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THE INFLUENCE OF INTRALAMINAR DAMAGE ON MECHANICAL
PROPERTIES OF COMPOSITE LAMINATES
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In the paper the damage of fiber-reinforced polymeric matrix laminates is considered with
the aim to examine the change of their mechanical properties. The damage mode in the form
of intralaminar cracks is described in terms of the damage tensor by Vakulenko and Kachanov.
The crack discontinuity parameter is estimated in the frames of the linear elastic fracture
mechanics. To derive the constitutive relations, which take into account stress, strain and
developing damage, an approach based on polynomial invariant functions and irreducible in-
tegrity basis by Adkins is employed. Theoretical results are compared with the experimental

data obtained for carbon/epoxy laminates.

N@TATI®NS
(1, 2) material Cartesian coordinate system for a single ply,
(x,y) reference Cartesian coordinate system for a single ply,
[ averaged crack opening factor,

erst the Ricci symbol,

vi2 the major Poisson ratio of a ply in on-axis configuration,

pm average crack deusity,

puit  ultimate average cracks density,

6.» the angle between the material axis and the reference axis,
a:, b; material parameters,

Az, Ag, As, Aj0o material parameters for damaged laminate,

A, A°, A% the global extensional: total stiffness matrix, stiffness matrix
for “virgin” laminate and stiffness matrix of the damage
state influence on a laminate stiffness,

b displacement jump vector across a crack surface S,
¢i, fi material constants,
¢m  an imaginary strip width,

C, C° C% the stiffness matrix for on-axis ply: total matrix,
matrix for “virgin” ply and matrix of the damage state influence,
on the stiffness of a ply,

d’, d the second order damage tensor,

€ij, Aij

second order kinematic matrices in the Adkins approach,
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Ep, E> the longitudinal and transverse Young’s moduli
of the on-axis ply,
BE: E;, G,I;y, ufy the current engineering constants of a laminate,
f(tm/cm) the finite width correction factor for stress intensity
factor Ky,
Fuit, oult, €Lult, €Tule  ultimate tensile load, stress, longitudinal
and transverse strain,
G12 the shear modulus of a ply in on-axis configuration,
n a unit outward normal to the surface S,
PR abbreviation for the term “Poisson’s ratio”,
sm cracks spacing along the observation section,
S the projection of crack surface on its “midplane”,
S the compliance matrix,
tm thickness of the m-th ply,
vs, Ui material coefficients for the on-azis ply due
to Tsai-Pagano method,
vm the volume fraction of the m-th ply,
V' the volume of representative composite sample,
V¢ coefficients depending on volume fraction
and plies orientation,
V¢ coefficients depending on volume fraction, damaged plies
orientation and cracks density,
YM abbreviation for the term “Young’s modulus”.

1. INTRODUCTION

One of the most important questions in the behaviour of structural materials
is how their strength and stiffness characteristics are influenced by the defects
and different damage mechanisms, which initiate and develop as a result of the
applied load. In isotropic and homogenous materials, in most cases the deteriora-
tion problem can be formulated in terms of fracture toughness i.e. the resistance
to growth of single crack. Fracture mechanics provides now very efficient methods
to solve the problems of this class.

In composite materials the deterioration process is much more complex, due
to the existence of at least two different constituents. The main feature of com-
posite material deterioration is multiplicity of cracks of various shapes and forms,
which depend not only on the constituents’ properties, but also on their geomet-
rical arrangement. Damage of composite materials, expressed in terms of fracture
mechanics is, at the present time, in relatively early stage and has a limited us-
age, mainly due to sophisticated solutions of the crack problem in anisotropic
body. However, significant progress must be noticed in the last years, due to
application of specialized, commercial numerical codes and methods [1-2].

Basic approaches used in the analysis of laminates damage are: shear lag
approach [3-5], self-consistent approach [6-7], micro-macro approach based on
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Mori-Tanaka average model [8-9], minimum complementary potential energy
method [10], variational mechanics approach [11-12], approach based on the
average crack opening displacement [3, 5, 13-15|, probabilistic approach (8, 16],
homogenization methods [17-18].

In the present paper the continuum damage mechanics (CDM) approach is
applied (see e.g. [19-22]). The criterion for classifying any work as belonging to
CDM is the description of crack fields in terms of damage measures associated
with CDM concepts. Taking into account anisotropic properties of composite
materials, the second order damage tensor is often used (see e.g. [23-24]) in
damage analysis.

2. PROBLEM FORMULATION

The mechanisms of composite laminates damage are well known from the pa-
per by REIFSNIDER et al. [25] (review of Reifsnider contribution to the composite
materials mechanics is given in [26]). For the laminate under fatigue load they
specified the following consecutive damage stages: intralaminar matrix crack-
ing, cracks coupling and interfacial debonding, delamination, large scale fiber
breaking and at last — formation of a failure path leading to the total material
deterioration. It should be pointed out that not all of the specified mechanisms
must necessarily occur. Besides, some of them can cover more or less wide range
of laminate “life period” - it depends mainly on the laminate ply stacking se-
quence and on the applied load.

