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The main objective of this paper is to survey some recent developments in the constitutive
modelling of inelastic polycrystalline solids, which may be used for the description of impor-
tant problems in modern manufacturing processes, and particularly for mesomechanical issues.
This description is needed for the investigation by using the numerical methods how to avoid
unexpected plastic strain localization and fracture phenomena in manufacturing technology.
Since modern manufacturing processes lead to very complex states of stress and deformation
for a solid body under consideration, then in the description we have to take into account
the influence of stress triaxiality and plastic spin effects. In this paper emphasis is laid on
experimental and physical foundations as well as on mathematical constitutive modelling for
the description of localization of plastic deformation and various modes of fracture phenomena
in polycrystalline solids. The description of kinematics of finite deformations and the stress
tensors is given. The development of a thermo-elasto-viscoplastic model within the thermo-
dynamic framework of the rate-type covariance constitutive structure with finite set of the
internal state variables is presented. Particular attention is focused on the determination of
the evolution laws for the internal state variables. Fracture criterion based on the evolution
of microdamage is formulated. By assuming that the mechanical relaxation time is equal to
zero, the thermo-elasto-plastic (rate-independent) response of the damaged material can be
accomplished. The thermodynamical theory of elasto-viscoplasticity of polycrystalline solids
presented has important features as follows: (i) invariance with respect to diffeomorphism;
(ii) finite plastic deformation and plastic spin effects; (iii) plastic non-normality; (iv) soften-
ing effects generated by microdamage mechanism; (v) plastic deformation-induced anisotropic
effects; (vi) thermomechanical couplings (thermal plastic softening and thermal expansion);
(vii) influence of stress triaxiality on the evolution of microdamage; (viii) rate sensitivity;
(ix) length scale sensitivity; (x) regularization of the evolution problem; (xi) dissipation and
dispersion effects; (xii) synergetic effects generated by cooperative phenomena. All these fun-
damental features have been carefully discussed. It should be noted that the very important
part of constitutive modelling is the identification procedure for the material functions and
constants involved in the constitutive equations proposed.

1. PROLOGUE

In this paper emphasis is laid on experimental and physical foundations as
well as on mathematical constitutive modelling for the description of polycrys-
talline solids in modern technological processes.
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The understanding of the physical origin and nature of the plastic behaviour
of polycrystalline aggregates constitutes one of the major problems in modern
materials science.

Modern manufacturing processes generated constitutive modelling of inelas-
tic polycrystalline solids, which may be used for the description of important
problems. This description is needed for the investigation by means of numer-
ical methods how to avoid unexpected plastic strain localization and fracture
phenomena in manufacturing technology.

Advances in computing as well as measurement instrumentation have re-
cently allowed for the investigation of a wider spectrum of physical phenomena
in dynamic failure than those previously possible. With increasing demand for
specialized lightweight, high-strength structures, failure of inhomogeneous solids
attracts increased attention.

On the other hand, application of metals and polymers at mesoscale (a size
scale that ranges from a fraction of micrometer to 100 pum) are recently multi-
plying rapidly. There is a considerable experimental evidence that plastic flow
and particularly fracture phenomena in crystalline solids are inherently size-
dependent over mesoscale range. However conventional continuum mechanics
models of inelastic deformation processes are size scale-independent. The rela-
tively large numbers of dislocations governing plastic deformation at the micron
scale motivate the development of a continuum theory of plasticity incorporating
the size-dependence.

The elastic-viscoplastic theory can be developed for this purpose. Based on
experimental observations we can suggest that intrinsic microdamage processes
very much depend on the strain rate effects. A microdamage process is treated
as a sequence of nucleation, growth and coalescence of microcracs. Microdamage
kinetics interacts with thermal and load changes to make the failure of a solid a
highly rate-temperature- and history-dependent, nonlinear process.

Since modern manufacturing processes lead to very complex states of stress
and deformation for a solid body under consideration, then in the description we
have to take into account the influence of stress triaxiality and plastic spin effects.

It would be unrealistic to include in the description all the effects observed
experimentally. Constitutive modelling is understood as a reasonable choice of
effects, which are most important for the explanation of the phenomenon de-
scribed.

In recent years several models have been proposed to predict the deformation
textures, large plastic deformation, strain hardening and strain softening behav-
iour of polycrystalline solids based on the known behaviour of single crystals.
The possibility of making such a prediction rests on the tacit assumption that
the main mechanisms of plastic deformation in polycrystalline aggregates are
substantially identical with those observed in single crystals.
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Recent experimental observations and theoretical investigations have shown
that the synergetic effects have great influence on the behaviour of inelastic single
crystals. Particularly the adiabatic shear band localization in single crystals is
affected very much by cooperative phenomena, cf. PERZYNA [125]. The same
conclusion can be drawn for the behaviour of damaged polycrystalline solids and
particularly for the fracture phenomena.

Section 2 presents experimental and physical foundations for polycrystalline
solids.

First, physical motivations of the new viscoplasticity theory of metallic single
crystals have been presented. The discussion of various physical mechanisms of
dislocation motion and particularly, the interaction of the thermally activated
and phonon damping mechanisms has been given. The relaxation time treated
as a microstructural parameter has been introduced. It has been shown that the
proposed viscoplastic model accomplishes the description of behaviour of single
crystals valid for the entire range of strain rate changes and encompasses the
interaction of the thermally activated and phonon damping mechanisms.

Second, experimental justifications for the behaviour of polycrystalline solids
are given. Strain rate sensitivity effect is discussed. The relaxation time for
the viscoplastic model of polycrystalline solids is investigated. The localized
fracture phenomenon of polycrystalline solids is experimentally motivated. The
shear band formation and the micro-damage process are discussed. The thermo-
mechanical coupling and anisotropy effects are analysed. Experimental observa-
tions have suggested that the shear band localization failure in dynamic load-
ing processes is affected by complex cooperative phenomena. The intrinsic mi-
crostructure of the shear band region has been investigated and some conclusions
important for the constitutive modelling have been drawn.

Section 3 is devoted to the description of kinematics of finite deformations
and the stress tensors. The fundamental measures of total deformation are intro-
duced. The decomposition of the strain tensor into the elastic and viscoplastic
parts is presented. The rates of the deformation tensor and the stress tensor are
defined based on the Lie derivative.

In Sec. 4 the development of a rate-dependent constitutive model within the
thermodynamic framework of the rate-type covariance structure with finite set
of the internal state variables is presented. This constitutive model is based on
the axioms as follows: (i) existence of the free energy function; (ii) invariance
with respect to any diffeomorphism (any superposed motion); (iii) assumption
of the entropy production inequality; (iv) assumption of the evolution equations
for the internal state variables in the particular rate-dependent form.

For our practical purposes it is sufficient to assume that a set of the internal
state variables consists of the equivalent viscoplastic deformation and describes
the dissipation effects generated by viscoplastic flow phenomena, the volume
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fraction porosity which takes account for microdamage effects, and the residual
stress tensor (the back stress), which aims at the description of the strain-induced
anisotropy (the kinematic hardening effects). Particular attention is focused on
the determination of the evolution laws for the internal state variables. The
fundamental viscoplastic law for the rate of spatial deformation tensor is assumed
to be proportional to the empirical overstress function introduced by the author
(cf. PERZYNA [103]). To describe suitably the time and temperature-dependent
effects observed experimentally, the kinetics of microdamage and the kinematic
hardening law have been modified.

It is noteworthy to stress that viscosity introduces implicitly a length-scale
parameter into the dynamical initial-boundary value problem, i.e. | = BcTp,
where T,, is the relaxation time for mechanical disturbances and is directly
related to the viscosity of the material, ¢ denotes the velocity of propagation of
the elastic waves in the material, and the proportionality factor S depends on
the particular initial-boundary value problem under consideration and may also
depend on the microscopic properties of the material.

The relaxation time T}, may be viewed either as a microstructural para-
meter to be determined from experimental observations or as a mathematical
regularization parameter.

Fracture criterion based on the evolution of microdamage is formulated.

By assuming that the mechanical relaxation time is equal to zero, the thermo-
elasto-plastic (rate independent) response of the damage material is accom-
plished, cf. Sec. 5.

An adiabatic inelastic flow process is formulated and investigated in Sec. 6.
The conditions for the well-posedness of the Cauchy problem are examined.

The thermodynamical theory of elasto-viscoplasticity of polycrystalline solids
presented has important features as follows: (i) invariance with respect to dif-
feomorphism; (ii) finite plastic deformation and plastic spin effects; (iii) plas-
tic non-normality; (iv) softening effects generated by microdamage mechanism;
(v) plastic deformation-induced anisotropic effects; (vi) thermomechanical cou-
plings (thermal plastic softening and thermal expansion); (vii) influence of stress
triaxiality on the evolution of microdamage; (viii) rate sensitivity; (ix) length
scale sensitivity; (x) regularization of the evolution problem; (xi) dissipation and
dispersion effects; (xii) synergetic effects generated by cooperative phenomena.
All these fundamental features have been carefully discussed in Sec. 7.

