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Summary of the whole paper: By now, the SADSF method is practically the only tool
of shape design of complex machine elements that provides an effective solution even to the
problems of 3D distribution of the material, and at the same time it is still enough user friendly
to be useful for engineers. This unique property of the method is due to the existence of its
simple, application version. When using it, a design engineer does not need to solve by oneself
any statically admissible field — which could be very difficult — but obtains such a solution
by assembling various ready-made particular solutions. The latter are in general obtained by
means of individual and complex analyses and provided to a designer in a form of libraries.

The algorithms presented in this paper break up with the individual approach to a particu-
lar field. The algorithms are the first ones of general character, as they apply to the fundamental
problems of the method. The algorithms aid solving practically any boundary problem that
one encounters in the tasks of construction of 2D statically admissible, discontinuous stress
fields, first of all the limit fields. In the presented approach, one deals first with the fields
arising around isolated nodes of stress discontinuity lines (Parts II and III), then integrates
these fields into 2D complex fields (Part IV).

The software, created on the basis of the algorithms, among other things, allows one to
quickly find all the existing solutions of the discontinuity line systems and present them in a
graphical form. It gives the possibility of analysing, updating and correcting these systems.
In this way, it overcomes the greatest difficulty of the SADSF method following from the fact
that the systems of discontinuity lines are not known a priori, and appropriate relationships
are not known either, so that they could only be found in an arduous way by postulating the
line systems, and verifying them.

Application version of the SADSF method is not described in this paper; however, a ref-
erence is given to inform the reader where it can be found.

Key words: shape design, limit analysis, numerical methods.

NOTATIONS
a, (3,7 — indexes of homogeneous regions stress state on physical plane,
{a} - global plane system,

(au;) - nodal points co-ordinates of stress discontinuity lines £ (5 = 1, 2;
w — index of node),



176
{&}°

Up]

()(ﬁ)

Ap=Ad(w, w,Q*P) =

A(g) s Va,a+l S sz—l,a

W. BODASZEWSKI

local plane system associated with principal stress
directions in homogeneous region «,

contour of the discontinuous stress field,

Sp — loaded part of contour S,

S. — supported part of contour S,

yield point,

stress discontinuity line,

L - line which separates the adjacent homogeneous
regions a and f3,

stress tensor,

(o) > ;
oij — stress tensor components in homogeneous region
(1,5 =1,2),

- principal stresses in homogeneous region a (i = 1, 2),
stress vector,
p**? - load applied on line £,
stress parameter (w € [0, 27] or w € [0, 7]),

(a) P ;
w - stress parameter w in homogeneous region «,

(a) (B)
{w’, W'} - parametric spaces,

stress multiplier in homogeneous region a (m € [0,1]),
angle of principal stresses in homogeneous region «,

defined in system {a},
unit vector normal to line £*? directed outside

of region a (e*? = —ef*),
angle determining of direction of e*?, defined in
system {a},

versor of stress discontinuity line £*?,

families and subfamilies of stress discontinuity line £&?,
¢*? =1,3 are assigned to Q®? =1, and ¢** = 2,4

are assigned to Q*? = 2,

function expressing the angular parameter determining

versor € normal to line £**?, defined in local system
{€} (A'y € [0,2]); B - region adjacent to a;

Ay (( ) ( w’) — term of function A'y( ) (ﬁ) ,q*)
(ave [ 31):

function expressing differences between the angles of
principal stresses in adjacent homogeneous regions o
and 3, defined in local system {E}“ (A¢ € —%, %]),

A¢((a) @ w') — term of function Ad)( w o ,q*P)

(adefo.3]).

angle between lines £*~'* and £+,
region of existence line L,

)

+1

— admissible subregion of variability (w) @
1) (N

obtained for the settled values: (w) (w)

Aa ya+1
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I' - interval of existence line L,

ped
D = ITN, IST, ISN, INN, INL

{0,a,D} :

{whe, {$}w, {v}w

I{3) - admissible interval of variability &

; (1) (N)
obtained for the settled values: w, w’, N,

point-image of line £*? in A;

structural objects of stress discontinuity line
networks which respectively pertain to the
incidences of the following types: triangle —
numbers of its nodes, segment of line £