For laminates with off-axis plies being separated by on-axis plies under mono-
tonically increasing tensile load, the predominant mechanism of laminate dete-
rioration is intralaminar transverse matrix cracking [27-28]. That phenomenon
is observed in a wide range of applied load. The delamination and fibers break-
ing occurred nearly simultaneously with specimen failure. This observation has
found confirmation in author’s experiments, carried out on symmetrical cross-ply
and angle-ply specimens [29].

Macroscopically observed (with use of e.g. optical methods) and measured
(e.g. in standard tensile test) effect of gradual material deterioration is the change
of mechanical properties, namely strength and stiffness characteristics of a lam-
inate.

The present paper deals with intralaminar damage mechanism with the aim
to provide a description of the changes of mechanical properties of the composite
laminate due to the developing damage process. It was reported by the author
in several papers [29, 31-34].

The analysis is confined to the laminates having combinations of unidirec-
tional, cross-ply and angle-ply orientations under monotonically increasing ten-
sile load.
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In order to evaluate the influence of damage state on changes of the composite
stiffness, the four basic steps have to be done, namely: modelling of intralaminar
damage, derivation of constitutive equations, which take into account stress,
strain and damage, calculation of damaged laminate stiffness, and finally — expe-
rimental verification of theoretical predictions. Each step needs specific approach
and relevant tools, to be passed.

Laminate’s transverse matrix cracking is described in the frame of CDM
approach with use of tensorial damage representation by VAKULENKO and
KAcHANOV [35-36].

The constitutive relations for damaged composite unidirectional lamina are
derived in the frame of an approach based on polynomial representation of stress
tensor as a function of the internal state variables [37-39]. Using those relations
and employing concepts of the Classical Laminates Theory (CLT), the changes
of engineering constants of a laminate are obtained, as the final results.

They are related to the author’s experimental data obtained for a carbon
/epoxy composite.

3. INTRALAMINAR MATRIX CRACKING

The first stage of damage development is dominated by intralaminar matrix
cracking in off-axis plies. It begins at relatively low level of the tensile load
and results in a roughly periodic array of cracks with nearly parallel midplanes,
evenly distributed within the lamina — see Figs. 1 and 2. Intralaminar cracks
span the entire width of a composite specimen. This feature allows for their
“eye” observations and is of primary importance, when experimental verification
of theoretical model is considered.

Fi1G. 1. Transverse matrix cracking in [0, 90s, 0] cross-ply laminate.
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intralaminar
cracks

FiG. 2. Orientation of intralaminar matrix cracks within off-azis ply.

The important factor determining the cracking process and crack density is
the ply orientation angle ,,, i.e. the angle between the material axes (1, 2) and
any arbitrary reference axes (z,y) — see Fig. 2.

Almost regular pattern of cracks within an individual ply, possibility of ini-
tiation of similar patterns within the other off-axis plies, as well as very small
crack size, make the approach based on CDM, dealing with continuous descrip-
tion of the discreet crack field, an effective tool in the analysis of composite’s
intralaminar damaging [19].

3.1. CDM approach for composite body

The CDM approach to the cracked composite materials is based on an ele-
ment of the volume of composite, containing a representative sample of damage
entities. By the damage entity we understand a single structural change, which
in composite materials made of brittle constituents, under mechanical loads, can
take a form of the matrix crack. The collection of damage entities of the same or
similar geometrical features is called damage mode. In laminated fiber compos-
ites, under tensile load, one can observe mainly intralaminar cracks. Depending
on the layers sequence in a given laminate, we can distinguish several damage
modes. The set of all damage modes is called damage.

Let us consider the two states of a body, namely the initial “virgin” state and
the actual one — the state in which internal damage is developing in the body
in response to the applied load. The transition from the first to the second state
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can be characterised by two vectors: displacement jump vector b across a crack
surface S and the vector n — a unit outward normal to the surface S.

3.2. Tensorial representation of the damage

Following the classical papers by VAKULENKO and KACHANOV [35-36] one
can construct at any point on surface S of a damage entity the second order
tensor d’ in the form of a dyadic product of vectors b and n, which defines the
local geometry of a single defect. It takes the form:

d=b®ndsS.

If there are “k” isolated defects, in order to describe fully the damage field, the
summation over k£ must be carried out. We obtain the following relation:

d = Zbk ® ny dSk.
k

For the transition from discrete to the continuous model, the averaging procedure
must be employed, by means of averaging the damage field over a volume V,
containing representative sample of “k” damage modes.

Confining further analysis to the normal discontinuities (cracks in Mode I),
we get after transformations the following relation:

1
(&), =d=1 Z/ﬂknk ®ny, dSy.

kSk

Symbol “( )” denotes an average over volume V, surface S is understood as the
projection of a crack surface on a crack “midplane”, a multiplier 5, — as an
averaged crack opening factor, depending on the crack geometry.