It should be noted that the very important part of the constitutive modelling
is the identification procedure for the material functions and constants involved
in the constitutive equations proposed. This procedure has to be based on par-
ticular experimental observations and it should be developed by using the finite
difference or finite element methods.
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2. PHYSICAL FOUNDATIONS AND EXPERIMENTAL MOTIVATIONS

2.1. Physical origin of elastic-viscoplastic response of solids

The high-rate deformation of face-centered cubic (f.c.c.) metals, such as cop-
per, aluminum, lead and nickel has been recently extensively studied (cf. review
paper by FOLLANSBEE [49]). It has been shown that the apparent strain rate sen-
sitivity of f.c.c. metals has two origins: that associated with the finite velocity
of dislocations, and that connected with the evolution of the dislocation sub-
structure. The first of these two components - the instantaneous rate sensitivity
- is related to the wait — times associated with thermally activated dislocation
motion. The second component has more to do with the relative importance
of dislocation generation and annihilation at different strain rates, and shall be
referred to as the strain-rate history effect.

The rate and temperature dependence of the flow stress of metal crystals can
be explained by different physical mechanisms of dislocation motion. The micro-
scopic processes combine in various ways to give several groups of deformation
mechanisms, each of which can be limited to the particular range of temperature
and strain rate changes.

It will be profitable for further considerations to discuss some of these mech-
anisms, particularly those which lead to viscoplastic response of the crystal.

Some common thermal obstacles or mechanisms in pure metals are as fol-
lows: (i) intersection of forest dislocations; (ii) overcoming Peierls-Nabarro stress;
(iii) non-conservative motion of jogs; (iv) cross-slip of screw dislocations;
(v) climb of edge dislocations. Forest dislocations, the Peierls-Nabarro stress
and jogs represent resistance to the motion of dislocations in the slip plane,
while cross-slip and climb represent resistance to the motion out of the slip
plane. Schematic representations of the mechanisms in which these obstacles are
overcome are given in Fig. 1. In each case, thermal fluctuations assist the applied
stress in getting a dislocation segment L past the barrier (cf. CONRAD [17]).

To describe theoretically all the mechanisms we have to introduce three im-
portant parameters, namely the density of mobile dislocations «, the density of
obstacle dislocations 8 and the concentration of point defects (. Average den-
sity of mobile dislocations in deformed metal single crystals is of the order of
10 m~2, average density of obstacle dislocations is 10'3 m~2, and the average
value of the concentration of point defects can be of the order of 10'® m—3.

Since plastic flow occurs by the motion of dislocation lines, the rate at which
it takes place depends on how fast the dislocations move, how many dislocations
are moving in a given volume of material, and how much displacement is carried
by each dislocation. The theory of crystal dislocations shows that for the single
slip, the inelastic shear strain-rate is as follows

(2.1) €P = abv,
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where « is the mean density of mobile dislocations, b is the displacement per
dislocation line (the Burgers vector), and v denotes the mean dislocation velocity,
cf. ASARO [6,7].
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Fic. 1. Schematic representation of thermal obstacles or mechanisms in pure metals
(cf. Conrad [17]).
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2.1.1. Thermally activated mechanism. It is now generally recognized that
the plastic deformation of a crystal is of dynamic nature and has been established
as a thermally activated process dependent upon time, temperature and strain
rate. The evolution of the activation parameters is a widely used technique for
identification of the mechanisms controlling the rate of deformation, and has
been applied to b.c.c., f.c.c., h.c.p. metals, intermetallic compounds and ionic
and ceramic crystals (cf. the review paper by EVANS and RAWLINGS [48] and
books by NABARRO [100], and KOCKs et al. [78]).

When a dislocation moves through a crystal lattice, a force is exerted upon
it by obstacles present in the lattice. This force can be separated into two com-
ponents, a long-range force and short-range force.

The stress nesessary to overcome the short-range obstacles is temperature-
dependent, whereas that needed to surmount fixed long-range obstacles gener-
ally depends upon temperature only through the temperature-dependence of the
shear modulus. For this reason the obstacles are often referred to as thermal and
athermal, respectively. When both types of obstacles are present in a lattice, the
applied stress is usually composed of both the thermal and athermal components

(2.2) T =14 1,

where 77 is the thermal (or effective) resolved shear stress and T, is the athermal
stress, cf. Fig. 2.

THERMALLY ACTIVATED DISLOCATION MECHANISM
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FiG. 2. Thermal and athermal stress field components in a crystal lattice.
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Plastic deformation occurs by the movement of a large number of dislocations
through an array of obstacles. At any finite temperature, coherent atomic fluc-
tuations can assist the applied stress in moving a dislocation past the obstacles.

The average velocity v of a dislocation that surmounts the obstacles with the
assistance of thermal fluctuations is assumed to be an Arrhenius-type relation-
ship

(2.3) v = AL"luexp (—%) :

where v is the frequency of vibration of the dislocation, AL™! is the distance

covered after a successful fluctuation, U is the activation energy (Gibbs free

energy), k is the Boltzmann constant and ¥ is the actual absolute temperature.
Equations (2.1) and (2.3) give

(2.4) € = abAL 'vexp (—%) i

Let us assume that
(2.5) U=U[(T - Tu)Lb],

where L is the mean cord distance between the neighboring points at which the
dislocation is arrested. Expansion of the function U gives

(1 — 7',‘)2 L2y

(2‘6) s |T:"'u +U, !T:Tu (T i T#)Lb e U” IT=T;4 2!

Let us denote by
(2.7) o' = U |rr, Bby O Us'= W

the activation volume and the activation energy for intersection at zero effective
stress, respectively.

The linear approximation to Eq. (2.4) gives the Seeger relation (cf. SEEGER
[143, 144])

. U v*

Do -1 R0 S ST,
(2.8) €’ = abAL uexp{ e -4 [('r T“)kﬁ] } ;
or

Us kv e?
7 b B PlmintnS
(2.9) T (T#+ - ) e - In P
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When the activation energy U is a nonlinear function of the effective stress
(cf. Eq. (2.5)), the relation (2.4) yields

(2.10) EP = abAL 'vexp {-U (1 — 7,) Lb] /k9}
or
(2.11) T=T,+ %U“l [k91n (abAL™'v/€P)].

Let us denote by

1
(2.12) I == 2 = (abAL'v)7!, 78 = (T + Us/V"),
T
the relaxation time for the thermally activated mechanism of dislocation motion

(yr defines the viscosity coefficient) and the flow stress 7p, respectively. Then
the relations (2.8) and (2.9) take the form

*
(2.13) el = %3 exp [U—(T - TB):I 3 T =78 + (k9/v*) In(Tr EP).
i kY

In this linear theory we have three intrinsic material parameters, namely the
relaxation time Tj,7, the activation volume v* and the flow stress 75.

In the most general case, each of these three parameters may be considered
as a function of the three independent variables €P, 7 and 9.

In the nonlinear theory

(2.14) & = TL ol e = LBl
mT
or
1 s 1

there are two intrinsic material parameters T),r and 7, and, in addition, one
response function U.

2.1.2. Damping mechanism (phonon viscosity). With increasing dislocation
velocities at high enough stress or in a perfect crystal, the velocity is only gov-
erned by the phonon damping mechanism. The phonon viscosity theory has been
developed by MASON [94]) (cf. NABARRO [100]). At very high strain rates the
applied stress is high enough to overcome instantaneously the dislocation barri-
ers without any aid from thermal fluctuations. This is true for the resolved shear



244 P. PERZYNA

stress T > 7, where 7p is attributed to the stress needed to overcome the forest
dislocation barriers to the dislocation motion and is called the back stress.

In this region of response, the evolution equation for the inelastic shearing
has the form

1 =p S
(2.16) é =

o ab’rg [ 7 ]
o= =

where B is called the dislocation drag coefficient. If we introduce the notation

B 1
21 I = = —
( 7) mD ab2TB poms

for the relaxation time of the phonon damping mechanism (yp defines the vis-
cosity coefficient for this region), then the evolution equation (2.16) takes the
form

(2.18) 2 et (i & 1) ;

or
(2.19) 7 =78 (1+Tnp€®).

For the phonon damping mechanism we have two intrinsic parameters, namely
the relaxation time T},,p and the back stress. It is noteworthy that the dislocation
drag coefficient B can be interpreted as a generalized damping parameter for
phonon viscosity and electron viscosity mechanisms (cf. GORMAN et al. [57]) i.e.

(2.20) B = By + Bey.

