m, material constants: E = 210 GPa, G =80 GPa,
v=0.3, dimensions of cross-section — Fig. 10b: h=19cm, b=10cm, d; =1cm,
dw = 1 cm, yield stress: oy = 240 MPa.

b
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Algorithm of determination of the load-capacity at collapse is the same as
in the analysed case of the beam subject to bending and torsion. It means that
first of all, the most exerted cross-section should be found. Diagrams of B,,, M,
and M, have the same shapes as in the first numerical example considered, what
means that the most loaded cross-section is located at the fixed end of the beam.
It is visible that a plastic hinge appears for variable z equal to zero.

Particular values of the cross-sectional forces on the fixed end of beam are
presented by (6.1):

(6.1) B,(0) = 0.5766M,  M,(0)=M,  M,(0)=0.

The Saint-Venant torsional moment is equal to zero, so in this case, the
interaction surface formula (5.8) reduces to a simple form:

2 2
wY wY
Substitution of numerical data to Eq. (6.2) and its solution leads to determina-
tion of the value of load-carrying capacity at collapse for the considered example.
Additionally, the load-carrying capacity, but in the case when shear stresses are
omitted, is calculated. Both values and difference between them are given in the

Table 3.
Table 3.

Mcap(with shear stresses) [kNm| | Mcap(without shear stresses) [kNm] | AMeap (%]
1.971 1.977 0.286

The quantity AMc,p is very small, what proves that the load-carrying ca-
pacity for thin-walled beams can be determined neglecting the shear stresses.

In the presented numerical example also the finite element system (ABAQUS
[13]) is used. The finite elements model of the beam is identical as in the first
analysis.

As it is shown in Fig. 11, the deformations at the beginning of the collapse
process are not large, what confirms that the formulae, which are based on the
assumption of small displacements and small displacement gradients, can be used
in the limit analysis of thin-walled beams.

Figure 12 presents the diagram of normal stresses in a plastic hinge. The
region of the beam where stresses attain the limit value 240.0 MPa are presented*
by ABAQUS calculations as zones in the 220.3+264.4 MPa interval. This diagram
resembles Fig. 8a, what indicates that the model of plastic hinge assumed above
is correct.
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to the case of bending and torsion of a beam, also the present

Similarly,

shows that the considered an-

b

alytical approach describes the limit state with incomplete plastic hinge. It is

diagram of equivalent plastic strains Figure 13
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seen that the yielding area does not occupy all cross-sections, what means that
the obtained analytic values of load-carrying capacity are lower estimates.

0DB: h:'sg Torsion.odh

Viewport: 1

PREQ
SP0S, (fraction = 1.0)
(Ave. Crit.: 75%)

~08:31 Europa centralna (czas letni)

Fic. 13.

7. CONCLUSIONS

The paper presents an analytic method of determination of the load-capacity
at collapse for an I-section thin-walled beam. The method is based on a static
approach according to which the statically admissible stress distribution in the
plastic hinge is assumed. The considered method deals with the interaction sur-
faces, which include (typical for the thin-walled beam theory) cross-sectional
forces as bimoment. The presented analysis comprises deriving the interaction
surface formulae for two kinds of load: torsion and bending with torsion. The an-
alytical solution of examples shows the algorithm of calculation of load-carrying
capacity for thin-walled beams. Comparison of analytical solutions with numeri-
cal and experimental data confirms the assumed hypotheses concerning the stat-
ically admissible distribution of stresses in the plastic hinge. Additionally, the
obtained results show that the bimoment and bending moment have the decisive
influence on the value of load-capacity at collapse what will enable us in the
future to omit the shear stresses in the analysis of the load-carrying capacity of
thin-walled beams.
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