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The problem of dynamic stability of an elastic column with pinned ends subjected to non-
stationary compressive axial loads is considered. The method of optimal Lyapunov functions
for differential inclusions is applied to obtain sufficient conditions of stability of the column
in the case of bounded loads. The obtained results, improving and generalising the classical
solutions to the dynamic Euler problem, may be useful in designing civil engineering structures
and mechanical systems consisting of compressed columns. The possibility of optimisation of
the column characteristics with respect to its stability properties (e.g. stability margins in the
space of parameters) is pointed out.
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1. INTRODUCTION

Elastic columns subjected to axial loads are basic components of many civil
engineering structures and mechanical systems. There exists the crucial problem
of stability of such columns. It is well known that if the equilibrium of a column
subjected to a constant compressive axial load Fy is disturbed, then it will return
to its original position unless Fy is not greater than the critical load F; of the
column. However, the column becomes unstable if its load is greater than the
critical load. In such a case, a sudden change in shape and size (called buckling)
takes place. Since the column buckling is one of the major causes of failures of the
structures, the possibility of buckling is usually taken into account in designing.
However, elastic columns utilised in civil engineering structures such as bridges
and towers, working in changing environmental conditions, are usually subjected
to non-stationary, unpredictable (e.g. moving) loads. In such a case, the column
instability may occur also for sub-critical static loads. Therefore, many complex
problems of stability of an elastic column subjected to non-stationary axial forces
have been considered since many years [1, 2, 3.
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Although certain partial results in this subject (e.g. for the so-called dynamic
Euler problem of stability of a column under sinusoidal load [1, 2]) are known,
no estimates of the stability region of the column under general non-stationary
loads are available [3]. However, real loads rarely are exactly harmonic. Even
the varying loads of the bridge columns caused by a moving train may not
be harmonic loads. That is why the particular results concerning the column
stability are usually not applicable in engineering practice.

In this work the problem of stability of the column as an Euler beam loaded
by a general non-stationary compressive force is considered. The compressive
force is supposed to be bounded and no other properties of the load, such
as: periodicity or its stochastic characteristics are assumed. Therefore the ob-
tained results can be applied to any practical situation. In order to obtain
the stability estimates, the method of optimal Lyapunov functions is applied
[4-5]. Improvements and generalisations of the classical results in this subject are
presented.

2. MATHEMATICAL MODEL OF THE LOADED COLUMN

Let us consider an axially symmetric, elastic and homogeneous column of
length L and with pinned ends. Applying the classical Euler theory of elastic
beams, the column dynamics can be described by the following partial differential
equation:

07 d*w(z,t) 0*w(z,t)
S [1 > 265] —ga T+ AWM —5
ow(z,t) Pw(z,t)
+2D—— + M—— 55— =0,

where EJ is the bending rigidity of the column, ¢, D are the coefficients of
intrinsic and external attenuation, respectively, M = pS is the mass coeffi-
cient, Fp is the constant component of the external axial column load, whereas
Fi(t) is its time-dependent component. It is logical to assume that the non-
stationary force Fj(t) is bounded i.e. there is a constant o > 0 such that
|F1(t)| < a < Fy for all t > ty. This condition ensures that the loading forces
are always compressive.

If the non-stationary loads were fixed, i.e. described by a determined time-
dependent function Fj(t), then Eq. (2.1) with a variable coefficient would be
an appropriate model of the column dynamics. However, if the function Fj(t)
is not uniquely determined and only its boundness is assumed then, in order to
determine the column stability for time ¢ > o, we have to study the stability
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of the following differential inclusion:

' w(z,t) 0%*w(z,t) 0 0*w(z,t) ow(z,t)
) G B, R
2
v P800 (TR0 < g,

where fo = Fy/EJ, fi(t) = Fi(t)/EJ, up = pS/EJ = M/EJ, d = D/EJ. The
normalised force f;(t) satisfies the bounding condition | f1(¢)| < a/EJ = S for all
t > to. The assumption concerning pinned ends of the column can be expressed
by the following boundary conditions:

(2.3) w(0,t) = w(L,t) =0,  8*w(0,t)/dz* = 8*w(L,t)/0z* =0,

that should be taken into account in the stability analysis.