2.1.3. Interaction of the thermally activated and phonon damping mecha-
nisms. If a dislocation is moving through the rows of barriers, then its velocity
can be determined by the expression

(2.21) v=AL""/(ts + tp),

where AL~ is the average distance of dislocation movement after each thermal
activation, tg is the time a dislocation has spent at the obstacle, and tp is the
time of travelling between the barriers.
The shearing rate in single slip is given by the relationship (cf. KUMAR and
KUMBLE [80], TEODOSIU and SIDOROFF [155] and PERZYNA [107, 118])
1

(2.22) EP = m(exp {U[(1 — 74)Lb)/k9} + BAL™'v/(7 — 75)b) "
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where

1 brp ab®7p 1

22 —
( 3) TmT BAL- 1y B TmD’

and two effective resolved shear stresses
(2.24) Tr=T—-7, and TH=T—7p

are separately defined for the thermally activated and phonon damping mecha-
nisms, respectively.

If the time tp taken by the dislocation to travel between the barriers in
a viscous phonon medium is negligible when compared with the time tg spent
at the obstacle, then

!

(2.25) v
ts

and we can focus our attention on the analysis of the thermally activated process.
When the ratio ¢p/ts increases then the dislocation velocity (2.21) can be

approximated by the expression

s ALTS

s

(2.26) v
for the phonon damping mechanism.

2.1.4. Viscoplastic model of single crystals. The main idea of the viscoplastic
flow mechanism is to accomplish in one model the description of behaviour of
single crystals valid for the entire range of strain rate changes. In other words,
the main concept is to encompass the interaction of the thermally activated and
phonon damping mechanisms.

To achieve this aim, the empirical overstress function @ has been introduced
and the strain rate is postulated in the form as follows (cf. PERZYNA [118]):

: 1 T
(2.2%) A 5 <45 [“Ty(ep,ﬁ,ﬁ,g‘) — 1] > sgnr,

where T' is the relaxation time, (-) denotes the Macauley bracket and 7y is the
static yield stress function. In this model the static yield stress function depends
on the inelastic strain €, temperature 9, the density of obstacle dislocations B
and the concentration of point defects (.

It is noteworthy that the empirical overstress function @ can be determined
basing on available experimental results performed under dynamic loading.
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To describe the main experimentally observed facts connected with the macro-
scopic shear band localization of single crystals, namely that the strain-hardening
modulus rate hegt at the inception of shear band localization is positive and the
direction of the localized shear band is misaligned by some angle ¢ from the
active slip system, we intend to consider the synergetic effects resulting from
taking into account spatial covariance effects and thermomechanical couplings
(cf. DUSZEK-PERZYNA and PERZYNA [39]).

To take into consideration the evolution of the substructure of crystals we
can introduce the density of mobile dislocations a(*), the density of obstacle
dislocations 8*) and the concentration of point defects ¢(*) for a particular slip
system v as the internal state variables, cf. PERZYNA [125].

2.2. Strain rate sensitivity

In previous sections fundamental features of finite deformation, rate-
dependent plastic flow of crystalline solids were discussed from the microscopic
and macroscopic phenomenological points of view. Particular viscoplastic flow
model was proposed to predict deformation textures and large strain, temper-
ature and rate-dependent and strain hardening behaviour of polycrystals from
the known behaviour of single crystals.

The possibility of making such a prediction rests on the tacit assumption that
the mechanisms of plastic deformation in aggregates are substantially identical
with those observed in single crystals.

LiNnDHOLM and YEAKLEY [83] investigated single and polycrystalline speci-
mens of high purity aluminum in compression at strain rates up to 500 s~! using
the split Hopkinson pressure bar method. They obtained average stress—strain
curves for the six orientations of a single crystal and similar curves for the poly-
crystalline material. Activation volume as a function of strain can be computed
from the data obtained. Results for the single and polycrystalline specimens of
high purity aluminum are plotted in Fig. 3. The most interesting feature of these
curves is that the activation volume for the polycrystalline material falls within
the bounds and near the average of the single crystal data. This implies that
the same thermally activated mechanisms control the deformation in single and
polycrystals and that the distribution of the activation barriers are essentially
the same in both cases. This is in agreement with the previous results obtained
by MITRA and DORN [99] for aluminum at low temperature and those of CON-
RAD [17] for iron and steel, cf. also LINDHOLM (81, 82].

Experimental justifications of the thermally activated and phonon damping
mechanisms as well as the discussion of their range rate and temperature changes
for particular materials have been given in many papers. Particular importance
for our purposes have the results obtained by CAMPBELL and FERGUSON [10].
In their paper an account is given of experiments in which the shear flow stress
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of mild steel was measured at temperature from 195 to 713 K and strain rate
from 1073 to 4-10* s~1. The flow stress at lower yield is plotted in Fig. 4 as the
shear stress against the logarithm of shear strain rate, for various temperatures
used throughout the investigation.
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Fic. 3. Activation volume versus true strain for single crystal and polycrystalline aluminium
(99.995%). After LINDHOLM and YEAKLEY [83].
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For the purpose of the discussion which follows, it is convenient to divide
the curves into three regions, each corresponding to a certain range of strain
rate which is a function of the temperature. Following ROSENFIELD and HAHN
[138] these will be referred to as region I, I and IV. These regions are indicated
in Fig. 4.

In region I the flow stress shows a small temperature and strain rate sensi-
tivity, the latter decreasing with increasing temperature. Prestraining increases
the flow stress but has a small effect on the rate sensitivity of the flow stress,
(07/01n €P)y, at room temperature (cf. Fig. 5). The dominant factor in region I
seems to be the long-range internal stress fields due to dislocations, precipitate
particles, grain boundaries etc.
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F1G. 5. Effect of pre-straining on variation of yield stress with strain rate. After CAMPBELL
and FERGUSON [10].

In region II the flow stress shows greater rate and temperature sensitivi-
ties. From a survey of their own and previous work, ROSENFIELD and HAHN
[138] concluded that in this region the rate sensitivity (97/0In€”)y was inde-
pendent of temperature and strain rate. However, the data of CAMPBELL and
FERGUSON [10] show a consistent increase in (97/81In€”)y as the temperature
is reduced.

It has been suggested by CAMPBELL and FERGUSON [10] that the flow be-
haviour throughout region II can be explained by the thermal activation of dis-
location motion.

Since the relaxation time T, is related to the dislocation structure, it may
be governed by the deformation history, rather than a function of the state
variables €P, 7 and 9.
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The experimental data obtained by CAMPBELL and FERGUSON [10] for mild
steel in region II are properly interpreted by the linear approximation of the
thermally activated theory.

Region IV is characterized by a rapid increase in semi-logarithmic rate sen-
sitivity (01n /0 1n €P)y with increasing strain rate, this parameter being approx-
imately independent of temperature in the range from 293 to 713 K.

In Fig. 6 the experimental data of CAMPBELL and FERGUSON [10] for region
IV are replotted using a linear strain-rate scale, and it is seen that, within the
accuracy of measurement, they can be represented by straight lines at all three
temperatures and all three values of pre-strain. While the slopes of these lines
show only a small dependence on temperature, their intercepts on the stress axis
vary greatly with temperature.
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F1G. 6. Variation of lower yield stress with strain rate (region IV); a) Zero pre-strain;
temperature 293, 493, 713 K; b) Pre-strain 7.5, 21, 38%; temperature 293 K.
After CAMPBELL and FERGUSON [10].

According to the interpretation presented by CAMPBELL and FERGUSON [10],
the intercepts in Fig. 6 are determined by the temperature-dependent barrier
stress 7, + Us/v* (U, denotes the activation energy for intersection at zero ef-
fective stress and v* is the activation volume), at which the strain rate reaches
1/Tmr. When the applied stress exceeds this barrier stress, the time required
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to activate a dislocation past the short-range barriers of obstacles is negligible,
hence its velocity is controlled by dissipation of energy as it moves through the
lattice. Assuming that this dissipation is of a linear viscous nature, the excess
stress 7p will be proportional to the strain rate €, i.e.

(2.28) Tp = n€P,

where 7 denotes the macroscopic viscosity. Equating 7p to the difference between
the applied stress and the barrier stress 7p = 7, + U, /v*, we obtain for region IV

(2.29) T =71+ n€’.

Comparison (2.29) with (2.17) under the condition (2.19) gives

B
(230) 1= TmDTB = &72-
The values of n can be obtained from the slopes of the lines of Fig. 6.
For room temperature and zero pre-strain we have the relaxation time as
follows:

. 21108 i
=—=——5=084-1 :
TmD 8 250 - 106 S 0.8 078
For 493 K and zero pre-strain
2.0- 103 N
Tmp—ms—1310 S.
For 713 K and zero pre-strain
1.8-10° L5
TmD—mS—IE)lO S.

Thus, in the phonon viscosity damping region IV the relaxation time is a function
of temperature and is not sensitive to pre-stressing (for room temperature).
For region II the relaxation time 7;,7 is obtained as a constant value

Tmr =2-107% s,

while in region IV the relaxation time 7T5,p is temperature dependent and can
change from T;,p = 0.8-107° sto Tjp =1.5-10% s

For the viscoplastic model of polycrystalline solids, the relaxation time T,
governs the viscoplastic flow in the entire range of strain rate changes and can
be obtained based on experimental data.
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Another possible idea has been presented by PERZYNA [108, 109], namely
that

(2.31) ; Ao

where ¢ is the control function and 7 is the temperature dependent viscosity
coefficient. The dimensionless control function ¢ is assumed to depend on the
strain rate. Thus we have

(2.32) B 7—(117)¢ (2—2 = 1) :

In Fig. 7 the theoretical results obtained by PERZYNA [108, 109] are compared
with experimental data of CAMPBELL and FERGUSON [10] for room temperature
(293 K). Taking the best fitting curve we have
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F1G. 8. Variation of the relaxation time with strain rate described by Eq. (2.32) with
¢ = H(-) and by Eq. (2.33).