- the triangles separated it segment of line £,
segment of line £ — its nodes, node — adjacent
nodes, and node — local numbers of lines that
originate from the node,

set of internal parameters of plane complex field,
defined in the system {a}.

matrices of parameters w, ¢, v

determined in field around node w,

X - angle between principal directions
of stresses in regions a and 3 for f# —a > 1,
n unit vector normal to outer line L,
01, 02 angles determined the half-plane
in which are contained stress discontinuity lines
of field around node (d2 > d1),
d — angle between outer stress discontinuity lines of

field around node (6 < d2 — d1),

T - number of triangular homogeneous regions in
complex plane field,

W - number of nodal points in complex plane field,

N - number of homogeneous regions in field around
node,

L - number of internal lines of the field,

A, B, C - modules of algorithms.

PART I

IDEA OF THE SADSF METHOD, BASIC CONDITIONS
AND APPLICATION VERSION

Summary of Part I: As a form of introduction, the author presents in a broad outline the
general concept of the SADSF method, its fundamentals, basic conditions, typical formulation
of boundary problems and the essence of difficulties in problem solving. These are not only
nonlinearities, singularities, and conditions expressed by complex functions (i.e. given in a form
of algorithms), but first of all the structure of the condition system — that is not a priori known
- which cause difficulties. As it turns out, the structure depends on boundary conditions, but
the relations that express this dependence are not known. In the physical space, it refers to
the problems with unknown discretization that is dependent on boundary conditions.

Also, as a form of introduction, it will be shown that the investigation of mentioned
dependence is possible, anyway. However, it is possible not for two-dimensional fields as a
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whole, but at least for their component fields around nodes. Thereby fundamental ideas of
algorithms are presented in broad outline. Such algorithms are discussed in detail in Parts II
and IIIL.

The application version of this method, attractive for practical purposes, is briefly described
in this part. Numerical examples, also included here, illustrate the position and the possibilities
of the method in solving practical problems of shape design of complex thin-wall structures.

1. INTRODUCTION

1.1. Introductory remarks

The method of statically admissible discontinuous stress fields (SADSF) has
its grounds in the theory of limit analysis, and it uses a model of the rigid
— perfectly plastic material. The method is based on the conclusions following
from the lower-bound theorem [1]. According to this theorem, the limit load of
a structure, whose contours are determined based on statically admissible stress
field, is equal or greater than the limit load that has been assumed in this field.
The problems of optimum shape design can then be, for example, formulated as
the task of seeking such an admissible stress field, which determines the minimum
volume [5].

In the version of SADSF method presented in this work, one assumes that,
among other things, the fields are plane, or fragments of the fields are plane (see
Figs. 1 and 3), and the lines of discontinuity £ are segments of straight lines.
This implies homogeneity of the stress state in each mesh of the net created in
this way, and it means that the solutions are to some extent approximate.

The set of values describing such a field is usually presented in a manner that
could be mapped in a graphic form [5, 8:

(1.1) {(SLn,(S} D; a=1T; mn=12 j=1,2 w=1W},

where:

(au;-) —~ nodal points co-ordinates of stress discontinuity lines L,
«
(az,m — stress tensor components in homogeneous region «,

D - structural object describing the topology of line system L,

including the number of lines and the link system,
T - number of triangular homogeneous regions,
W - number of nodal points.

The systems of lines £ usually do not exhibit any regularity; even the indi-
vidual meshes could be polygons of different numbers of sides. For that reason
in application, in order to obtain triangular meshes and ensure topological uni-
formity of the network, one introduces additional, artificial division lines (in this
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work these are drawn as dashed lines). The object D is then given a form of
a matrix whose rows, representing the triangles of consecutive numbers, specify
the indices of nodes at triangle vertices.

The general idea of a problem formulated by means of the SADSF method
is presented, in an illustrative form, in Fig. 1. The data are (Fig. 1a): limit load
p applied on the part S, of the contour S, geometry of the part S, and S, (for
example S, — supported part), and the material of the designed element of the
structure.
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FiG. 1. Field of the ‘€90’ type solved for the Huber-Missed yield condition with the data:
8!