3. DISCRETISATION OF THE PROBLEM

It is convenient to study the column stability by using the second method of
Lyapunov. To do this, let us transform the continuous model (2.2) of the beam
into a discrete model represented by an infinite system of ordinary differential
inclusions. This can be done by variables separation. Indeed, looking for partial
solutions of the form &(z) - g(¢) and putting it into inclusion (2.2) one obtains
the following inclusion:

?V(@) , @) fo-g(t) 2§ 1)
5@ 0@ gO+2%30 gO+2G0

udffan LSRN Sl
g(t)+2c-g(t) ®(z) g(t)+2c-g(t)
It is easy to see that only the sinusoidal modal functions:
(3.2) P, (z) = sin [wpz], W ELT’ i o g
where w,, — the spatial frequency of the n-th mode, satisfy boundary conditions
(2.3) and enable us to separate variables z, ¢t. In fact, putting (3.2) into inclu-
sion (3.1) one obtains the following set of ordinary differential inclusions for the
corresponding time-dependent functions gy (t):

(3.1)
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The above system, together with the set of modal functions (3.2), is equivalent to
the original problem described by differential inclusion (2.2). Thus the problem
of stability of the column under non-stationary loads has been transformed to the
stability problem of the infinite family of linear oscillators with non-stationary
stiffness excitations.

4. STABILITY OF THE COMPRESSED COLUMN WITH PINNED ENDS

It is obvious that the stability analysis of the beam should be performed for
sub-critical constant loads fy < w? = 7%/L? i.e. for the constant component Fy
of the column load below the critical value 72 - E.J $ .

In order to prove stability of system (3.3) it is necessary to do this for each
non-stationary oscillator (inclusion) numbered by n = 1,2, ... Since, the differ-
ential inclusions describing the oscillators have the unique standard form con-
sidered in the Appendix; it is possible to apply directly stability estimates (A.3)
for the following sets of the corresponding parameters:

d+ cw? w?
B Pn Ty o q=qn=7“[wﬁ,—fo],
(4.1)
wp

r=r,=—".0, L=t 5
1

Hence, the stability region of the column in the space of parameters is determined
by the following inequalities:

(4.2) (pn > (gn/2) Y2 and Tn < Qn)
or (pn & (qn/2)1/2 and 7, < 2pp\/gn — p? ), =il 2, ...

It is easy to deduce from (4.1) that the conditions Tn < gn, Tn < 2Pn\/qn — P2
provide certain bounds on the non-stationary part of the column load while
the remaining conditions in (4.2) — certain constraints on the parameters of the
column and the stationary part fo of the load.

The subsequent conditions in (4.2) ensure stability of the corresponding in-
dependent vibration modes ®,(z) - gn(t), for n = 1,2,... . Thus, in the general
case, the stability conditions of the column are determined by the infinite set of
inequalities (4.2). The question is how to check all the stability conditions and
describe them in a finite closed form easily applicable in practice. In scientific
papers usually stability of only a few first vibration modes of the column with a
harmonic axial excitation are studied (e.g. [1, 2]). It is explained here below why
such an approach is justified in the general case of non-stationary compressive
loads.
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To prove this, let us divide the set 2 = {w, : n = 1,2,...} into two dis-
joint subsets 2%, 2~ containing eigen-frequencies satisfying the condition p,
> (gn/2)"/? and the opposite condition, respectively. It is easy to prove that the
conditions p, > (gn/2)'/%, n = 1,2,... are equivalent to the following inequalities:

(4.3) Glal) 28 »n=12.,
where
(4.4) G(2) =2t - (g - 2cd) 22+ H—z—ﬁ)z + d?, i>0

Since the intrinsic attenuation in real beams is non-vanishing, the parameter c
is positive, i.e. ¢ > 0. Thus the polynomial G(z) of order four takes positive
values for sufficiently large z. Hence, the set 2~ must be either empty or finite,
contrary to the set £27.