Figure 8 shows the plots of the relaxation time (2.33) and (2.32) for
¢ = H(:), i.e. for ¢ assumed as the Heaviside function.

DowLING, HARDING and CAMPBELL [33] investigated the strain-rate sensi-
tivity of the yield and flow stress of aluminum, copper, brass and mild steel over
a range of strain rates from 1072 to 4-10* s~1. These experimental data can also
be used for determination of the overstress function ¢ and the relaxation time
T, for these metals.

2.3. Localization phenomena

2.3.1. Shear band formation and micro-damage process. In dynamic loading
processes failure may arise as a result of an adiabatic shear band localization,
generally attributed to a plastic instability generated by thermal softening during
dynamic deformation.

Recent experimental observations (cf. GREBE, PAK and MEYERS [58], HART-
LEY, DUFFY and HAWLEY [67], MARCHAND and DUFFY [92], MARCHAND, CHO
and DUFFY [91] and CHO, CHI and DUFFY [14]) have shown that the shear band
procreates in a region of a body deformed where the resistance to plastic defor-
mation is lower and the predisposition for band formation is higher.
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Adiabatic shear banding in 4340 steel under pure shear loading in a split
Hopkinson torsion bar using a high-speed photography was studied by Gio-
VANOLA [53]. It was found that shear localization occurs in two sequential stages
over width of 60 pm and 20 pm, respectively. Strain rates approaching 1.4-10% s~!
were measured in the band and temperature elevation was in excess of 1000°C.
Fractographic and metallographic observations have shown that the mechanism
of shear fracture by microvoid nucleation and growth may, at least in certain
situations, provide a plausible explanation for the formation of white-etching
bands. General conclusion from experimental observations of GIOVANOLA [53]
is that the thermomechanical strain localization and micro-damage mechanisms
become main cooperative phenomena responsible for adiabatic shear band local-
ized fracture.

CHAKRABARTI and SPRETNAK [12] investigated the localized fracture mode
for tensile steel sheet specimens simulating both plane stress and plane strain
processes. The material used in their study was AISI 4340 steel. The principal
variable in this flat specimen test was the width—-to—thickness ratio. Variation
in specimen geometry produces significant changes in the stress state, directions
of shear bands and ductility. They found that fracture propagated consistently
along the shear band localized region.

GREBE, PAK and MEYERS [58] have conducted ballistic impact experiments
on 12.5 mm thick commercial purity titanium and T-6pct Al-4pct V alloy
plates, using steel projectiles with 10.5 mm diameter. The impact velocities
in their experiments varied between 578 m/s and 846 m/s. The microstruc-
tural damage mechanisms associated with shear band formation, shock wave
and dynamic fracture were investigated by optical and scanning and transmis-
sion electron microscopy. The shear band were found along the two sides of the
cross-section passing through the axis of the projectile. The measured shear
band width in T6A14V varied between 1 and 10 pm. Observations of the onset
of fracture along the shear band were also conducted. Spherical and ellipsoidal
microcracks in T6A14V were found along the bands, Fig. 2.3.1. The mecha-
nism of final failure in T6A14V is a simple propagation of a macrocrack along
the damaged material within the shear band region. In the explanation of the
phenomenon of fracture along shear band, very important role has the micro-
damage process which consists of the nucleation, growth and coalescence of mi-
crovoids.

The investigations reported by GREBE, PAK and MEYERS [58] indicated
that in dynamic processes the shear band regions behave differently than the
adjacent zones. Within the shear band region the deformation process is charac-
terized by very large strains (shear strains over 100%) and very high strain rates
(103—10° s~1). The strain rate sensitivity of a material becomes a very important
feature of the shear band region and the micro-damage process is intensified.
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Fic. 9. Shear band in Ti6Al4V target impacted at 846 m/s (After GREBE, PAK and MEYERS
[58]). a) Single shear band; b) Microcracks in the shear band region; c) Elongated macrocracks
along the shear band; d) Characteristic dimples observed in spall region.

CHO, CHI and DUFFY [14] performed microscopic observations of adiabatic
shear bands in three different steels: an AISI cold rolled steel, HY-100 struc-
tural steel and AISI 4340 VAR steel subjected to two different heat treatments.
Dynamic deformation in shear was imposed to produce shear bands in all the
steels tested. It was found that whenever the shear band led to fracture of the
specimen, the fracture occurred by a process of void nucleation, growth and co-
alescence. No cleavage was observed on any fracture surface, included the most
brittle of the steel tested. The authors suggested that this is presumably due to
softening of the shear band material that results from the local temperature rise
occurring during dynamic deformation, Figs. 10 and 11.
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F1G. 10. An optical micrograph of a shear band formed in 1018 CRS. The surface has been
polished and etched. An arrested crack is shown within shear band (After CHo, CHI and
Durry [14]).

Shear Direction

F1G. 11. Optical micrograph of a shear band formed in HY-100 steel, after polishing and
etching (After CHO, CHI and DUFFY [14]).

2.3.2. Thermomechanical coupling effects. HARTLEY, DUFFY and HAWLEY
[67], MARCHAND and DUFFY [92] and MARCHAND, CHO and DUFFY [91] pre-
sented the results of experiments in which the local strain and local temperature
were measured during the formation of an adiabatic shear band in an AISI 1018
cold-rolled steel (CRS), and a low alloy structural steel (HY-100). In their ex-
periments a torsional Kolsky bar was used to impose a rapid deformation rate
in a short thin-walled tubular specimen. By testing a number of specimens they
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have found that the plastic deformation process in the two steel specimens tested
can be divided into three separate stages, Fig. 12. In the first stage, the shear
strain is homogeneous both in the axial and in circumferential directions. This
stage ends at a nominal strain of about 15% for CRS and 25% for HY-100 steel,
which corresponds approximately to the maximum stress attained during the
test for each kind of steel. With continued deformation, the strain distribution
is no longer homogeneous in the axial direction. During the second stage, which
spans a range of nominal strains from 15% to 45% for CRS, and 25% to 50% for
HY-100, there is a continuous increase in the magnitude of the localized strain
in the axial direction. In this second stage the localized strain does not vary
in the circumferential direction. As the nominal strain within this second stage
increases, the localized strain increases to 150% for CRS, to 170% for HY-100
steel and the width of the band decreases from about 1100 um to 350 pm for
CRS, and 600 um to 150 pum for HY-100 steel. In this stage of deformation,
the flow stress level does not vary greatly. The third stage in the deformation
process in each of two steel kinds tested involves a sharp drop in stress, i.e. a loss
in the load-carrying capacity of the material. Localized strains of up to 600% for
CRS, and up to 1500% for HY-steel, and a corresponding width of 100 pm and
of 20 um have been measured. The third stage continues until a crack appears
within the shear band. This crack then propagates either part way or all the way
around the specimen. It has been observed that, in the third stage, the deforma-
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Fic. 12. The maximum localized strain as a function of the nominal shear strain
(After MARCHAND, CHO and DUFFY [91]).
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tion outside the band tends to a limit. The local temperature was determined
by measuring the infrared radiation emanating from the specimen’s surface, in-
cluding the shear band area. It appears that the temperature rise occurs during
the sharp decrease in the load—carrying capacity of the specimen for both of the
two steels tested. In the third stage the increase in local strain is associated with
an increase of the local temperature from about 235° C to 575° C for CRS and
about 460° C to 900° Cr for HY-100 steel, Figs. 13, 14, 15, and 16.
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F1G. 13. Measured values of the temperature as a function of axial position with respect to
the centre of the shear band (After MARCHAND, CHO and DUFFY [91]).
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FiG. 14. Shear band temperature and stress as a function of time in 1018 CRS
(After HARTKEY, DUFFY and HAWLEY [67]).
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HY-100 (Test # HY185 ; R.T.), 4 = 1200/s 1 mm

F1G. 15. Photographs of the grid pattern during the formation of a shear band in HY-100
steel taken by a high speed image converter camera. The time interval between frames is
40 ps (After CHo, CHI and DuUFrFy [14]).
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F1G. 16. The stress—strain behaviour of HY-100 steel. The number arrows indicate nominal
strain values at which the photographs shown in Fig. 15 are taken. The corresponding values
of the maximum local strain are shown by the dotted line (After CHo, CH1 and DUFFY [14]).

