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ROLLING CONTACT OF LONG ELASTIC CYLINDERS WITH SURFACE
ROUGHNESS DESCRIBED BY A TWO PARAMETER MODEL
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Rolling contact problem for rough cylinders is considered. A new model of the surface
roughness is proposed. The problem is reduced to the system of singular integral equations
which is solved numerically.
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1. INTRODUCTION

The stationary tractive rolling of two long elastic cylinders is considered,
Fig. 1. Classical formulation of this kind of problems [1] neglects the surface
roughness existing in real engineering bodies. Recently [2], PAUK and ZASTRAU
proposed a phenomenological model of the boundary roughness, which is suitable
for the consideration of rolling contact problems.

In this paper, a structural model of the surface roughness is proposed (Sec. 2),
on the basis of which the system of integral equations for the rolling contact
problem is derived (Sec. 3). In Sec. 4, the numerical scheme for the solution

Fic. 1. Contact geometry.
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of the obtained integral equations is described and some numerical results are
presented.

2. MODEL OF SURFACE ROUGHNESS

When two elastic rough bodies are in the rolling contact, the total displace-
ments include bulk parts and some additional ones due to the deformation of
the boundary roughness. To describe these additional displacements we will use
the approach proposed in [3] which is based on certain concepts applied in the
investigation of periodic composite materials [4].

We consider the plane deformation of a subsurface layer which occupies the
region

(2.1) 12 2 1 R PR i) Y

where H is the mean thickness of the layer, ho(z;) is the I-periodic function de-
scribing the distribution of geometrical imperfection (roughness) over the upper
surface of the layer. This surface is subjected in the area |z;| < a to the action
of the tangential p;(z;) and normal py(z) traction. The material properties of
the layer under consideration are described by the elasticity tensor Cyjx which
can also be considered as a [-periodic function.

Omitting here the modelling procedure (it is similar to that performed in [3]),
we obtain the general form of the governing equations

(2:2) Ri-S,=pi Hi=0,

where

(2.3)  R; =< Cigkoa3z > Wi+ < Cior1a3 > Wi 1+ < Cigrrazhy > Vi,
(2.4) Si =< Ciik2a3 > Wi+ < Cigia > Wi+ < Cigiah > Vg,

(2.5) H; = < Cjikea3h > Wi+ < Ciiah > Wi 1+ < Cilklah,zl > Vi,

and
H

(2.6) a(zy) = / d?(z9)dzs,
ho(z1)
H

(2.7) a3(z1) = / d(z2)d 2(z2)dz2,

ho(z1)
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(28) an(e) = [ dy(ar)do.
ho(z1)

Here W;(z1), Vi(z1) are displacements of the upper boundary of the considered
layer and some unknown functions called the correctors [4]; d(z2) is an arbitrary
function defined on (0,H) satisfying conditions d(0) = 1, d(H) = 0, d 2(z2) < 0;
h(z) is the given I-periodic function known as micro-shape function [4]. More-
over, the averaging operator is defined as

l
(2.9) <l r= %/f(xl)dxl.
0

In formulas (2.2)-(2.5) and in subsequence the subscripts i, j, k,... run over
1,2 and the summation convention holds. The symbol f; means the derivative
of the function f(z1, z2) with respect to the variable z;.

After some calculations and additional assumptions on the function h(z;) and
d(z2), we obtain the final form of differential equations for unknown tangential
Wi(z;) and normal Wy(z;) displacements of the rough boundary

kOW, (1) — 269W) 11 (21) = pa(z1),
(2.10)
k(z)Wz(:cl) — 2t(2)W2,11($1) = pa(z1),

where the constant coefficients in these differential equations have the following
forms

(2.11) kY = pg [< asz > —5:22%] ,
T S e
(2.13) 1) = ’\i“;—z“—‘l —%} ,

(2.14) @ = % [< a> —%]

and can be called the roughness parameters. In the formulas (2.11)-(2.14) Ao
and po are Lamé constants of the material of the layer which is now assumed
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to be isotropic and homogeneous. Note that a phenomenological model of the
boundary roughness proposed in [2] can be obtained directly from (2.10) by
setting (1) = ¢t = 0.

