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The influence of microcracks distribution on macroscopic elastic properties of composites
with a specific structure is studied. The model predicts the properties of laminates made of
materials in which fracture process leads to appearance of many microcracks distributed prac-
tically uniformly. The method of solution is based on the so-called reiterated homogenization
with two different scales of inhomogeneities. The smaller scale is connected with microcracks
size. After homogenization performed with the help of FEM an anisotropic homogeneous elastic
material is obtained. The anisotropy is implied by directional distribution of microcracks. On
the second larger scale, random mixture of two or more different anisotropic elastic materials
is considered.

1. INTRODUCTION

Initiation of fracture processes in some elastic materials such like plastics
is associated with appearance of microcracks. For instance, one can easily ob-
serve without any special instruments the loss of transparency in polyethylene
rods subject to cyclic bending. If the distribution of small cracks is “dense” in
some sense, the description of effective properties of such a fissured material
involves a homogenization procedure. We mean by homogenization the method
which enables to predict the macroscopic behaviour of material in which the
“inhomogeneities”, in this case cracks are smeared out. Homogenization meth-
ods were already applied to such types of problems, cf. the book of LEWINSKI
and TELEGA (3] and the references therein. Theoretical considerations for find-
ing the effective properties of elastic matrix weakened by randomly distributed
microcracks with Signorini-type conditions on the crack lips were performed in
[5, 6]. The effective behaviour in that case demonstrates nonlinearity, namely
the elastic constitutive law is “piece-wise linear”.
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The present contribution is based on the results of the mathematical the-
ory of homogenization. First, the effective anisotropy caused by the periodic
distribution of thin rectangular voids is calculated by the FEM. Next, for a spe-
cific microstructure, the influence of anisotropy on effective elastic behaviour is
studied. We analyze the dependence of effective moduli on such geometrical pa-
rameters like length of the crack, or angles between two directions perpendicular
to differently oriented families of uniformly oriented cracks. The model is ap-
plied to finding the distribution of microcracks which minimizes (or maximizes)
the stresses in a material element. The proposed model is a hybrid model which
combines the periodic homogenization with random homogenization, cf. [1, 4]
To perform numerical calculations and control the geometrical parameters, the
necessary idealization was assumed.

2. ANISOTROPY CAUSED BY MICROCRACKS DISTRIBUTION

The first step is to calculate the effective elastic behaviour of a fissured elastic
matrix. To perform it, we solve the problem of periodic homogenization. In
this case, the effective elasticity tensor Cihjkl is calculated from the following
formula:

ax("m)

(2.1) Czhjmn = (Cijmn) + <Ciqu_82q— ;
where
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Y - periodic functions xp are the solution to the following local problem
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The elementary unit periodic cell Y, |Y| = 1 is depicted in Fig. 1.

The parameter a denotes the length of a single crack. The crack is modeled
by a “thin” rectangular void in which the ratio between sides is ca. 0.01. The
solution to Eq. (2.3) is obtained by FEM and the anisotropic effective elastic-
ity tensor is calculated from Eq. (2.1). This tensor exhibits anisotropy due to
the directionality of cracks distribution. We observe that if a approaches 1, the
technical constants calculated from Hooke’s tensor behave in agreement with the
fact that the material is cut along the lines parallel to the 0z-axis, cf. [2].



INFLUENCE OF ANISOTROPY INDUCED BY...

Yy

Fic. 1. Elementary unit cell.

Y1

D matrix
D cavity

a 0.8 0.9 0.95 0.99 0.9999
E, 0.724 | 0.724 | 0.723 | 0.723 0.723
E, 0.706 0.684 | 0.662 | 0.585 0.032
Es 0.724 | 0.724 | 0.723 | 0.723 0.723
20 0.449 | 0.435 | 0.412 | 0.373 0.020
V21 0.460 | 0.460 | 0.460 | 0.460 0.460
Vi3 0.460 | 0.460 | 0.460 | 0.460 0.460
V31 0.460 | 0.460 | 0.460 | 0.460 0.460
V93 0.460 | 0.460 | 0.460 | 0.460 0.460
V39 0.449 | 0.435 | 0.421 0.373 0.020
G2 | 0.239 | 0.228 | 0.209 | 0.124 0.002
Gi3 0.248 | 0.248 | 0.248 | 0.248 0.247
Ga3 0.230 | 0.220 | 0.205} *0.125 0.002
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3. A RANDOM STRUCTURE WITH FIXED DIRECTION. LAMINATION FORMULAE

The fact that random structure of a two-phase composite can be approached
by multiple rank coated lamination process is examined in [1, 4]. In general, the
number of parameters which should be determined is infinite. The simplest case
where randomness appears is a laminate of rank one. In this case, the direction
of lamination is fixed and the probabilities of finding the phases in this direction
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are given. If the number of phases is greater then 2 (or there is continuous distri-
bution of inhomogeneities in the direction n), our elegant formula (in absolute
notation) gives the effective elastic tensor of random laminate:

(1) c"=(e)~{(c-n)-(n-c-n)"(n-c))
+((c-n)-(m-c-n)7)((m-c-n)™) ((n-c-n)! (n-c))

where - denotes simple contraction and () denotes the expectation value in
the sense of probability theory. Using the formulae for multiple lamination
(cf. [3]) one can obtain the variety of random geometries. Here we study simple
examples which show the influence of anisotropy resulting from the microfis-
sures distribution. First, we calculate the effective properties of directionally
uniformly distributed cracks. The effective material properties are transversally
isotropic. Below, the technical constants of a cracked matrix are compared with
technical constants of an uncracked one (the length of every crack is equal
to 0.9):