,2) (3,4) (5,6)
(P =[0.0000,-0.8369] - k, B = [0.0000, V3] -k, B =[0.0000, V3] -k, & = (~80,0),
W = (WL00J, ‘& = (80,90)7'8 = (=80,90) [mm]}, k = opv/3, a) boundary<umditionssad

graphical formulation of the problem, b) plane, statically admissible discontinuous stress
field (nodes and homogeneous region numbers, object D and principal stresses marked with
arrows — illustrate the set of parameters given in formula (1.1)).
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The problem consists in finding a statically admissible stress field (described
by set (1.1), cf. Fig. 1b), which fulfils the above boundary conditions, and satisfies
the uniform equivalent stress condition in limit state over the entire volume!)

The aim of this problem is then finding a certain limit stress field that deter-
mines economical contours (although the contours might not necessarily be the
most economical ones [5]). The problem in which the criterion is the condition
of equivalent stress might not have a unique solution.

The fundamentals of the SADSF method are given in the work by
W. SzczePINSKI [1]. The possibility of algorithmization, and consequently a
general possibility of examining solutions, appeared only when one had found
the formulae for a priori generating the domains of the function in which the
set of method’s conditions is defined [2]. These were found for the Huber-Mises
yield condition.

The algorithms presented in this work do not have such a limitation, and can
also be applied in the cases of different yield conditions valid in plastically homo-
geneous materials. Even more important fact is that, besides of the algorithms
generality, they have already been put to practice, and are used in their present
modified forms, as basic algorithms in the up-to-date application software.

1.2. System of conditions for two-dimensional complez field

For solving the problem presented in the previous section, we have at our
disposal a set of equations and inequalities that includes [1, 2, 5]:

e equilibrium equations for each line £»? that separates the adjacent homo-

geneous regions « and [ (one assumes that: 0(";)2 = g;)l, <(7€)2 = é’;’l):

1
12) G- e=0  (,i=12% aB=1T; I=1L a#p),
where: L — number of internal lines of the field,;

l ) (w1) (w2
(e) = e)((uf)l), (ué)) — unit vector normal to £%#2);

internal equilibrium conditions in regions « and [ are identically satisfied, due
to homogeneity of the field;

D References [1, 9] give a solution to this problem found with the methods that have existed
till now. An example of approach utilising the algorithms described in this paper is presented in
Part IV, and illustrated in Fig. 19. It is worth noticing that the structure of stress discontinuity
line system is not mentioned among the data of the problem presented in Fig. 1a (see Fig. 1b
for more details).

HThe association of indexes {I, @, 8} and {I, wl, w2} determines the object D, which is
uniquely mapped onto the objects of incidence that assign, for example, numbers of lines I to
their adjacent triangles, numbers of segments of line [ to their ending nodes, etc.
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e yield condition that should be satisfied in each homogeneous region a:

(1.3) B(Griy o)==y oo byt stpdT);

in the case of unlimited field this condition takes the form of weak inequality (<);
the structures made of isotropic materials are analysed in the work;

e boundary conditions:

o loading, given on segments [ of line £, whose starting and ending nodes
{wl, w2} are placed on part S, of the contour:

O _ O
(1-4) b; = 0ji €y,

where: s
l ! 1 2
g=e(a. D), (@es, @esy ii=13

7 - indexes of homogeneous regions adjacent to segments {/,wl, w2} on Sp;
o geometric, given on Sy+ S, and noted in the form as an example:

(1) (@95 ) =0,  (5,5) € 8. +8,

the conditions are determined at coordinate sets of the nodal points w placed at
Su + Sp.

The above conditions, written perhaps in a different form, are commonly
quoted in literature. However, if one takes into account that equilibrium Egs. (1.2)
- set on each line £%# — create a homogeneous system, one must also add the
conditions of existence of its solution, and these take the form® [2]:

(a) (8)
OAA — 04A (@ (8 (@) , (B)
(16) 0 < _(CKW < 1, detl Oij — O'ijl — 0, ag # @ vy (¥ ;é ,8,
Tii T4

7, A=1,2; A - is not summed.
Moreover, each homogeneous region « of the obtained field must take such
a place that is realizable on the physical 2D space, precisely - its area must not
be negative. It leads to obvious inequalities:
(w1) (w1) _ (@
a1 as 1
(1.7) ~| @D @) 1 >0,  (a=1.T),

(w3) (w3)
ai =yl

*Here we have two double-sided inequalities, for A =1 and A = 2.
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where: wl, w2, w3 — are the indices of vertices of triangle «, numbered here
clockwise.
These are the geometric conditions for the existence of solution.