Factor f is calculated in the frame of linear elastic fracture mechanics
(LEFM) with the use of averaging procedure. Possibility and admissibility of
such an approach was discussed by Varna et al. [5]. In order to estimate f,
additional assumptions and approximations, as well as a concept of “imaginary
strip” described in [31], are also employed.

Let us introduce an “imaginary” strip formed by the considered m-th ply with
cracks and neighbouring plies - see Fig. 3.

It is assumed, that the strip satisfies the requirement of symmetry with re-
spect to the vertical symmetry axis of the cracks contained within the m-th ply.
Furthermore, the choice of a strip must take into account the stacking sequence
of a laminate. In order to satisfy both requirements, the class of laminates has to
be confined to laminates with undamaged outer plies, since only then t,, < ¢,
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Fic. 3. Construction of imaginary strip.

and the solution derived from LEFM employed in the present paper is reasonable
(the analogous observation relates also to the last right-hand damaged ply).

In order to divide a laminate into “imaginary” strips it is assumed that each
m-th damaged ply, being equivalent to the m-th damage mode, is associated
with m-th strip. It is “constructed” from the m-th ply with cracks of length t,,
and the adjacent plies (or their parts) of the same thickness t, (requirement of
symmetry), irrespective of their mechanical state i.e. damaged or undamaged
state. It means that interaction between the cracks within neighbouring plies is
neglected. Note that cracks within one ply are also not assumed to interact one
with each other.

The proposed procedure allows, to some extent, to take into account the
constraint effect of neighbouring plies on the cracking process developing in a
given ply, contrary to e.g. the TALREJA concept [41] of a crack surface activity
vector a.

Using geometrical relations arising from Fig. 2, we get finally for the m-th
intralaminar damage mode, within the layer in its on-azis configuration, the
following form of the only non-zero component of the damage tensor:

m _ gm = Tm b ) goo
(31) d22—d2 —4E2pml/mf<cm>a .

E5 denotes here the transverse Young’s modulus of a ply, ¢, is an imaginary strip
width, f(tm/cm) denotes the finite width correction factor for the stress intensity
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factor K, pm = 1/sm denotes average crack density within the m-th damaged
ply, sm denotes cracks spacing and vy, stands for the ply volume fraction.

4. CONSTITUTIVE RELATION FOR AN ORTHOTROPIC BODY WITH DAMAGE

The crucial point of the analysis of a body with damage is to derive the
constitutive relation, taking into account the damage state. It can be achieved
by employing theory of orthogonal groups, irreducible integrity basis and poly-
nomial invariants functions, connecting one of the mechanical tensors with the
remaining ones. In the frame of this approach by RIVLIN, ERICKSEN [42]| and
ADKINS [37-38], the stress tensor is expressed as a polynomial in the elements
of the tensors defining deformation and damage. It is an important issue to
construct a suitable polynomial in such a manner, which includes symmetry
properties of an anisotropic material.

In the present paper the orthotropic materials are analysed, since composite
laminates generally belong to this class of materials. The implementation of
Adkins’s approach to the orthotropic composite laminates is presented in details
in paper [34] by the author. Here, just for clarity of presentation, only key points
of the analysis are given.

Following the Rivlin and Ericksen approach — the stress tensor components
for orthotropic material are expressed as follows:

(4'1) o'ij = fij (ers, apq); (fij = fji) )

where 0¥ is the stress tensor referred to the rectangular Cartesian system z°,
eij, a;j are symmetrical matrices formed in Cartesian system z¢ (they are called
by ADKINS [38] “kinematic” matrices) and the functions f¥ are polynomials in
the arguments indicated. The coefficients, which appear in these polynomials,
are material parameters, which do not depend on the position through the body
as well as upon any deformation.

For the orthotropic body and two symmetrical second order kinematic ma-
trices ej;, a;;, ADKINS [37] derived the specific form of Eq. (4.1), namely:

(4-2) Uij et A:Jt Qtt + Erst Erst Aijs [Pr(sl;)t + Pg;)t 4 Q’E‘?t e Qgt i RTS;t]

where ¢ ; .
1 1
Pr(s,)t = ers@t(t )v P7gs,)t = ars@t(t )a Qgt = ertets(")t(?)’

Qg?t = artats@g)a Rrs,t & eriatsegf) + estatregf)-

The term &, denotes the Ricci symbol and A;{ is equal to 1 or 0 depending
on indices combination. The functions @ and ng ) (k = 1,..., 6) are invariant



THE INFLUENCE OF INTRALAMINAR DAMAGE ... 279

polynomial functions of the invariants system appropriate to the case where
stress depends on kinematic matrices e;; and a;;.

The relation (4.2) is a form, invariant under the group of orthogonal trans-
formations (Z1, Z2, Z3) = (%1, £z2, £x3), which describes the orthotropic
symmetry of a material.

The invariants set, with taking into account the symmetry of matrices e;;
and a;j, consists of the following 23 elements:

(4.3) €id; Qid; €ij €54 Qij jis €ij. Ajds
4.3
€12 €23 €31; @12 @23 A31; €ij €5 k Qki; €ij Ajk Aki

and: 7, j, k=1,2,3; 1 # j, i # k, j # k; i, j, k are not summed.
In successive considerations we assume the stress to be linearly dependent

(1) Q(2)

upon both matrices e;;, a;;. It puts some restrictions on functions Q. , @y’ 4,
@t(ts ) and @t(f )| discussed in (34].