The equations (2.10) have the solutions bounded for |z;] — oo in
the forms

a
3 ; .
(2.15) Wi(z1) = 7] /pi(s) exp(—a® [s — z|)sgn (z1 — s)ds,  i=1,2,

oD = (KO j2t6), =12

The formulas (2.15) describe the relations between the normal and
the tangential traction and the corresponding deformation of periodically dis-
tributed roughness.

where

3. SYSTEM OF INTEGRAL EQUATIONS

The boundary conditions of the plane rolling contact under assumption of
"quasi-identical materials of rollers have the following forms [5]

(3.1) V,(ll)(xl) + V’g?) (1) = —%, —a < <a,
(3.2) vz} &0, —a <z <eg,

(3.3) lp1(z1)] < flp2(z1)l, —e<zi<g,

(3.4) v(zy) > 0, o a0,

(3.5) |p1(z1)| = f |p2(z1)], CL T L

where

(3.6) v(z) =& — [U,(ll)(xl) - U,(lz)(wl)], —a<z<a

is the relative velocity between the surfaces of rolling cylinders; f is the Coulomb
friction coefficient; &; is the creep ratio; c is the unknown point separating the
stick (-a < z < ¢) and slip (¢ < z < a) zones; and R = R1Ry/(R; + R»).

Normal V(®(z;) and tangential displacements U(®(z;) of the surfaces of
two contacting cylinders (a = 1,2) are the sums of two terms: first ones, due to
the roughness deformation, are described by formulas (2.15) and second parts
are results of the bulk elastic deformation of the bodies. The latter ones under
the Hertz assumptions for rollers can be obtained as solutions of the elasticity
equations [5]. After some manipulations we obtain
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1) V) + VP () = L2 2O [ s~ agas

T s— 1z
—a —a
a a
21 —v s)d
(39) o) =& = 22 [2OE [ )15~ ),
where
[ (1) (1) ]
expl—o z exXpl—« z
B9 Ha) = |l oo Bl gy,
L 1 2 J
[ (2) 2,
expl—a z eXp\ —Q z
(3.10) Ky(z) = — p(4t(21) 12D + p(4t(22) 12) sgn(z).
L 1 2 J

Here v, p are respectively, Poisson’s ratio and shear modulus of the material
of cylinders; ag) = \/kg) / 2t(ﬂi) and k:g), tg) are the roughness parameters of two
rollers (3 = 1,2), defined by (2.11)-(2.14).

Satisfying the boundary conditions (3.1), (3.2) with the help of (3.7), (3.8)
we arrive at the integral equations

a

a

2(1—v) [ pa(s)ds (i

(3.11) o / P +/p2(s)K2(s z1)ds = 7’ @< %< a,
-~a —a

a a

2(1-v ds

(3.12) (ﬂ” ) /I;l(_s)zl + /pl(s)Kl(s ~xi)ds = £, —a<1 <c
—a —a

which have to be completed by the equilibrium conditions

a

(313) /p1 (s)ds = P1,

b )

a

(3.14) /Pz(s)ds = P,

—a

where P, is the unit normal load and P, is the unit shearing load transmitted
by the rollers.
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To satisfy the remaining boundary conditions (3.3)-(3.5) the function p;(z1)
is assumed in the form

@iz1), —-a<z<c,
0, < 2] <G

(3.15) pi(z1) = fpa(z1) + {

where go(z1) is an unknown corrective traction.
After substituting the formula (3.15) into (3.12) and (3.13) and after some
calculations, we arrive at the integral equations

(3.16) ad ;V) /qO(S)ds + /QO(S)Kl(S — z1)ds = & — fG[z1,p2(z1)],

T s — I
—Qa —a
=W Kie,

Cc

(317) /qo(s)ds o P] = ng.
—a
where we have denoted
a

T

318)  Glouma)) =+ [ pa(s)iKas = a1) - Kas = )lds.

=ik

The equations (3.11), (3.14) are sufficient to find the distribution of the nor-
mal traction po(z1) and after this it is possible to solve the tangential problem
(3.16), (3.17) and determine the corrective traction go(z1).

Introducing the dimensionless variables

r = 1/0; n=s/a
in the equations (3.11), (3.14) and
t = (z1+71)/r0, T = (s+m)/ro0, ro = (a+¢)/2, ro = (a—c)/2

in the equations (3.16), (3.17) as well as the dimensionless parameters and func-
tions

ok {yfy < _apa(z1) _api(z1)
f—m, X Q—Fz’ (r) = P, q(t) = "o

we obtain the dimensionless form of the governing integral equations

Cy =

elo

k 1

1 [ p(n)dn / 2 2 Py a?