It is generally accepted that shear bands nucleate in the presence of a local
inhomogeneity or defects, causing enhanced local deformation and heating. Once



THE THERMODYNAMICAL THEORY OF ELASTO-VISCOPLASTICITY 259

nonuniform flow procreates, the deformation becomes increasingly unstable as
the dynamic process goes on if the heat that is produced during deformation is
given insufficient time to be conducted away.

Experimental results have shown that localization occurs more readily in
materials with a low strain hardening rate, a low strain rate sensitivity, a low
thermal conductivity and a high thermal softening rate. Shear bands also form
readily in high strength materials where the heat generated by plastic deforma-
tion is greater for a given plastic strain increment (cf. HARTLEY, DUFFY and
HAWLEY [67]).

Along the shear band, the deformation process is characterized by very in-
tense strain and very large strain rates (cf. GREBE, PAK and MEYERS [58] and
HARTLEY, DUFFY and HAWLEY [67]). Strain rate sensitivity of a material be-
comes a very important feature of the shear band region. It causes an increase
in the flow stress with a corresponding decrease in ductility.

2.3.3. Anisotropic effects. Analysis of experimental results concerning in-
vestigations of adiabatic shear band localization failure under dynamic loading
suggests that there are three main reasons for the anisotropic effects:

1. The strain-induced anisotropy is caused by the residual type stresses which
result from the heterogeneous nature of the plastic deformation in polycrys-
talline materials (cf. IKEGAMI [74] and PHILLIPS and Lu [132]). Experi-
mental evidence indicates that yield surfaces exhibit anisotropic hardening.
Subsequent yield surfaces are both translated and deformed in the stress
space. In phenomenological description this kind of anisotropy is modelled
by the shift of the yield surface in the stress space. This shift of the yield
surface might be described by the residual stress tensor «.

2. The anisotropy caused by the formation of shear bands. This effect can be
described by the determination of the direction of the shear band formed.

3. The anisotropy induced by the micro-damage process along the shear band
region. Experimental observations (cf. YOKOBORI JR., YOKOBORI, SATO
and SyoJ1 [167], GREBE, PAk and MEYERS [58] and HARTLEY, DUFFY
and HAWLEY [67]) have shown that in the micro-damage process, the
generated anisotropy is a consequence of rather random phenomena con-
nected with some directional property of the formation of microcracks.
This anisotropic effect is very much affected by the crystallographic struc-
ture of a material as well as by small fluctuations of main directions of the
applied stress at particular point of a body during the dynamic process.

To describe this kind of anisotropy one has to introduce an additional set of the
internal state variables, cf. PERZYNA [119)].
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2.3.4. Analysis of cooperative phenomena. An analysis of experimental re-
sults has clearly shown that the shear band localization failure in dynamic load-
ing processes is affected by complex cooperative phenomena. From this analysis
it is also evident that such cooperative phenomena as the thermomechanical flow
process, the instability of the flow process along localized adiabatic shear bands,
the micro-damage process which consists of the nucleation, growth and coales-
cence of microcracks and the final mechanism of failure are the most important
for proper description of the fracture phenomenon under dynamic loading.

All these cooperative phenomena might be influenced by different additional
effects such as the strain rate sensitivity, the induced anisotropy, the thermome-
chanical couplings and others.

2.3.5. Self-organization and physical interpretation of instability hierarchies.
We are interested in the fracture phenomenon which is preceded by shear band
localization. In this case the instability of the plastic flow process plays a funda-
mental role as a precursor of fracture.

Let us consider a thermodynamic plastic flow process of a system. Synerget-
ics suggests that a system is self-organized if it acquires a spatial, temporal or
functional structure without specific interference from the outside, cf. HAKEN
(62, 63, 64]. As a result of instability of plastic flow process we observe the macro-
scopic shear band pattern. A system has been self-organized in a new system —
the shear band pattern system. The situation is very similar to that considered
for single crystals, cf. PERZYNA [123, 125].

The instability phenomenon of plastic flow process can be considered at dif-
ferent levels. At the mesoscopic level we consider single crystals and their de-
formation. We describe the crystal lattice, consider movement of dislocations
through the rows of barriers and take into account interactions of dislocations.
At the macroscopic level, by consideration of polycrystalline solids we are inter-
ested in description of the instability phenomenon of plastic flow processes. In
particular we study the localization of plastic deformation along shear bands.
So, we can expect the evolving macroscopic shear band pattern.

It seems that the study of instability hierarchies plays a very important role
in the explanation of the interrelation between macroscopic deformation modes
and dislocation structures evolved in single crystals.

2.3.6. Intrinsic microstructure of the shear band region. Adiabatic shear
band is a term used to describe the localization of plastic flow that occurs
in many metals when they are deformed at high strain rates to large plastic
deformations. It usually manifests itself as zones of intense shear deformation
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and microstructural modification of the original material up to hundreds of mi-
crometres wide, located between regions of relatively homogeneous deformation,
cf. TIMOTHY [157] and MEYERS [97].

It can be proposed that shear bands in different metals could be broadly
classified as either “transformed” or “deformed” on the basis of their appear-
ance in metallographic section. A permanent change in structure is associated
with the former, whereas the latter are manifested merely as zones of intense
shear deformation of the original microstructure. The relative temperature rise
within developing “transformed” shear zones is therefore assumed to be larger
by definition.

As it has been suggested by TIMOTHY [157], shear bands in steels can be
classified specifically on this basis, since the distinctive structure of “transformed”
shear bands has been shown to be generally martensitic in nature, and they follow
on from “deformed” shear bands when the adiabatic shear deformation becomes
sufficiently localized.

Basing on experimental investigations performed for steels, ROGERS and
SHASTRY [137] have pointed out that under some conditions during dynamic
processes, a deformed shear band of some form first develops, followed by the
formation of a short transformed band. Figure 17 shows a typical transformed
shear band preceded by a precursor deformed band in AISI 1040 steel, generated
by the impact process.

Fic. 17. Transformed shear band preceded by a deformed band in AISI 1040 steel (After
ROGERS and SHASTRY [137]).

Examination of the microstructure has given evidence of a transverse struc-
tural gradient within the white-etching band. This is shown for a comparable
band in AIST 4340 steel in Fig. 18. Although the band is still white over the
entire transformed zone, the central zone is essentially featureless while the two
outer regions appear granular in nature and have lower hardness.
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Fic. 18. Transformed shear band in AISI 4340 steel, quenched and tempered at 400°C
(After ROGERS and SHASTRY [137]).

Very recently WITTMAN, MEYERS and PAK [165] have taken experimen-
tal investigations to identify the microstructure of a white-etching shear band
in a hollow AISI 4340 steel cylinder subjected to dynamic expansion by using
high-voltage transmission electron microscopy. They have determined the mi-
crostructure of an adiabatic shear band formed at a minimum strain rate of
0.8 x 108 s~! and with an accumulated shear strain of 3.92.

It has been found that the microstructure inside the shear band is martensitic
and contains carbides which exist only after a significant amount of tempering.
This structure is similar to that of the surrounding matrix and has been highly
deformed. There was no evidence that the material had transformed to austenite
at any time during the deformation process.

Microhardness traverses were made perpendicular to the length and along
the length of the band, c¢f. ROGERS and SHASTRY [137]. The average hardness
value of KHN 1195 in the shear band is similar to that expected in quenched
AISI 4340 microstructure.

The sample was also tested after being immersed in liquid nitrogen for 1
hour. This would transform any possible austenite to martensite. The hardness
measurement of the band remained unchanged, as did the observed microstruc-
ture in the optical microscope. Thus, no evidence of austenite in the band was
produced by this test.

To aid in the explanation of the microstructure of shear band observed,
WITTMAN, MEYERS and PAK [165] have modelled the thermal history of the
band region by using the finite difference method.

On the basis of the thermal history analysis and the TEM observations,
WITTMAN, MEYERS and PAK [165] have concluded that the observed white
etching of the band region is an artifact of the etching. The white etching is not
a particular indication of a phase transformation.
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WITTMAN, MEYERS and PAK [165] have also observed that the band often
contained voids of smaller microcracks. These spherical voids are thought to have
been produced from tensile stresses acting within the band. The band, being at
very high temperature and therefore ductile, deforms readily in tension by void
nucleation and growth. Material within the band has, by virtue of the higher
temperature, a lower flow stress than the matrix. It has been pointed out that
near the tip of the shear bands, these voids and microcracks were less prominent.

The reason that the results obtained by WITTMAN, MEYERS and PAK [165]
have a great importance for the constitutive modelling of the shear band region
is twofold.

1. It has been clearly shown that the response of the material within the shear
band region is different from that in the surrounding zones.

2. It has been proved that the phase transformation in AISI 4340 steel does
not accompany the adiabatic shear band formation.

2.4. Ductile fracture

2.4.1. Ezperimental results and physical foundations. The most popular dy-
namical experiment!) in the investigation of the fracture phenomenon in metals
is a plate-impact configuration system. This experimental system consists of two
plates, a projectile plane plate impacts against a target plane. This is a good
example of a dynamic deformation process. If the impact velocity is sufficiently
high, the propagation of a plastic wave through the target is generated. The re-
flection and interaction of waves result in a net tensile pulse in the target plate.
If this stress pulse has sufficient amplitude and sufficient time duration, it will
cause separation of the material and the spalling process.