1.8. The problem of existence

When reviewing the above-specified set of conditions, one should have al-
ready noticed that the unknowns in the problem could be, in general, all the
elements of set (1.1), including the components of the structural (topological)
object D.

-However:

e among the conditions (1.2)+(1.7) we could hardly find any one that would
be defined on these components; although we have the conditions (1.6),
(1.7), they only allow us to determine whether the previously assumed
topology is preserved, or not;

e for arbitrarily assumed structures (topologies), the solutions of the sys-
tems (1.2)-(1.7) might generally not exist, and often they do not exist;
they exist only for some particular structures (link systems), depending on
boundary conditions; however, the relation between the structure and the
boundary conditions have not been found yet.

Then, at the starting point, we do not know the number of unknowns and
even the dimension of the system of conditions (1.2)+(1.7) which must be created
for the solution of the boundary problem. In the physical space, this can refer
to a problem with unknown discretization. Here it means that the structure of
division of the field into homogeneous regions is unknown, and additionally, the
structure depends on the boundary conditions.

This is the most essential difficulty in solving each discontinuous and limit
stress field — the effect of which is that the structure must be a priori assumed,
and then verified. However, the verification is only possible at the final stage of
the process of solving the whole system. It can be best illustrated by the example
of condition (1.7), whose verification requires the co-ordinates of all nodal points
to be known.

One can possibly prove that the solution does not exist within the assumed
structure, but this finding brings practically no hints on how to correct the
structure.

The structure of the system of stress discontinuity lines £, for which a solution
of the field exists in the physical 2D space for the given boundary conditions, is
called an admissible structure for these boundary conditions.
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2. THE ESSENCE OF THE PROBLEM AND THE SOLUTION METHOD %

2.1. Fundamental assumptions

Because it has been found that there are no conditions that would be defined
on the variables describing the field structure, the problem of searching for the
relation between the structure and the boundary condition seems to be difficult
or even impossible. Such a problem commonly appears in practical application
when one has to solve discontinuous stress fields. Nevertheless, as it will be
shown in this work, one can tackle the problem and examine it. However, this
will not be possible when the problem is formulated for a field assumed as a set
of homogeneous states. One needs to assume that the fundamental component
units of it are the fields around the nodes. If there exist the solutions of fields
around all the nodes of a complex field, then the global solution for the field also
exists.

The idea of one of typical problems that can be formulated for a field around

anode is illustrated in Fig. 2a. The data are the components of limit stress states

1) (N
(az)], Erm) in the outer regions. One must find the states of stress ér,; in the regions

2...N-1, the parameters v*%*! determining the direction of lines £L***1 | and the
number N of homogenous regions for which the solution of this field does exist.

} (a+1) B A e Ty s T ey A¢((((B ’("a)l)’ qa'aﬂ)

v/

M@, g
o A, B, )

(o)

: gji(u“ g ”} ¢
s ar 1,0

_L ' (u—l) (a) o100
a, 4["9 o A‘Y( ’ )
[

(a—l)

) (‘)} > (a-1)
()] (o) X é

Fi1G. 2. a) boundary conditions and graphical formulation of the problem for field around
node, b) notations used in local systems {£}#).

There could also be other cases of data and unknowns, for which a different
formulation would be proper (see Part III), but those will not be presented in
this preliminary study.

“More details will be presented in the following parts of the work.
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2.2. Parametric description and its implications

In order to practically solve the presented boundary problem for a field
around a node, one has assumed that the states of stress in its homogeneous re-

(a) (a)
gions are defined by the parameters: {(5), ¢ }, where ¢ is the angle of principal
stresses, and (5) is the stress parameter. States of stress given by parametrisation

satisfy yield condition for each value of (:)) [1].