Taking into account the above considerations, Eq. (4.2) can be transformed
to the following constitutive relation for orthotropic laminate ply in Cartesian,

material axes x;:
(4.4) 0ij = AijttOu + Erst€rst Aijrs [P'f-ls)t G s Pg)r . RTS;t] :

Let us further identify the symmetrical matrices e;; and a; as respectively, the
strain tensor ¢;; and the damage tensor d;;. An assumption of linear dependence
of stress on kinematic matrices is then equivalent to the assumption of strains
and damage being small quantities.

4.1. Stiffness matriz for the single damaged ply in the material azis

We confine subsequent analysis to the in-plane behaviour of a laminate ply.
Thus, the stress, strain and damage tensors in Voigt’s notation are as follows:

11 o1 €11 €1 di dy
o= |0 |=|02]|, E=lexn|=1¢e1{, d=|dyn | =]|d
T12 o6 €12 €6 dy2 de

From Eq. (4.4), after some calculations we derive the stresses:
(4.5) o1 = 011, o9 = Oy, 06 = €6 9,%) + dg 9;(;?-

Now, one must derive the polynomial functions @11, © 92, 9:(3}3) and @ :(3%), which
in general are the functions of invariants set (4.3), but for analyzed in-plane case
only the chosen invariants, specified in [34], are of interest.
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Taking into account the assumed linearity relations — the relevant polyno-
mials are the following:

(4.6) O =0 €1+a2€2+(a3d1 +a4d2) 61+(a5 dy +a6d2) €9+ a7 dg €6 + ag,
(4.7) O =biel +byea + (b3di + bady) €1 + (bs dy + b dy) €2 + b7 dg €6 + bg,

(4.8) @:(;13) =c1dy + codsy + c3, @:(523) = fie1+ faea + f3.

The coefficients a1—ag, b1—bs, c1—c3, f1—f3 are material parameters. Polynomial
functions @11, @99, O g}g), @g? are not independent one from the other, as the
stress derived with use of these functions must satisfy the constitutive equation

of general form:
(4.9) 0= Pii S0 Ot i i imaten A = hedith

where C;; denotes the stiffness matrix. It can be decomposed into two constituent
matrices — C° and C?. The first one relates to undamaged, “virgin” state of ply,
while the second matrix characterises the change of the m-th ply stiffness due
to damage.
Stiffness matrix for the in-plane case has the following components (in Voigt’s
notation):
L1 Lira, 2 Gas
C=|Ciz O Cy
Cis Cx Ces

We can now calculate stresses from Eq. (4.9) and then compare derived formulas
with those given by Eq. (4.5). After calculations, with use of polynomial functions
(4.6), (4.7) and (4.8) we obtain both the stiffness matrices.

Matrix C° can be also easily found in textbooks on composite mechanics,
e.g. [30, 40]. It takes the following form:

KE1 KV21E1 0
C = KV21E1 KE2 0 H K
0 0 G12

1
1-vigva

Note that we derived the stiffness matrix for undamaged material with elements
C?6 =0, C9¢ = 0. This result was expected, since it is typical for orthotropic
laminate in principal material axes (1, 2) (so-called special orthotropy).

It has been shown in [32-33] that for the intralaminar damage, being of inter-
est, the only non-zero damage tensor component is da (see Eq. (3.1). Therefore,
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the stiffness matrix (so-called reduced stiffness matrix) associated with the dam-
age state in the m-th damaged ply, expressed in principal material axes takes
the form:

A Az O
4.10) Cim=| Ay Ap 0 |dp.
2

0 0 #As

Let us notice that we obtain C#™ = 0, Csf" = 0, thus the initial special or-
thotropy is still retained in the presence of damage in the on-axis ply, being
under consideration.

In order to determine matrix (4.10) — four unknown material parameters,
namely Az, Ag, Ag and A9 must be involved in further analysis.

The result obtained here, from the purely formal point of view is similar to
that one derived by TALREJA [43] from considerations based on thermodynamics
with internal state variables introduced by COLEMAN and GURTIN [44]. There-
fore, the mathematical approach used in the present paper has also a physical
background.

4.2. The stiffness matriz for a damaged laminate

The stiffness matrices C° and C? derived for a single, respectively, “virgin”
and damaged ply in on-axis configuration are a basis for evaluation of trans-
formed stiffness matrices for a ply in any reference coordinate system (z, y).

Taking into consideration the fact, that laminate consists of many layers
with different orientation in relation to the reference coordinate system (z,y),
both matrices have to be transformed from material axes (1, 2) to reference axes
(z,y). After transformation — with the use of the standard TsAl and PAGANO
procedure described e.g. in [40] — we get the transformed reduced stiffness matrix
for any constituent ply.