The reason for choosing this particular kind of dynamical experiment is that
postshot photomicrographic observations of the residual porosity are available,
and the stress amplitude and pulse duration can be performed sufficiently great
to produce substantial porosity and the spall of the target plate.

The experimental data presented by SEAMAN, CURRAN and SHOCKEY [141]
illustrate damage phenomena and provide a common basis for considering the
damage criteria. They have used a plate-impact configuration system. Follow-
ing the compression waves resulting from the impact, rarefaction waves have
intersected near the middle of the target plate to cause damage in the form of
nearly spherical voids. The heaviest damage is localized in a narrow zone, which
is called the spall plane. Both the number and the size of voids decrease with
distance from this zone. This type of damage is termed ductile fracture because
of high ductility (ability to flow) required of the plate material, Fig. 19.

DFor a thorough discussion of the experimental and theoretical works in the field of dynamic
fracture and spalling of metals please consult the review papers by MEYERS and AIMONE [98]
and CURRAN, SEAMAN and SHOCKEY [18], cf. also MEYERS [97].
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Fic. 19. A cross section of an aluminum target plate that has undergone a planar impact by
another aluminum plate (After SEAMAN, CURRAN and SHOCKEY [141]).

The final damage of the target plate (aluminium 1145) for a constant shot
geometry but for different impact velocities has been performed by BARBEE,
SEAMAN, CREWDSON and CURRAN [9]. The results suggest dependence of the
spalling process on the pulse amplitude, Fig. 20. On the other hand an example
of brittle fracture in armco iron (cf. SEAMAN, CURRAN and SHOCKEY [141])
shows dependence of damage on the tensile pulse duration. In this experimental
performance an Armco iron target was impacted by a flyer plate, which was
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tapered on the back to provide a varying tensile wave duration across the plate.
The damage, which appears as randomly oriented microcracks, varies in propor-
tion to the tensile wave duration. A sample of full separation is shown in Fig. 21,
an aluminium target impacted by a plate has been damaged to the extent that
full separation occurred near the center of the target, cf. SEAMAN, CURRAN and
SHOCKEY [141]. The authors suggested that this full separation appears as a
macrocrack propagating through a heavily damaged material. The macrocrack
occurs as a result of coalescence of microvoids which is also visible in Fig. 21.

IMPACT VELOCITY — 423 fps

IMPACT VELOCITY — 468 fps IMPACT VELOCITY — 506 tps

IMPACT VELOCITY — 668 fps

Fic. 20. The final damage of the aluminum 1145 target plate for a constant shot geometry
but for different impact velocities (After BARBEE, SEAMAN, CREWDSON and CURRAN [9]).

Fic. 21. A sample of full separation of an aluminum target. Impact test performed by
SEAMAN, CURRAN and SHOCKEY [141].
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Similar experimental test data have been obtained for copper by SEAMAN,
BARBEE and CURRAN [139]%). This is also a plate-impact experiment in which a
0.6 mm thick copper plate strikes as 1.6 mm copper target backed by a relatively
thick plate of PMMA (polymethylmethacrylate) in which a manganin pressure
gauge is embedded. The impact velocity of 0.016 cm/us implies a 29-kbar peak
tensile stress in the copper target, and pulse duration about 0.3 ps which are suf-
ficient to produce porosity up to 32% at the spall plane. The manganin pressure
gauge record are shown in Fig. 22. The postshot photomicrographic observa-
tions of final porosity or the void volume fraction in the copper target is shown
in Fig. 23.
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F1G. 22. The pressure gauge record for copper. A plate-impact experiment performed by
SEAMAN, BARBEE and CURRAN [139].

From the experimental investigation we have the following conclusions:

1. Damage (spalling) in ductile metals (aluminium, copper, mild steel, etc.)
depends on the amplitude of tensile stress as well as on the duration of
stress pulse. So, to characterize dynamic fracture one has to use the stress
impulse or some other stress-time integral quantity, cf. SEAMAN, CURRAN
and SHOCKEY [141].

2. As the damage occurs, the stiffness of the material decreases. This softening
of the material is mainly due to the nucleation, growth and coalescence
of microvoids (sometimes thermal effects are also pronounced), cf. WRAY
[166].

3. Full separation (fracture, fragmentation, spalling) is the result of the coa-
lescence of microvoids and appears as a macrocrack propagating through
heavily damaged material.

DThe experimental results of this unpublished report can be found in the paper by
JoHNsoN [77].
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4. The propagation of the shock plastic wave induced by the impact process
produces significant structural changes and affect the mechanical proper-
ties. In general, one observes an increase in the flow stress with a corre-
sponding decrease of ductility.
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F1G. 23. The postshot photomicrographic observations of final porosity in a copper target,
cf. SEAMAN, BARBEE and CURRAN [139)].

2.4.2. Physical mechanisms of ductile dynamic fracture. To understand bet-
ter the physical mechanism of ductile dynamic fracture let us consider the vari-
ation of tensile stress with porosity or void volume fraction, cf. Fig. 24. The
trajectory “tensile stress-porosity” represents the real dynamic process in the
copper target (specimen). The process starts at the initial porosity &y and in
about 0.55 us tensile stress reaches the point at which the nucleation of mi-
crovoids can be detected. The process goes on, tensile stress peaks up at 0.72 us
and slowly breaks down to attain in 0.87 us the point at which the coalescence of
microvoids begins. At this point the fragmentation processes by the coalescence
of microcracks has started. The segment of the dynamic process marked by the
dashed line represents the mechanism of ductile fracture (spalling or fragmen-
tation) which ends at zero tensile stress. The duration of the entire dynamic
deformation process in the copper target (as it has been suggested by experi-
mental observations) is approximately 1.25 ps.

Very recent experimental investigation of dynamic fracture in metals at high
strain rate performed by CHENGWEI et al. [13] and GILATH [52] have confirmed
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previous results. CHENGWEI et al. [13] used an electric-gun-driven plate impact
(EGDPI) assembly and laser-driven shock wave (LDSW) assembly to investigate
the spall strength of various metals, cf. Figs. 25 and 26. Gilath investigated the
spall behaviour and dynamic fracture of various metals and composite materials.

TENSILE STRESS (k bar)

PEAK STRESS (072 ps)

COALESCENCE BEGINS (0.87 us)

NUCLEATION
BEGINS
1055 ps)

N FRAGMENTATION (125p's)

030 el
POROSITY or VOID VOLUME FRACTION

F1c. 24. Tensile stress as a function of porosity in a dynamic process for copper specimen.

(b) Shot 2

FiG. 25. Microvoids in aluminum specimens loaded by EGDPI (After CHENGWEI, SHIMING,

YANPING and CANGLI [13]).

F1G6. 26. Microvoids in Ti~6A1-4V specimens loaded by LDSW at 3.5 x 102 W/cm?
(After CHENGWEI, SHIMING, YANPING and CANGLI [13]).
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From this analysis of the dynamic deformation process one can see that the
main cooperative phenomena which are most important for proper description
of dynamic fracture (spalling) are as follows: (i) the plastic deformation wave
phenomena; (ii) the nucleation and growth of microvoids; (iii) the coalescence of
microvoids which leads to fragmentation process; (iv) full separation as a result
of the propagation of macrocrack through heavily damaged material.

2.5. Brittle fracture

2.5.1. Discussion of experimental results. The most popular dynamical ex-
perimental investigation of the fracture phenomena in metals as a plate-impact
configuration system offers a unique opportunity for studying microvoid and mi-
crocrack kinetics under the condition of extremely high tensile stress. By vary-
ing the impact velocity and target/impactor geometry it provides to change
the amplitude and duration of stress impulse over the range of approximately
0.1 to 10 GPa and 0.01 to 10 ps, respectively (cf. CURRAN, SEAMAN and
SHOCKEY [19]).

An example of brittle fracture for Armco iron is presented in Fig. 27 (cf. CUR-
RAN, SEAMAN and SHOCKEY [19]). It shows the polished cross-section through
plate impact specimen with very well visible cleavage (penny-shaped) micro-
cracks. The damage, which appears as randomly oriented planar microcracks,
depends on the impact velocity as well as on the duration of the tensile wave.
The second property is directly observed from the results presented in Fig. 28, (cf.
CURRAN, SEAMAN and SHOCKEY [18]). Use of a tapered flyer results in longer
tensile impulses at the thicker end. As it is shown in Fig. 28, these longer pulses
lead to greater damage in the Armco iron target (the inset gives to approximate
durations of the tensile pulses).

Fic. 27. Internal cleavage (penny shape) microcracks caused by shock loading in the polished
cross section of an Armco iron specimen (After CURRAN, SEAMAN and SHOCKEY [19)]).
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0.5mm

Fi1c. 28. Tapered flyer impact experimental results for the Armco iron target
(After CURRAN, SEAMAN and SHOCKEY [18]).