The result of it is a reduction of condition system, but even more important
(a) (a+1)
effect of this assumption is that, in parametric spaces { w #: w } one can create,

first of all, an illustrative image of the domain where an individual line £* o+l
exists — the image, denoted here with the symbol A that represents the condi-
tions (1.6). Then, one derives convenient formulas of evolution of the subdomains
A‘l" X‘,H which pertain to the case when the conditions (1.6) are set up simulta-

neously for all the ﬁeld discontinuity lines around the node, and the values of

N
elements of the set {w (w) N} are arbitrarily assumed. If, with the data {w)

1
ol , N}, the condition { 3 5 )}e ATN @+ holds for each line £+ of the field,

the field’s discontinuity lines exist.

The fact important for a technically useful solution of the formulated problem
is that the subdomains A"y 2+l could be determined a priori, even before any
analysis of the field was performed

Figures 7 and 9 (Part II) present some examples of images of domains A
obtained for different yield conditions valid in plastically uniform materials. An
illustration of the evolution of AT’y @+l is depicted in Figs. 11 and 13 in the Part II
of this work.

One also introduces local coordinate systems {£}“, associated with principal
stress directions in homogeneous regions a. By doing so, one obtains general
recurrent formulas of parameter increments (Eq. (7.1) and (7.3), Part II) that
are valid in the above mentioned coordinate systems {£}°:

(Ot) (a+1) (a) (a+1)

Gt e By w . w gt

(2.1) Ap(w

Technical sense of these functions is quite simple, as illustrated in Fig. 2b.

The meaning of the families Q = 1,2 of lines £***! and their subfamilies
q = 1...4 is explained in Sec. 7.4, Part II. One assumes there that the subfamilies
q = 1,3 are related to the family @ = 1, while these of ¢ = 2,4 are related to
Q=2

Employing obvious geometric relations, one can easily transform the function
values A¢p, Ay into the global system {a}, and at the same time find another
function, important for the field description (Fig. 2b, Egs. (10.2), Part II).

22 - AT =yt BT A s g TR, gAY,
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The function values determine the angles between consecutive discontinuity
lines L»o+1,

The formula of A¢ is derived from the equality condition of existence (1.6)2,
while the formula of Ay is based on the equilibrium conditions (1.2). The appli-
cation of the functions A~y, A¢ implies then that the conditions (1.6)2 and (1.2)
are identically fulfilled.

2.3. System of conditions
Finally, for the problem illustrated in Fig. 2, the data are:

(1) (N)
(2.3) {9), A0y }

but the number of regions N is not known in advance. In order to find unknown
field parameters

2 N-1
(24) {N’ (UJ),,( w )7q1’2,q2’37“’qN_1’N} )

we have one equation (Eq. (11.1), Part II)

A S el
(2.5) g Lely Z Ad ((5),(a$1),Qa,a+1> :

=1

that is determined on a physical plane, and that must be solved with the stress
conditions given in the form of (see (9.4), Part II):

1
29 {9, e azz,
structural limitations (see inequalities (10.1), Part II):

(a)

N
@2.7) AP50  (@=12.N), =Y 4P <on

a=1

and geometric conditions, needed in some cases, that specify, for example, the
requirement that the whole field be contained within a previously given half-
plane.

The conditions (2.7) refer to the conditions type (1.7).
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2.4. Method of solution

It is evident that, as the number N is not a priori known, neither the number
of unknowns, nor the number of components of the sum of Eq. (2.5) is known
beforehand. The same refers to the numbers of conditions (2.6) and (2.7). On top
of that, the system is nonlinear and contains several singularities. The functions
that describe it are very complicated (see also the Eqgs. (7.1) and (7.3), Part II)
and, because of their complicity, are usually given in the form of algorithms.

It limits the possibilities of finding the system’s solutions, and practically
only numerical solutions remain. For this reason, the control over the content
of variables in the domain becomes so important for the problem investigation
possibility. As one could easily notice, the domains of functions A¢, Ay, Av, in
which the conditions of type (2.5), (2.6), (2.7) are set, can be determined basing
on the formulas of evolution of subdomain A7’y @+l Tt is also worth underlining

once more that these subdomains are a prior: determlned when one only knows

1
{( ), (w) N}, and in the case when, with an assumed yield condition, the domain

Ais known

There is an enormous variety of possible cases of solution of the systems
type (2.5), (2.6), (2.7), sometimes surprising and difficult for interpretation, and
because of that the attempt of classifying or ordering them is ineffective. For
the time being, we can only notice that the number of unknown parameters w is
identical with the number of equations only if the sought field around the node
contains N = 3 homogeneous regions.