The next step is to derive the stiffness matrix for a laminate being a collection
of plies, some of which can be damaged, while the remaining ones can be still
intact.

In order to simplify the analysis, as well as to have possibility to compare
theoretical predictions with experimental data, the class of laminates being of in-
terest was restricted to the symmetrical laminates. Besides, to derive laminate’s
engineering characteristics it was necessary to consider unidirectional tensile load
only. Under those limitations the problem is confined to the analysis of exten-
sional stiffness matrix A. It was calculated in the frame of the CLT.

The global extensional stiffness matrix A (here we use a “normalized” ma-
trix i.e. divided by laminate thickness t) can be decomposed into two matrices,
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namely: matrix A for “virgin” material and matrix A? describing the influence
of the damage state developing within some layers on the stiffness of a laminate.
Thus, we have:

(4.11) A/t = A%+ Af = T°P° + T*P*
where transformation matrices have the following form:
£ 75 ¥y ¥ (U, P e
Uy -Ve Vy U, v Ve
L s orpatmiap
§74 0 -V |’ Us 0 -Vi |’
O B RITUS Sl P 0, 5 12 1o N
0 BELR VY [0 2 12V =V
1 Ve
pe=|Us|, P'=|D:
Usg Us;

The coefficients V¢ (¢ = 1,2,3,4) depend on volume fraction and orienta-
tion angle 6,, of each laminate’s constituent layer, whereas Vﬁ (k=0,1,2,3,4)
depend on volume fraction, orientation angle 6,, and cracks density within the
damaged layers only.

The coefficients U and Ufl (n=1,2,3,4,5) are purely material parameters
and depend on the four standard independent engineering constants for on-
azis ply i.e. Ey, E2, Gy2, v12 in the first case and depend on “new” material
parameters Ao, Ag, As, Ao in the second case. The matrix A% is unknown as
long as parameters A, Ag, As and Ajp remain not determined in appropriate
tests.

Note that for an orthotropic laminate in virgin state, to get full information
on laminate stiffness — the four on-axis constants are needed. When the damage is
included, we also need to know four constants, which however can not be derived
from the tests carried out on a single ply (like in the first case), but on a laminate
as a whole. The first crack in a single ply means its final fracture and the damage
in such a sense as in the present paper can not be defined. Therefore, the plies
stacking sequence must be chosen in such a way which makes the calculations
possible, but on the other hand, as easy as possible.

5. ENGINEERING CONSTANTS FOR A DAMAGED LAMINATE

In order to determine the engineering constants, the compliance matrix S
must be determined. For symmetrical laminates, coupling and bending stiffness
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matrices are equal zero, therefore stiffness and compliance matrices satisfy the
“standard” relation:

S=A"li=A't
The current engineering constants of a laminate can be directly derived from
compliance matrix by use of the relations, given in [40]:

1 AnAa - Ad

s o At Ay
X 1 A
T B ooa A2
Gy = r Age, Vay =2

The above equations are adequate for any laminate configuration. For specific
class of laminates, i.e. cross-ply laminates, they can be expressed in closed form
and therefore, they have been used in calculation of “new” material parameters
A2, AG, Ag and A10.

5.1. Cross-ply laminates

It has been previously mentioned that, in order to calculate unknown param-
eters, laminate stacking sequence must be chosen in a specific way. The simplest
laminate configuration, which allows reaching this goal, is a cross-ply laminate
with 0° ply volume fraction vy and 90° ply volume fraction vgg, since in such
a laminate the damage develops in 90° ply only. The matrices A° and A? take
then the following forms:

[ K (vE1 + veoE?) ] [ Ao ]
K (vEs + vgo Er) Ag
G2 d Ag d
{ NS bl
Al 0 3 A 0 V-
0 0
L K E1 V21 .| = AQ p

For cross-ply laminates, by use of Eq. (5.1), after a number of straightforward but
rather tedious calculations, we finally get the desired constants in the following
form:

2
(5.2) EL=BE3 VS [Alo + As (Vé){]) = 2A2V§5],
2
(5.3) El=E3L + v [As + Ao (vgF)" - 2sz{,’£],
e VOL poL
(5.4) L e TR R PR

oL
Ey

(5.5) GL, =G3L+ v§ As.
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The factor Vod takes into account the volume fraction of the m-th damaged ply
and the damage within this ply; it is expressed as follows:

M
VOd = Z Um den
m=1

5.2. Material characteristics for a damaged laminate

The equations set (5.2)-(5.5) can be solved with respect to parameters As,
Ag, Ag, A1p. All the needed quantities one can determine from the tensile test of
a laminate specimen. The three unknown constants A, Ag, A1 have been de-
termined in unidirectional tensile test carried out on specimens of code [0/903]s,
manufactured from carbon/epoxy composite. Note that the testing procedure
must allow for continuous measurements of cracks within the 90° ply. The de-
tails of specimens’ preparation and their testing are given in the next chapter.