Similarly, since each condition 7, < g, determines the following simple bound

(4.5) B <wk— fo=n?n%/L% - fo

on the non-stationary part of the load, only the minimum eigen-frequency
wm € 27 is essential for the column stability. Thus, in the general case, in order
to determine the beam stability one should check the unique condition 7, < g,
for wy, € 27 and, at most, a finite number of conditions r, < 2pp+/gn — p2 for
all w, € £27. This can be easily done for any fixed loads and parameters of the
column. However, as it is seen, the vibration modes taken into account in the
stability analysis cannot be chosen arbitrary but should be deduced from the
values of the system parameters and the positive roots of the polynomial G(z).

5. SUFFICIENT CONDITIONS OF THE COLUMN STABILITY

In theory and practice it is usually not satisfactory to prove merely the sta-
bility of a system. For example, if one wants to determine stability margins of
the column under study or perform its parametric optimisation at the design
stage, then it is necessary to know stability conditions for unfixed parameters of
the column. However, in the general case, it is difficult to solve inequality (4.4)
exactly and obtain simple practical results. Therefore, in order to obtain general
analytical results one can apply certain approximations.

There are a few methods for approximate solving of the infinite system of
inequalities (4.2). For example, in order to obtain sufficient conditions of stability
of the column, one can replace the conditions pn < \/qn/2, Tn < 2pp+\/qn — P2,
1=1,2... by the following simplified inequalities:

(51) Pn < qn/za T < Pn V 2Qn7 1= ]-a 2’ oo
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Since, by definitions (3.2), (4.1), both {p,} and {g,} are increasing sequences, it
suffices to take into account only the first condition (for n = 1) of the form (5.1).
Hence, putting (4.1) into (5.1) for n = 1 and combining it with the condition
(4.5) (for n = 1), one finally obtains the following sufficient condition for stability
of the excited column:

(5.2) [ < min wf—fo, (d+c~wf)-\/2[1—(f0/wf)]/u].

Thus in the case of the general compressive loads it is possible to deduce the
column stability from the stability of the first vibration mode. The estimate
(5.2) is valid for any values of the column parameters and loads. It is however
important to note that condition (5.2) is an approximate result and it may not
be the necessary condition for the column stability.

Another estimate of the stability region follows from the fact that, inde-
pendently of the attenuation coefficients ¢, d, there is an upper bound for the
non-stationary part of the column load, namely 8 < Bmax = w?— fo = 7%/ L%~ fo.
Therefore, it is necessary to find such constraints on the column parameters that
ensure the stability for the | fi(t)| < Bmax. In order to do this, let us apply the

following approximate conditions G4(w2) >0, n=1,2,..., where
(5.3) Gy (2) = ?2* - (% = 2cd) & b '2f°wf Sk

It is clear that the condition G4(z) > 0 implies G(z) > 0 for any 2z > w?.
Moreover, the bi-quadratic inequality G4(2) > 0 can be exactly solved. In-
deed, one can easily prove that the conditions G4(w2) > 0, n € N are valid if
< 8c (d +.c:- fowf), i.e. for sufficiently large attenuation of the column. Thus
one obtains the following sufficient stability conditions of the column:

(5.4) B<wi—fo=n*/L*—fo, p<8c(d+c- fowd).

It is also possible to obtain interesting estimates of the stability region of
the column in certain particular cases with vanishing intrinsic or external at-
tenuation, namely: Case 1 (¢ > 0, d = 0), Case 2 (c =0, d > 0). Despite
the fact that in real systems attenuation is never vanishing, the above cases are
interesting from the formal as well as the theoretical viewpoint.