On the other hand, it is also known that the solutions not always exist for all
(1) (1) (N)
the data values {w (w) ¢, ¢ } and N = 3. In such cases, one usually assumes

the number of regions N = 4 or greater, and introduces additional conditions to
find the solution. However, there could be such sets of data values for which the
increase of N does not lead to finding the solution, but N should be decreased
instead.

These cases are described in Sec. 14.2 (Part III).

One must take into account the previously mentioned variety of possible sets
of data and unknowns, limited possibilities of the analysis due to the lack of
balance between the number of unknowns and the number of equations, possible
existence of solutions in isolated points of the data space only, etc. Therefore,
the categories of condition systems type (2.5), (2.6), (2.7), appearing in practical
applications, have been juxtaposed in the form of a set of appropriately selected
elementary problems. These are presented in Sec. 13 (Part III), while Sec. 14
describes particular properties of the fields.

Obviously, in a complex field consisting of many nodes, the already revealed
effects will multiplicate. This might explain the reason why the problems con-
sidered in this work have remained unrecognised for such a long time.
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3. TASKS OF THE PRESENTED ALGORITHMS

The problem of existence of the system of stress discontinuity lines around a
node, briefly presented in the previous section, has been reduced to the exami-
nation of the existence of solutions for a system of conditions type (2.5), (2.6),
(2.7). The criteria of existence have there been defined on a physical plane. It
is then the criterion, whose fulfilment guarantees that the solution exists, be-
cause one can map it onto a complete field around the node. Therefore, one can
treat the solution algorithm of the systems type (2.5)-(2.7) as an algorithm of
searching for all the solutions of the field around the node under given boundary
conditions.

It is worth noticing that the algorithm still requires that the number of
regions N be assumed. Nevertheless, the implementations built upon it allow
us to conclude effectively and almost instantaneously whether, for an assumed
number N, the solution of a given boundary problem exists or not. It also makes
it possible to represent all the solutions in an illustrative graphical form, and
analyse different variants of systems of lines £ without employing any individual
relationships. Application of these implementations has then many attributes of
a direct approach.

The algorithms presented in this work are the first ones, with the exception of
perhaps those of work [2], that tackle the above-described problem of existence,
and solve it for the field around the nodes. For the time being, it is done only for
an isolated node, which makes the algorithms more universal, and at the same
time a bit more wearisome when one uses the algorithms in each task of con-
structing complex 2D fields. We assume then that the algorithms are primarily
predestined for finding new solutions, for which the permissible structures of line
systems L are not yet known.

If at least one solution of a complex field is known for certain types of bound-
ary conditions, and only the data values of boundary parameters change, the
approach based on the conditions (1.2)+(1.7) may be more effective for the ap-
plication. However, one must also assume parametric description of the field in
order be able to exploit the formulas of subdomain evolution A‘l"’;\’,ﬂ and retain
control over the content of variables in the subdomains that would guarantee
obtaining the solutions in a numerical way [3]. The algorithm constructed in this
way becomes, however, a specific algorithm for calculation of parameters of a
particular field. It can be useful, for example, when we create libraries of solu-
tions used within the framework of the so-called application version that will be
briefly described in Sec. 5.

The latest concepts, already confirmed by successful tests, go even further.
These exploit the possibility of recording the consecutively executed procedures,
without making use of any individually created algorithms, but using only those
fundamental ones that have been described in this work. All individual features
of a particular solution are coded in the set of indices of the above mentioned
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procedures, in the structural object D, in the sets of indices of subfamilies ¢, in
indices of roots w and in a form of some additional entities.

For the needs of this work, we also assume that the process of assembling
the fields goes on independently around each node. Owing to this fact, specific
features of the created complex field appear only in the integration algorithms.
The latter govern the component fields around nodes, and integrate these fields
into complex ones according to the sketch of the line system structure £ that can
be drawn manually (using computer mouse) on the monitor screen. The sketch
is automatically transformed into the set of coordinates of the object D.

The above-mentioned algorithms, although very difficult in realisation, are
relatively simple as a concept. However, they only have an auxiliary meaning for
the principal result of this work, and for that reason they will be presented in a
descriptive form only (Part IV).