The damage observed in this experiment is termed brittle, although the mi-
crocrack growth is much slower than the elastic crack velocities, indicating con-
siderable plastic flow at micro-crack tips.

2.5.2. Physical mechanism of brittle dynamic fracture. When subjected to
high rate loads from impact, Armco iron undergoes relatively brittle failure from
nucleation, growth and coalescence of planar microcracks.

To understand better the physical mechanism of brittle dynamic fracture
let us consider the variation of tensile stress with specific volume (or poros-
ity), Fig. 29 (cf. CURRAN, SEAMAN and SHOCKEY [18]). The trajectory “tensile
stress-specific volume” represents the real dynamic process in the Armco iron
target (specimen) subjected to a constant strain rate of 1.3 x 10° s~!. From this
trajectory we can follow the events in the order in which things naturally hap-
pen during the dynamic process. The process starts at the initial specific volume
of about 0.1272 and when the tensile stress reaches the threshold value for nu-
cleation, the nucleation, process begins. The process goes on, the tensile stress
peaks up the value of specific volume 0.1310 and dramatically breaks down to
attain at 0.1323 the point at which the coalescence of microcracks begins.

If no stress relaxation were allowed, the tensile stress-specific volume trajec-
tory would follow that determined by the constitutive laws of the elastic-plastic
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F1G. 29. Stress-specific volume trajectory of Armco iron loaded to fragmentation at constant
strain rate (After CURRAN, SEAMAN, SHOCKEY [18]).

flow theory, and the stress would increase indefinitely. However, the microcrack
nucleation and growth processes cause the stress to peak up and decay.

The segment of the dynamic process marked by the gray line represents the
mechanism of brittle fracture (or fragmentation process) by microcrack coales-
cence which ends at zero tensile stress, at that point volume reaches the value
0.135. As it has been suggested by SEAMAN, CURRAN and MURRI [142], the
physical process of coalescence occurs when the planar microcracks becomes so
large that they begin to intersect other microcracks. They may intersect in the
same plane, thus forming larger microcracks, and they may intersect at right an-
gles, forming corners of fragments. Also, microcracks of the same orientation, but
on different planes, may coalesce by developing crack extensions out of the plane
to join the nearby microcracks. Thus a family of microcracks of one orientation
can coalescence and form a rough, multifaceted spall plane.

SHOCKEY, SEAMAN and CURRAN [147] have recently investigated the coales-
cence process for the XAR30 armor steel under plate impact loading conditions.
Their experimental results are presented in Fig. 30, which shows two parallel
but nonplanar macrofractures in the process of coalescing. A profusion of tiny
microfractures has formed in a path linking the tips of macrocracks, suggesting
that coalescence is a nucleation and growth process on a smaller scale.

From this analysis of the dynamic deformation process in the Armco iron
target and from the analysis of the previously discussed experimental results,
one can see that the main cooperative phenomena which are most important for
proper description of brittle dynamic fracture are as follows:
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Fic. 30. Stress-specific volume trajectory of Armco iron loaded to fragmentation at constant
strain rate (After CURRAN, SEAMAN, SHOCKEY [18]).

1. The inelastic deformation wave phenomena. The propagation of the shock
inelastic wave induced by the impact process produces significant structural
changes and affects the mechanical properties. In general, one observes an
increase in the flow stress with a corresponding decrease of ductility.

2. The nucleation and growth processes of microcracks. Damage in brittle
metals as Armco iron depends on the amplitude of tensile stress as well
as on the duration of stress impulse. As the damage occurs, the stiffness
of the material decreases. This softening of the material is mainly due to
nucleation and growth of microcracks. The nucleation and growth processes
may be accompanied by thermal effects.

3. The coalescence of microcracks which leads to fragmentation process. As
the number and sizes of microcracks increase, fragments form until the
entire material disintegrates into fragments.

4. Full separation as a result of the propagation of a macrocrack through
heavily damaged material.

3. KINEMATICS OF FINITE DEFORMATION AND FUNDAMENTAL DEFINITIONS

3.1. Fundamental measures of total deformation

Our notation throughout is as follows: B and S are manifolds, points in B
are denoted by X and those in S by x. The tangent spaces are written Tx B and
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TyS. Coordinate systems are denoted {X“} and {z?} for B and S, respectively,
with corresponding bases E4 and e, and dual bases E4 and e®.

Let us take the Riemannian spaces on manifolds B and S, i.e. {B,G} and
{S,g}, the metric tensors G and g are defined as follows G : TB — T*B and
g : TS — T*S, where TB and T'S denote the tangent bundles of B and S,
respectively, and 7*B and T*S their dual tangent bundles.

Let the metric tensor G 4 be defined by G4p(X) = (E4, Ep)x, and similarly
define gqp by gap(x) = (€4, €p)x, where (, )x and ( , )x denote the standard inner
products in B and S, respectively.

Let

(3.1) x = ¢(X,1)

be a regular motion, then ¢; : B — S is a C! actual configuration (at time t) of

Bin S. The tangent of ¢ is denoted F and is called the deformation gradient of

¢; thus F = T'¢. For X € B, we let F(X) denote the restriction of F to T B.
Thus

(3.2) F(X,t): TxB — Tx:¢(x’t)8

is a linear transformation for each X € Band t € I C IR. For each X € B
there exists an orthogonal transformation R(X) : Tx B — TxS such that F =
R-U =V . R. Notice that U and V operate within each fixed tangent space.
We call U and V the right and left stretch tensor, respectively. For each X € B,
U(X) : TxB — Tx B and for each x € S, V(x) : Ty S — IxS.

The material (or Lagrangian) strain tensor E : Tx B — Tx B is defined by

(3.3) 2E=C -1, (I denotes the identity on TxB),
where

(3.4) C=FT.F=U?2=B"L..

The spatial (or Eulerian) strain tensor e : TxS — TxS is defined by
(3.5) 2e =i—c, (i denotes the identity on TxS),
where

(3.6) c=b"! and b=F.F =V2

The various strain tensors can be redefined in terms of pull-back and push-
forward operations. For the material strain tensor E and the spatial strain tensor
e we have

3.7) E' = ¢*(’), Es(X) = eun(x)F(X)F5(X),
e = ¢.(EY), eas(x) = E4p(X)(F(X) )AFX)™E,

a

where the symbol b denotes the index lowering operator.
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3.2. Finite elasto-viscoplastic deformation

Motivated by the micromechanics of single crystal plasticity we postulate a
local multiplicative decomposition of the form

(3.8) F(X,t) = F*(X,1) - F*(X, 1),

where F¢~! is interpreted as the local deformation that releases the stresses from
each neighborhood N (x) C ¢(B) in the current configuration of the body, cf.
Fig. 31.

Fi1G. 31. Schematic representation of the multiplicative decomposition of the deformation
gradient.

Let us consider a particle X, which at time ¢ = 0 occupied the place X in
the reference (material) configuration B, its current place at time ¢ in the actual
(spatial) configuration S is x = ¢(X,t) and its position in the unloaded actual
configuration S’ is denoted by y. Thus we have

(3.9) Fei 8 Pl d e pLTss

where TyS' denotes the tangent space in the unloaded actual configuration S'.
It is noteworthy that F¢ and FP defined by (3.9) are linear transformations.
We shall treat the tangent space TyS' as an auxiliary tool which helps to

define the plastic strain tensors®).

3For precise definition of the finite elasto-plastic deformation see PERzyNA [122] and
Duszek-PERZYNA and PERzYNA [43]. Different approach to define the finite elasto-plastic
deformation has been presented by NEMAT-NASSER [101].
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The plastic strain tensor EP : Tx B — Tx B is defined by

1.
where
(3.11) CP=F" .FP=U” =B?' and E°¥E_FE"

Similarly the elastic strain tensor €€ : TS — TS is defined by
(3 1 s (4
(3.12) &f = 5(1 —c%),

where

1 def e

(3.13) cC=bt, bE=F.F =V and &L e-e"

It is noteworthy to compare the relation

(3.14) =R UJ—V-R
with
(3.15) F=F¢.FP=R®* . U*-RP.UP =Ve.R®. VP.R?,

The following commutative diagrams summarize the situation.

SN
N

275
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NN

ySI

NN

From the second diagram it is clear that the tangent space Ty8 is playing
an auxiliary role indeed.
The plastic tensors EPand eP operate within each fixed tangent space; that
is EP : TxB — Tx B and €P : TyxS — TS.
We can show that the following relations are valid:
b b b

(3.16) $(B')=¢”, () =E°.

3.3. Rates of the deformation tensor

Let ¢(X,t) be a C? motion of B. Then the spatial velocity is v; = V0 ¢,

where V; = %té is the material velocity, i.e. v: S xI - TS, I C IR.

The collection of maps ¢;, such that for each s and x, t = ¢ 4(x) is an
integral curve of v, and ¢, 4(x) = x, is called the flow or evolution operator of
v, i.e.