The constant Ag relating to a shear modulus only, has not been determined.
Besides, it was assumed that transverse Young’s modulus was constant, because
transverse cracks within 90° ply do not produce the change of transverse stiffness.
The procedure for the determining the parameters Aj, Ag, Ayp is shown in Fig. 4.

MEASUREMENT POINT """
o L L
Gi E xi Y xyi Pi

F1G. 4. The procedure of calculation of material parameters.

The following values of material parameters were found: 4 = —192.0 GPa,
Ag = —34.7 GPa, Ajp = —258.0 GPa. These values make possible calculations
of the current engineering constants of any laminate by use of Eq. (5.1).

6. TESTING PROCEDURE

6.1. Material and specimens

Specimens, shown in Fig. 5, have been manufactured from unidirectional
prepreg CFRE tape Vicotex NCHR 174B. Characteristics of a lamina in its
principal material axis are given in Table 1.
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Fi1G. 5. The specimen.

Table 1. Characteristics of Vicotex NCHR 174B unidirectional lamina.

Stiffness characteristics

Coefficients of

Strength characteristics : 3
linear expansion

E, E, G2 |2 | Xi X Y; ¥ S a1 s
[GPa] | [GPa] | [GPa] [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [1/°C] | [1/°C]
137.0: ] 10.0° |"-4:8:h013.]. 1531 . | <1390 41 145 98 311077 (3110°°

Rectangular laminate pieces, after forming the desired stacking sequence have
been laminated according to the composite manufacturer recommendations. We
used a standard testing machine equipped in a heating device and thermocouple
controlled by microcomputer system. All parameters of the lamination process

are shown in Fig. 6.

LAMINATION PARAMETERS
compression pressure 0.75 MPa

heating up to 120° C

heating rate 2° C/min
curing at 120° C by 60 mins.

cooling down to 60° C
"

under initial pressure

Fi1G. 6. Lamination of the specimen material.
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The laminated pieces were cut with the use of a thin, diamond coated cutting
wheel into two specimens of size 25 x 200 mm each. End tabs made of glass/epoxy
laminate were then glued using an epoxy adhesive film. Two sets of specimens
were prepared, namely [0/90,]s cross-ply and [-20/ +20/ —as/ —20/ +20/
+ag/ —20/ +20]s; angle-ply set. Their characteristics are given in Fig. 7 and
Table 2.

FiG. 7. Two sets of test specimens.

Table 2. Geometrical characteristics of test specimens.

Geometry Specimens set # 1 Specimens set # 2
A B C D E G H 1 2 3 4
¢t [mm] 2.46 0.48 | 0.74 | 0.98 | 1.22

W [mm]| | 24.38| 23.74| 24.66| 24.54| 24.75| 23.56 | 23.46 | 24.86| 24.96| 24.88| 24.98
a [deg], n 90 80 75 70 60 50 40 1 2 3 4

In order to reveal any defects occurring under applied load, specimen’s edge
surface has to be glossy and free of scratches. It was achieved by means of
a procedure of plane grinding and polishing based on a scheme proposed in [45].

b Ll

In all tests, the monotonically increasing tensile load was applied to the
specimens. The programmed and automatically controlled load rate was kept
constant up to the final failure of each specimen and was equal to 0.2 kN/min
(approx. 2% of ultimate load/min) for set # 2 and 0.5 kN/min (approx. 1.5%
of ultimate load/min.) for set # 2. The chosen, relatively slow rate allowed to
count the number of cracks at any, almost fixed load level.
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6.3. Testing instrumentation

The tension tests were performed with use of Instron testing machine equipped
with the head of 50 kN capacity. The longitudinal and transverse strains on the
specimen were measured with strain gauges HBM 10/120 LY 11 and HBM 10/120
XY 91. The current number of intralaminar cracks has been monitored in situ
through the optical microscope and camera. They were attached to a special
translation beam, equipped in a device for vertical shift, necessary for observa-
tion of a chosen reference section of specimen’s side edge. This instrumentation
allows for almost continuous measurements of cracks number, though it is con-
nected with some disadvantages caused by lack of automated system of data
registration and analysis. Configuration of the testing instrumentation is shown
in Fig. 8.

compensation gauges

Q

iy 0r microscope
‘ M Immw”l‘lﬁ [l el load
&, strain digig'Kb:*gggs & strain control
any piaosl Hewlett-Packard
load F control system
signal ».}
i e —
— |
S e e
v v
longitudinal strain / ~transverse strain load F
& read-out &; read-out read-out

F1G. 8. The scheme of testing instrumentation.

7. RESULTS AND DISCUSSION

7.1. Ultimate tensile strength

In Table 3 the ultimate load, stress, longitudinal and transverse strains and
average crack density are given for both specimens sets.

Ultimate crack density for set # 2 depends strongly on 90° ply thickness,
however the ultimate tensile load is nearly the same for all four specimens,
since it is determined mainly by undamaged, outer 0° plies. Thus, specimen
longitudinal strength is not significantly influenced by damage of the 90° ply.
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Table 3. Ultimate tensile load F, stress oy, longitudinal strain ey, ., transverse
strain et and average crack density pyi, for specimens set #1 and set #2.