Obviously, the set of conditions (2.5)—(2.7), may also be used in the investi-
gation of infinitesimally small neighbourhood of nodes of convergence of stress
discontinuity curves. It pertains to the case when the curves separate variable
stress fields.

4. THE CONCEPT OF DEVELOPMENT

The sets of formulas, presented in this work, which give basis for creation of
the described algorithms, are relatively complicated, especially those in Part II. It
follows from the nature of the problems, and the difficulty is even aggravated due
to the fact that they cannot be illustrated by physical phenomena. Discontinuous
statically admissible fields are the fields fulfilling only the static conditions of the
problem, and it proves to be very far from reality.

For this reason, to facilitate reading, the author will present graphical il-
lustration of the transformations, instead of quoting appropriate formulas. The
examples will in turn be selected from such fields, whose solutions are already
known from the papers [1] or [9], although the methods applied there have not
taken advantage of the use of a computer. Consequently, the problem of solving
the fields around a single node will be illustrated by examples of fields created
around a convex or concave corner. Similarly, the solution of a complex field is
illustrated with the known field shown in Fig. 1, called in literature the field
type ‘f 90’. Using this example, we have also illustrated (in Fig. 19 Part IV) the
method of integration of fields around nodes.

In the descriptions, one consequently applies the rule that only the informa-
tion necessary for understanding fundamental algorithms is given. Derivations
and more exhaustive comments are almost completely omitted. In the cases of
functions given in the form of algorithms, one accepted the principle that only
the headers and the specified formal parameters will be available for the reader.
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One assumes that, from the moment of creating the algorithmic realisation, the
specific content of sets of algorithm describing the formulas is not important any
longer.

This work is then limited to describing the specificity of computer approaches
and the fundamental problems of the method. That is why the author does not
give references to the results obtained by the previously used methods, includ-
ing numerous results of numerical investigations on already shaped elements of
structures and experimental research results. Almost all the formulas, algorithms
and their implementations presented in this work do not have any equivalents in
literature, with a partial exception of paper [2].

5. APPLICATION VERSION OF THE SADSF METHOD

5.1. The essential idea

The problems solved by means of algorithms presented in this work have a
fundamental character. Another class of algorithms, in a way complementary
but still distinct, is that related to the programs oriented on direct practical
applications. These are constructed in such a way that the user does not need to
solve by oneself any systems of stress discontinuity lines, but can exploit libraries
of ready-made solutions instead (see Fig. 3b). Using these libraries, one can select
the component fields and then integrate them (Fig. 3c) into various admissible
configurations in order to fulfil the given boundary conditions (Fig. 3a).

In other words, the libraries are collections of ready-made particular solutions
of low or medium degree of complicity, treated as partly autonomous subsystems
of complex fields.

The approach to the problems of the SADSF method described here is called
the application version. Its natural simplicity is obtained by hiding all the dif-
ficulties of the method in the phase of constructing the library fields, and is
reached at the expense of universality, as the set of solutions is limited to those
fields that can be constructed from the ready-made elements. However, due to its
simplicity, the approach brings about very attractive applications of the SADSF
method, facilitating the practical tasks of complex machine elements design, and
the importance of the method becomes comparable only with that of the Finite
Element Method (FEM).

5.2. Applications

The basic field of application of the SADSF method includes the tasks of
approximate shaping of elements of structures characterised by very complex
geometry.

In more simple cases, the applications usually concern the tasks with un-
known free boundary, one of examples of that is the solution shown in Fig. 1.
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Fi1G. 3. Idea of the application version of the SADSF method - example of formulation and

solution to the problem of design of a complex field in a torque shell of channel profile: a) bound-

ary conditions and graphical formulation of the shape design problem, b) library of ready-made

particular solutions, c) complex field determining shape of shell (the sketch shows countours of

a half of symmetrical shell), d) variant 1 of field composition from Fig. 3c, e) variant 2 of field
composition from Fig. 3c.

However, one could also perform tasks such as shown in Fig. 3, whose for-
mulation and results are related to the problem of finding the best distribution
of material [10, 11]. Here, only boundary conditions are given — as illustrated in
Fig. la — and one determines not only dimensions and shape but also the struc-
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ture (the layout) of shell’s component elements inscribed into the area between
the given boundaries. The essential detail of this solution is that, although one
has searched for a shell based on channel profile contours and the resulting shell
still remains “open”, the obtained layout of component elements is very resistant
to torsion.