Ey |E; |E3 |vig |va |13 |vs1 |ve3 |vse |Gra |Gis |Gos
cracked 0.5610.56 | 0.72 [ 0.56 | 0.56 [ 0.46 | 0.36 | 0.46 | 0.36 | 0.18 [0.120.12
uncracked | 0.73]0.73 |0.73 [ 0.46 [ 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.50 0.50]0.50

The second structure of a random composite which is considered here is a
layered medium composed of two anisotropic elastic materials. One describes the
distribution of cracks parallel to the 0z-axis, whereas the second microstructure
is generated by cracks of differents orientations, cf. Fig. 2.
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F1G. 2. Layered structure of cracked material.
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To calculate the effective properties of layered structure we use the inditial
notions of (3.1) in the following form:

(3:2) Cly = (Cijpg(y1)) — (Ciji1(y1) Skm (Y1) Crmpq(¥1))
+ {Cij1 (Y1) Skr (¥1)) (Srm (¥1)) ™ (Smn (¥1) Cinpg (1)) -

where Sjx(y1) = (Cijk(v1)) ™"

As a result we get the anisotropic elasticity tensor and all technical moduli
are found. They are functions of the length of the microcrack a, fraction £ and the
angle a between the anisotropy axis and Oz-axis. In Figs. 3-12 the dependence
on the angle a of the effective technical moduli for £ = 0.5 is depicted.

0.7-“,
0.65; “
0.6

0551

07{ =
o‘es-"_‘
06] /_— i
0s5] \/ \ni

0.51 “ 7 y

0451

0 05 1 15 2 25 3

F1G. 4. E} versus angle .



368 B. GAMBIN, A. GALKA, |J.J. TELEGA |, S. TOKARZEWSKI

h
&3 a=038
0.7242
0.7241
0.72381 aed 9
0.72361 — Do
Vs a=0095
0.72321 Mo ey
a=0.99
0.7231 P T :

B 085 4% o W0 oo 185s8
F1G. 5. E} versus angle o.

12
056
0541 TR
052¢. -/

054
0487
0469 /i
0441 "  a=0.99
042 2

047

F1G. 6. vl versus angle a.

v h
“ a=0.99
o3  a=095
&
0.557 \
\ / !
| e W
os{ /f ! g a=08
i/ am0g \ # \
0451 oY
T T n T T T .
0. 0% 15 2 28 3

F1G. 7. v¥ versus angle a.



INFLUENCE OF ANISOTROPY INDUCED BY... 369

31
046+,

044 \
042{ |
04 |1
0387
0.36
0.34
0324

h

Vi
044
042 . a= 0.9 a=0.8
043\ — Y1
0.381 / g

a=0.95

0.367 :
0.341 ‘
0321 /
i {a=0.99
0283 T T T T T —

a=038
0.31

0257 N7/ a=00 / ,

a=09 7
Q2 ssvtiss Ll BEOAESON
0151 a2=0.99

: : . y — (],
0. 05 1 15 2 25 3

F1G. 10. G%, versus angle a.



370 B. GAMBIN, A. GALKA, | J.J. TELEGA |, S. TOKARZEWSKI

25 3

o
o
(8.}
-
N
[8,}
N

0.244
0224—"

021

0.187

0.16 - R Ny
0.141

FI1G. 12. G%; versus angle a.

The Poisson coefficients v}, and vl do not depend on the orientation o of
cracks distribution.

4. DISTRIBUTION OF MICROCRACKS WHICH MINIMIZE (OR MAXIMIZE)
THE STRESSES

To consider the influence of crack distribution on different states of stresses
we calculate the hydrostatic pressure:

1
B= 5(011 + 029 +033)
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where ag = 0yj — 1/30kx0;; denotes the deviator of the stress tensor. The hy-
drostatic pressure and reduced stress are calculated for different strain states.
The upper indices of p and & written below denote the corresponding strain:
1 = €11, 2 €22, 3 = €33, 12 = €12, 13 = €13,23 — €23. The dependences on
the angle o (crack orientation, see Fig. 2) of pressures and reduced stresses are
depicted in Figs. 13-16. The fraction ¢ = 0.5.

and the reduced stress:
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F1G. 14. Hydrostatic pressure versus angle a.
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F1G. 16. Reduced stresses versus angle a.

5. CONCLUSIONS

Figures 13-16 can be used for the determination of microstructure render-
ing minimal or maximal values of the hydrostatic pressure and reduced stresses.

If the cracks are mutually orthogonal, the hydrostatic pressure p? and reduced
23 ol2 pl3

02 o " 4 4 1 . o e
stresses 0 and o achieve maxima whereas p', 0 , ¢ achieve minima.
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012 5 . :
The stress 0 achieves maxima value for a = /4. For the same microstructure

1
the hydrostatic pressure p'? is maximal. The reduced stress ¢ reaches maximum
for parallel distribution of cracks whilst minimal values are reached for cracks

distributed at angle greater than w/4. Finally, the reduced stress 32 achieves
minimum for cracks distributed at angle smaller than 7/4. The results of us-
ing our costless semi-analytical numerical procedures (in Maple) were compared
with calculations made in [7-9] by standard FEM (with more than 1000 ele-
ments in periodic cell) and the agreement of the results is quite satisfactory; the
differences appeared on the 4-th decimal place. The main value of the presented
paper consists in opening the way of costless calculations of more complicated
microcracks distributions, and in possible applications in continuous damage
micromechanics, cf. eg. [10-11].
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