Specimen Ultimate characteristics

Set| Name Code [Fkﬁ] [K/Pll:ta] E[It%ln 6['%1]1: 1 /fnm]
A [ -20/20/902/-20/20/902/—20/20] 35.0 | 582.7 | 0.82 | 0.148 | 1.310
B [ -20/20/-802/-20/20/802/-20/20]s | 33.9 | 580.0 | 0.85 | 0.166 | 0.960
C [ -20/20/-752/-20/20/752/-20/20)s | 35.1 | 579.0 | 0.83 | 0.219 | 0.812

1 D [ -20/20/-70,/-20/20/702/-20/20]s | 34.6 | 573.6 | 0.86 | 0.271 | 0.573
E [ -20/20/-602/-20/20/602/-20/20]s | 36.5 | 599.5 | 0.93 | 0.495 | 0.440
G [ -20/20/-502/-20/20/502/-20/20], | 34.3 | 592.2 | 0.99 | 0.816 | 0.333
H [ -20/20/-402/-20/20/402/-20/20], | 34.5 | 598.1 | 1.00 | 1.298 | 0.125
1 [ 0/90]s 10.9 | 914.3 | 1.12 | 0.045 | 2.020

9 2 [ 0/902]s 10.3 | 557.1 | 1.10 | 0.016 | 1.083
3 [ 0/903]s 10.2 | 416.7 | 1.07 | 0.011 | 0.860
4 [ 0/904]s 10.2 | 335.0 | 1.07 | 0.004 | 0.710

Ultimate strength for cross-ply laminates is shown in Fig. 9 together with the
results of standard evaluations based on the last ply failure concept, partial ply
discount method and the Azzi-Tsai-Hill criterion with regard to the temperature
effect caused by difference between the lamination and testing temperatures.
Theoretical predictions match the experimental data, regardless of ultimate crack
density.

1620 -=— longitudinal tensile strength 225
16319 e of unidirectional ply
S 1400 2 195 E
Z # strength (theory) .\E
'.a 1180 ¢ strength (experiment) 1.65 ;
g @ cracks density 8
[ =4 c
& 960 5 135 §
2 )
'Z» 740 . 2 e 1.05 ¢
S o
- ° .
£ 52 ¢ . 0.75 £
=
<
300 ' ' ' 2 0.45
0 2 4 6 8 10

number of 90 deg plies

F1c. 9. Ultimate tensile strength and crack density vs. number of 90° plies.
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The ultimate stresses for set # 1 are slightly different, what reflects the angle
dependence of ultimate strength, but differences are less than 4.5%. It is probably
caused by the fact, that volume fraction of damaging plies is 0.4, while it is 0.6
in case of untouched £20° plies. Strength dependence on average ultimate crack
density is shown in Fig. 10.

1531
650 v\ longitudinal tensile strength |

1.5
s of unidirectional ply I
630 1,2
—o— ult. strength I /
610 —@— ult. cracks density // 0,9

0,6
p

0,3

ult. tensile strength [MPa]
ult. cracks density [1/mm]

0

90

ply angle [deg]

F1G. 10. Ultimate tensile strength and crack density vs. damaging ply angle.

Taking into account Fig. 10 one can conclude that the strength is not in-
fluenced by damage of +ay plies. It should be noticed that they are strongly
constrained by intact plies, and that factor together with the volume fraction
aspect mentioned earlier may be an explanation of that supposition.

7.2. Longitudinal Young’s Modulus and Poisson’s Ratio

An example of the standard procedure for estimation of a laminate stiffness
changes, based on strength analysis [30], is shown in Fig. 11. Partial ply dis-
count method (PPDM), last ply failure concept and Azzi-Tsai-Hill criterion are
used in calculations. The substantial differences — both quantitative and qual-
itative — between the longitudinal Young’s modulus (abbreviated to YM) and
Poisson’s ratio (abbreviated to PR), calculated on PPDM basis and those taken
from tests are easily visible. It is a general observation that PPDM underesti-
mates the stiffness of a damaged laminate. The other observation is that PPDM
leads to a somewhat unreasonable prediction of “step” change of the engineering
constants instead of the gradual as it is observed in tests.

In Figs. 12 and 13 dimensionless (ratio of actual value to the initial one) YM
and PR, as well as cracks density are plotted as functions of the applied load for
all four cross-ply specimens.
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Fi1G. 11. Dimensionless YM and PR — theoretical predictions and test data.
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FiG. 12. Dimensionless YM and PR - theoretical predictions and test data.

The reduction in PR is as big as 50% for [0/90]s specimen and 90% for
[0/904]s. It follows from the very beginning of the loading process, but more
detailed analysis of experimental data show that PR is reduced more when the
load increase is accompanied by growth of cracks density.