The SADSF method may be a self-contained tool of approximate shaping, and
can also be used as an auxiliary means for other methods, including the FEM.
It can provide initial data on dimensions and shape that, with the exception of
tasks undertaken in [10, 11], must be found anyway to make practical analyses
of the FEM possible. In this way, one ensures that the effort of computation
would result in a good quality of the structure, and the designer would not end
up with ascertainment of its poor load capability. This could be, for example,
the case of the shell of Fig. 3, which would exhibit poor resistance to torsion if
additional elements were not found. Without them, the shell’s limit load would
not be several times or several dozen percent lower but dozen times lower.

We must strongly emphasize that the SADFS method and the FEM are
different, use different techniques, are applicable to different problems, and then
they should not be compared to each other. One can only compare the general
formulation of problems characteristic of both methods, and the final results.

A designer might be concerned that the SADSF method gives only approx-
imate solutions, obtained under the condition of equalized equivalent stress.
This condition may lead to ambiguous solutions because of the assumption of
piecewise-homogeneous fields, and because of lack of several other desirable prop-
erties. These imperfections, however, are of limited importance for the tasks of
preliminary design. On the other hand, the conclusion drawn on this basis that
the errors of approximation would be too great, turns out to be wrong. Numer-
ous investigations, both numerical and experimental, of actual elements designed
with the use of the SADSF method show surprisingly good properties of the ele-
ments, even quite a satisfactory equalization of equivalent stress in the elasticity
range, although this range of loads is not the subject of analysis in the SADSF
method.

The obtained shapes and dimensions can then be approved at once, or they
can be subject to further improvements.

Despite good quality of elements shaped by this method, the main field of
application of the SADSF method is the preliminary phase of design, specifically
to the moment when only boundary conditions are given, and the knowledge
about the structure is almost none. The tasks of this kind essentially pertain
to the cases where distribution of the material is unknown. Such problems can
at present be solved by other methods, however, for the time being, applicabil-
ity of those methods is limited to two-dimensional structures [10], and even in
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these cases very sophisticated mathematical apparatus is needed, which makes
these methods inaccessible for design engineers. These facts may explain why,
in the preliminary stage of design, one has not yet employed virtually any ap-
propriate practical methods, and only intuitive approach has been used. There
have not been any such method like the SADSF in its application version, which
is relatively easy to use, well confirmed by the theorems of structure design
theory, allowing one to take into consideration the structural (topological) pa-
rameters and design structures of complicated geometry. This situation will not
change even with the development of the methods presented, for example, in the
work [10]. As one can easily guess, their application will remain limited anyway,
due to a high level of difficulty.

5.3. The software

At the moment, there are two software packages for implementing application
version of the SADSF method [7, 8, 12]. Both of them are user-friendly, and have
well designed modules of library management. The mentioned software is not dis-
cussed in this work. We have to notice, however, that the range of applicability of
software depends on the content of its libraries, and quantity of the library solu-
tions. These in turn depend on the method of software development, specifically
on the methods of solving the fundamental problems, such as those presented
in this work. However, in both above-mentioned software packages on can still
find fragments of such libraries, in which component fields are developed in a
form of sets of analytical relationships that are valid only for specific, individual
fields. Derivation of the relationships requires arduous conversions of formulas,
usually so complicated that examination of them is practically impossible. The
development of the method is then hindered.

As one can see, the previously mentioned up-to-date concepts are based al-
most exclusively on the fundamental algorithms described in this work. However,
we should mention another version of implementation of the application version
of the SADSF method, a conservative one, being already put into practice a few
years ago [6, 12] that also employs the evolution formulas /1'1’,’1?,“. In this version,
one takes advantage of a partial autonomy of the component tasks, a property
that allows one to concisely describe individual characteristics of particular solu-
tions, and relatively easily create the elements of libraries containing as many as
several dozen of homogeneous regions. It turns out that the discontinuous limit
stress field of such complexity exists, for example, in shape design problem of
rectangular element loaded over its entire perimeter by shear stresses of values
close to 0.250p) — as shown in Fig. 20 in Part IV.
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