CASE 1. (¢ >0, d =0) (neglected external attenuation of the column)
In this particular case the function G(z) is a homogenous polynomial i.e.

(5.5) G(z) = c?2* - %zQ B 'quoz.
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Hence, the condition G(z) > 0 for z > 0 is equivalent to the following inequality
of order three:

(5.6) G3(2) = 225 — %z o .2f0 >0,
which can be solved exactly so that the necessary and sufficient conditions of
stability can be found in this case. However, in order to obtain simple practical
results, let us consider here the problem of stability of the column with the
maximal bound on the load 8 < Bmax = w? — fo.

It can be easily proved that G3(z) > 0 for all z > 0 if and only if
> (27/2) - ¢ - f&. Hence, one can finally obtain the following sufficient condi-
tions of the column stability:

27
(5'7) B < Binax = wl fo, u< 7 : szg‘
CASE 2. (c=0, d > 0) (neglected internal attenuation in the column)

In this case the polynomial G(z) is of order two, i.e.

(5.8) G2) =G2(2) = —g iy 2f0 z+d°

Hence, the condition G(z) > 0 reduces to the simple quadratic inequality. How-
ever, the function G3(z) has always the unique positive root

(5.9) 29 [fo 7. ‘/fo 5 Sl;iQZI

and Go(2) < 0 (> 0) for z > 2z (0 < z < z). That is why, in this case,
it is not possible to study the column stability only under the assumption
Ifi(®)] < PBmax = w? — fo and the condition r, < 2pn\/gn — p2 has to be
taken into account.

Ifw1 < 2z then there is k > 1 so that Go(w?) > 0 for i = 1,...,k — 1 and
G2(w?) < 0 for i > k. Then, combining (4.1), (4 2), one can conclude that the
1nequa11ty

: 2
(5.10) B < min [wl fo, — _M Qfo ——4-:|
e s

is the necessary and sufficient condition for the column stability.
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Similarly, if w? > zp then V(k € N ) G2 (w?) < 0 and the necessary and
sufficient condition for the column stability takes the following form

. d?
(5.11) B < %\/u—"—f’—j.

Wy w

6. CONCLUSION

The obtained estimates of the stability region of the excited columns not
only improve the analogue results (obtained for periodic loads) available in the
literature but also provide new analytical formulas that are valid for any non-
periodic compressive load of the column. Applying the obtained formulas it is
possible to determine the stability margins for any real column and perform
parametric optimisation of a column at the design stage.

The results have confirmed the hypothesis that it suffices to check the stability
of a finite number of vibration modes of the column in order to decide on its
stability. However, the vibration modes that have to be taken into account in the
stability analysis are not arbitrary but they depend on the column parameters
and characteristics of the column load.

APPENDIX A.

In the analysis of many practical cases, the problem of stability of the linear
oscillator

(A1) Y+2p-y+(g+2(t) -y=0,

with a non-stationary bounded excitation z(t), |z(t)| < r of the stiffness para-
meter has to be considered. There are known particular results in this subject,
for example in the case of a harmonic excitation of the stiffness (1, 2]. However,
estimates of the stability region in the general case of a non-stationary stiffness
excitation are not so well known. Therefore we have presented here the general
results obtained by using the method of Lyapunov functions.

It is obvious that equation (A.1) with undetermined perturbations z(t) is
equivalent to the following differential inclusion

(A.2) Y+2p-g+q-ye{z(t) y:|2()| <r}.

According to the Lyapunov approach to stability of differential inclusions
there is a critical perturbation z(¢) which enables to reduce the problem to the
stability analysis of differential equation (A.1) with the determined perturbation
z(t) = Zer(t).
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The existence of the critical perturbation for inclusion (A.2) is proved for
example in [4, 5]. In the result the following inequalities:

(A3) (p>(g/2)Y? and r<gq) or (p< (g/2)"? and r < 2p\/q —-p?)

are found as conditions determining the stability region of the oscillator in the
space of parameters (p,q,T).
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