For the specimen [0/90]s we have noticed - instead of the expected reduction
— a very small (max. 2.5%) increase of YM. We observed at crack tips very short
interlaminar cracks at 0/90 boundary and the resulting partial delamination at
specimen free edges, which has intensified with increasing multitude of cracks.
Recalling that longitudinal YM of cross-ply specimen is decreased by 90° ply
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Fic. 13. Dimensionless YM and PR - theoretical predictions and test data.

when compared with unidirectional 0° ply and taking into account that strain
gauges were placed on the surface of 0° ply, we assume small scale delamination
as the reason of slight increase of the measured YM values.

Let us notice that reduction of the engineering characteristics is the largest
for the thicker specimen, while the number of cracks in this specimen is the
smallest. Thus, stiffness changes are not only damage, but also damaged ply
volume fraction — dependent. One can observe also that the onset stress for
matrix cracking initiation is inversely related to the thickness of cracking 90°
ply (it is confirmed e.g. in [27]). It allows to conclude, that it is reasonable to
divide 90° plies of cross-ply laminates into groups of thin plies, instead of forming
one thick block of 90° orientation.

The mechanical behaviour of the specimens set # 1 is in general quite differ-
ent when compared with the set # 2. Dimensionless YM, PR and crack density
for specimens A and H are shown, respectively, in Figs. 14 and 15.

In all cases the measured PR increases with the applied load and the resulting
crack density increase. It is different than in cross-ply specimens. Instead of the
expected reduction of PR accompanying the damage growth, we observed its
progressive growth. In case of specimen A — maximum growth of PR was equal
to approx. 3.5% and crack density was the greatest, while in case of specimen H
in which we observed only single cracks it was as big as 18%. From the above
considerations it follows, that growth of PR is caused by laminate layout and
damage mechanism possibly different from that being considered. Intralaminar
cracks could only reduce this growth, but they were not able to cause absolute
reduction of PR. Results reported in [4] for laminates stacking sequence [01/62]s
<confirm this phenomenon.
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F1G. 14. Dimensionless YM, PR and crack density vs. stress for set # 1 specimen A.
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FiG. 15. Dimensionless YM, PR and crack density vs. stress for set # 1 specimen H.

For specimens A, YM is nearly constant and equal to the initial value within
the entire range of applied load, despite the numerous cracks. Thus, actual values
of the modulus do not depend on damage state. For specimen H we observe a
reduction of YM equal to approx. 9%. However, it cannot be explained by damage
growth, as crack density in specimen H is the smallest in comparison with the
remaining specimens of set # 1.

Let us notice that we never observed cracks in fixed plies of +20° orienta-
tion. Within plies +40° (Fig. 15) we found only individual cracks, thus one can
conclude that in the considered case the damage mechanisms connected with
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formation of intralaminar cracks cannot develop in plies specified by angle less
than approx. 40°. One can expect existence of such threshold angle also for other
laminate configurations.

From Figs. 12-15 it follows, that the YM predicted by proposed theoretical
model matches the test data with very good accuracy for each cross-ply specimen
and for most of the angle-ply specimens. Theoretical predictions and test data
do not differ by more than 10%.

However, it must be pointed out that for angle-ply specimens the dependence
of YM changes on the crack density was doubtful, if any. In one case YM was
almost constant within the entire range of applied load, despite the numerous
cracks and in the other one we observed reduction of YM equal to approx. 9%,
whilst only single cracks have been visible. For the last case the present model
was not able to predict the YM change. It is a direct consequence of the fact, that
for a low crack density (or no crack at all) — a model must deliver the same result
as for a nearly virgin material (or entirely virgin) and in fact, it does. Therefore,
the observed mismatch does not mean that the model is unreasonable.

Fitting of the calculated and measured PR is in general not as good as in
the case of YM, but is significantly better than that given by PPDM. For cross-
ply specimens the maximum difference between predictions given by theoretical
model and test results is reaches approx. 30%, but in most cases is much less. For
most angle-ply specimens, instead of expected PR reduction (predicted for the
applied model), its progressive increase was observed, but maximum differences
have not been drastically big, as they were within the range 3+18 %.

8. CONCLUSIONS

The influence of intralaminar cracks in carbon/epoxy laminates of two ori-
entations on the strength and engineering characteristics has been investigated.
Theoretical analysis and experimental data allow to conclude that:

e longitudinal strength is not considerably influenced by damage of 90° plies
in cross-ply laminates and +ag plies in the other orientation being consid-
ered, ;

e for cross-ply laminates both YM and PR are reduced due to a damage
development in 90° ply. PR is much more sensitive to crack density than
YM,

e in order to avoid the significant stiffness reduction in cross-ply laminates
— 90° plies should not be formed in thick blocks,

e for angle-ply laminates being considered, influence of developing damage on
the engineering characteristics is insignificant, if any. Despite the damage
development, the growth of PR was observed, while reduction of YM was
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noticed only for specific orientations and probably was caused by reasons
other than intralaminar cracks,

e stiffness changes not always may be an appropriate measure of damage

state in composite laminates, contrary to the isotropic materials, for which
it is generally accepted measure,

e the results obtained from applied theoretical model are in good agreement

with experimental data especially for cross-ply laminates — it can be seen
as confirmation of correctness of the theoretical description.
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