51 — K. & et 1500 SETININS i3

19) + [B00+ [omKin-riin=-225%n <<y,
] |
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1

(3.20) /p(r)d'r =1,
. 1 ()d 1 0
@320 =R L f g (il = 6 — FG (@) <l<tLY,
1r~/1 T—1 _/1
1
14+ ¢
(3.22) at)dt = Q - f,
|
where

(3.23)  Ki(2) = - [TV exp(=T(*" |2]) + TV exp(- 47 |2])| sgn(2),
(324)  K3(2) = = [T exp(=T*? J2]) + TP exp(- 47 |2])| sgm(2),

2
625)  Gltplt)] = st + [ K0~ ) — Kl — ¢)ldn,
~1

t* =[(1+co)t + (1 = co)]/2,

i ap (3) (4) "
(3.26) T = 282 40 Zgo® =12
A 480 =AAY P '

Here ay and Py are, respectively, the contact area size and the normal load in
the Hertz problem [5]
4(1 == I/)RPH
L :
In the further analysis the contact area size in the considered problem is

assumed to be equal to that in the Hertz problem, i.e. a/ag = 1, but the ratio
Py /P, has to be determined.

(3.27) a4 =

4. NUMERICAL SOLUTION OF INTEGRAL EQUATIONS

The integral equations (3.19), (3.21) are of Cauchy type. From the physical
reasons the unknown functions p(r) and ¢(t) are looked for in the class of bounded
functions. They are presented in the following forms:

(4.1) p(r) =p(r)v1-r?  q(t) =4()V1-12

where ¢(r) and 9(t) are new unknown regular functions.
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Applying the Gauss-Chebyshev quadrature [6], the system of singular inte-
gral equations (3.19)—(3.22) is reduced to the linear algebraic equations

' w 2-F
(42)  Yon+= Z P Zwksonk K3 (1 — sm) + = 5-8m = 0,
Mg — S e 2
m=1..m+1,

(4.3) > wp(me) = 1,
k=1

(4.4) Z“’“” 3 KL — s) = B 167 o

T B om0
m=1; .0kl

(45) 20 S wnplm) = Q- f,
k=1

where the collocation points s,,, integration points 7, and the weight coefficients
wy, are given by formulas [6]

s T km
4.6 = c0§ —— = in? k=1,..,n,
(4.6) Nk cosn+1, W n+lsm i & St ()
2m — 1
(4.7 Sm = COS %, m=1,..,n+1.

The regularized parameter -y, introduced in (4.2) provides the condition [6]
(4.8) nll)ngo Yon = 0.

The (n+2) linear algebraic equations (4.2), (4.3) are sufficient for the de-
termination of (n+2) unknowns ¢(nk), k = 1,..,n; Yon; Pr/Ps. Then it is pos-
sible to solve (n + 2) equations (4.4), (4.5) and determine (n + 2) unknowns
Y(nk), k=1,..,n; & co. These systems were solved by standard computational
methods.

The input parameters for the calculation are: the friction coefficient f;
dimensionless tangential load @ and the roughness parameters defined by the
formulas (3.26). To reduce the number of input parameters, the surface of the

second cylinder is assumed to be smooth: T2(i) = Agi) =0s(di=1,2)
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The most important characteristic in the rolling contact is the relation be-
tween the creep ¢ and the tangential load ). These relations, known as creep
force-creep curves are presented in Fig. 2 for some values of the roughness param-
eters. The well-known analytical solution for the smooth cylinders [5] is drawn for
comparison. We can conclude that the creep between rough rollers is higher than
that between smooth bodies. This was property confirmed experimentally [7].

a) 1~  Analytical
Qf  solution
08~ 3
0.6~
1

04-
02-

0;._ i : | " |

0 05 1 15 nE4 2

Analytical
b) 1 )
solution__ :
of \
08
2

0.6} 1
04
02}

0 . . '

0 05 1 15  mE4 2

F1G. 2. a) Creep force-creep curves for Agl) = A?) = 0.5 and different values of Tl(l), Tl(2):
curve 1 — Tl(l) = Tl(z) = 0; curve 2 - Tl(l) = Tlm = 0.5; curve 3 — Tl(l) = Tl(z) =1.
b) Creep force-creep curves for Tl(l) = T1(2) = 0.5 and different values of A(ll), Aﬁ”:
curve 1 - Agl) &= Aﬁ” = 0; curve 2 — Ail) = Aﬁ” = 0.5; curve 3 — Agl) = A§2) =1.

5. FINAL REMARKS

The new model of the surface roughness is proposed and applied to the
study of the rolling contact of rough bodies. To be able to use this model in
the engineering practice we need to know the values of the roughness parame-
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ters (2.11)—(2.14) or the corresponding dimensionless values (3.26). From the
relations (2.11)—(2.14) and (2.6)—(2.8), it is clear that the roughness parameters
depend on the material properties Ao, o of the subsurface layer, on the thickness
of this layer, on the shape of surface imperfections as well as on some given func-
tions h(z1) and d(z2). So, it is possible to calculate the roughness parameters for
real engineering surfaces, characteristics of which can be found experimentally.
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