(3.17) {Bt,s | br,s = b0 @y : ds(B) = ¢(B)}
and
(3'18) d’t,s o (bs,r = ¢t,r, ¢t,t = identity

for all r,s,t € I C IR.
If t isa C! (possibly time-dependent) tensor field on S, then the Lie derivative
of t with respect to v is defined by?

d
(3.19) Lyt = <E¢t,stt) ’

=S8

“The algebraic and dynamic interpretations of the Lie derivative have been presented by
ABRAHAM et al. [2], cf. also MARSDEN and HUGHES [93].
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If we hold ¢ fixed in t;, we obtain the autonomous Lie derivative

d
(3.20) Lot = (E@,sts) (t:s.
Thus

ot
(3.21) Lot = 5 + Lut.

Ift € T74(S) (elements of T"(S) are called tensors on S, contravariant of order
r and covariant of order s) then Lyt € T"4(S).
The spatial velocity gradient 1 is defined by

a a
(3.22) l=Dv: TS + TS, ie I8 =0 |p= % +980°,

where «;., denotes the Christoffel symbol for g.
The spatial velocity gradient 1 can be expressed as follows

1

(323) 1=Dv=F .-F '=F¢.F 4+F°. (F°.FP').F¢’

=I+P=d+w=d°+w’+d° +u?,

where d denotes the spatial rate of deformation tensor and w is called the spin.
Let us define the material (or Lagrangian) rate of deformation tensor D as
follows

0

(3.24) D(X,t) = aE(X,t).
We have a very important relation
0 0
y b i) O e YOS ek - 3 G b
(3.25) @ =Loe’ = g (¢ e ) %, <BtE ) ¢, (D").

On the other hand,

b
1 Y 1 1
(3.26) d* = Lye’ =L, [-2- (g-b 1)] - EL‘,g =3 (9e6V° |a +Gact® |s) €*®e’,

i.e. the symmetric part of the velocity gradient 1 (the symbol ® denotes the
tensor product).
The components of the spin w are given by

1 1 /0w ov
(3-27) Wah .= o (gacvc |b —gcbvc |a) = ( ; b) )

2 2\ 8zt Oze
and

(3.28) a

b b b

Slaet. 4 =L
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3.4. Rates of the stress tensors

The first Piola-Kirchhoff stress tensor P%4 is the two-point tensor obtained
by performing a Piola transformation on the second index of the Cauchy stress
tensor o, i.e.

(3.29) P = J(E Hfa®,

where J denotes the Jacobian of the deformation.
The second Piola-Kirchhoff stress tensor S is defined as follows

(330) = (F AP N e = (T,
i.e.

(3.31) S = ¢*(7),

where 7 = Jo is called the Kirchhoff stress tensor.
The rate of the Kirchhoff stress tensor 7 is given by

(3.32) Linet gb*%(qﬁ*‘r) =ity (%S) =F. (%S) -FT o g7 L.

Let us define
71 = 7%, ® & € T%)(S),
(3.33) T =71, @ & € T1'(S),
T3 =1%e, e’ € T(S).
Then

orab i1 BT"I’UC s ch@ _ a9V
ot oz¢ ozx¢ oz¢

(3.34) P e

is the rate associated with the name Oldroyd (cf. OLDROYD [102]). The Zaremba-
Jaumann rate (cf. ZAREMBA [168, 169] and JAUMANN [76]) is defined as follows

P agal
[(LUTg)acgcb =1 gaC(LUT2)cb] 28 # v + 7_adwdb o Tdbwad.

(3.35) 5 .

N =

3.5. Fundamental properties of the Lie derivatives

Let us take again t € T"4(S) a given time-dependent spatial tensor field on
S and let £ be a diffeomorphism of S to another manifold &£(¢(B)), cf. Fig. 32.
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F1G. 32. Schematic representation of the change of spatial frame generated by superposed
spatial diffeomerphism.

Any spatial tensor field t € T"4(S) is said to transform objectively under the
superposed diffeomorphism £ if it transforms according to the rule

(3.36) t'=¢,t,

where £, is the push-forward operation.
Let v’ be the velocity field of &, o ¢;. Then we have (cf. MARSDEN and
HuGHES, [93])

(3.37) Lt < &, (Lot):

This means that objective tensors have objective Lie derivatives. It is noteworthy
to recall here that the rates which are objective with respect to diffeomorphisms
are called covariant.

The Oldroyd rate of the Kirchhoff stress tensor (3.34) is objective with respect
to diffeomorphisms while the Zaremba-Jaumann rate (3.35) is objective with
respect to isometries. The reason of it is caused by the fact that the operations
of raising and lowering indices do not commute with Lie differentiation. This
corollary has very important consequences for the formulation of the objective
constitutive structures.
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4. THERMO-ELASTO-VISCOPLASTICITY CONSTITUTIVE MODEL

4.1. Constitutive postulates

Constitutive theory is given most conveniently in the material picture be-
cause the domain B of the functions remains fixed. This helps to develop the
identification procedure. However, it can be done spatially as well.

We introduce the four fundamental postulates:

(i) Existence of the free energy function. It is assumed that the free energy
function is given by

(4.1) ¥ = P(e,F, 0 p),

where e denotes the Eulerian strain tensor, F is the deformation gradient,
9 is temperature and p denotes a set of the internal state variables.

(ii) Axiom of objectivity (spatial covariance). The constitutive structure should
be invariant with respect to any diffeomorphism £ : S — S (MARSDEN
and HUGHES, [93]). Assuming that £ : § — § is a regular, orientation
preserving map transforming x into x and T¢ is an isometry from TyS,
to T,»S ,we obtain the axiom of material frame indifference, cf. Fig. 32.

Before the formulation of the third axiom let us discuss thermodynamic re-
strictions. Consider the balance principles as follows:
1. Conservation of mass. Let assume that ¢(X,t) is a C! regular motion.
A mass density function p(x,t) is said to obey the law of conservation of
mass if

(4.2) p+ pdivo =0 or p(x,t)J(X,t) = pret(X).
For a damaged solid body the mass density p(x,t) is given by
(4.3) p=pm(l=¢§)+pvE,

where pys is the mass density of the matrix material and py the mass
density of voids. Assuming py < py we have

(4.4) p=pm(l—8).
Thus a function p(x,t) is said to obey the conservation of mass if
(45) pu(1=€)J(X, ) = ps(X) (1 - o) = prer

2. Balance of momentum. Assume that conservation of mass and balance of
momentum hold. If there is no external body force field, then

(4.6) pv = div Gr) :
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3. Balance of moment of momentum. Let the conservation of mass and bal-
ance of momentum hold. Then the balance of moment of momentum holds
if and only if 7 is symmetric.

4. Balance of energy. Assume that the following balance principles hold: con-
servation of mass, balance of momentum, balance of moment of momentum
and balance of energy. If there is no external heat supply then

P
PRef

(4.7) p() + 97 + nd) + divg = ——7 : d,
where 7 denotes the specific (per unit mass) entropy and q is the heat
vector field.

5. Entropy production inequality. Assume the conservation of mass, balance

of momentum, moment of momentum, energy and entropy production in-
equality hold. Then the reduced dissipation inequality is satisfied:

(4.8) r:d—(d+1) — p%q - gradd > 0.

PRef
(iii) The axiom of entropy production. For any regular process ¢, ¥;, p, of
a body B the constitutive functions are assumed to satisfy the reduced
dissipation inequality (4.8). MARSDEN and HUGHES [93| proved that the
reduced dissipation inequality (4.8) is equivalent to the entropy production
inequality first introduced by COLEMAN and NOLL [16] in the form of the
Clausius-Duhem inequality. In fact the Clausius-Duhem inequality gives
a statement of the second law of thermodynamics within the framework of
mechanics of continuous media.
(iv) The evolution equation for the internal state variable vector p is assumed
in the form as follows

(4.9) Lop = m(e,F, 9, u),

where the evolution function m has to be determined based on careful
physical interpretation of a set of the internal state variables and analysis
of the available experimental observations.

The determination of the evolution function rh (in practice a finite set of
the evolution functions) appears to be the main problem of the modern
constitutive modelling.

4.2. Fundamental assumptions

The main objective is to develop the rate-type constitutive structure for
an elastic-viscoplastic material in which the effects of the plastic non-normality,
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plastic spin, plastic strain-induced anisotropy (kinematic hardening), microdam-
aged mechanism and thermomechanical coupling are taken into consideration.
To do this it is sufficient to assume a finite set of the internal state variables.
Let us postulate

(4.10) p=(¢ ),

where ¢ denotes the new internal state vector which describes the dissipation
effects generated by viscoplastic flow phenomena, ¢ is volume fraction porosity
and takes account for microdamaged effects and a denotes the residual stress
(the back stress) and aims at the description of the kinematic hardening effects.
Let us introduce the plastic potential function f = f (jl, Jo, 9, p), where A
Jo denote the first two invariants of the stress tensor ¥ = T — .
Let us postulate the evolution equations as follows:

(411) d=AP, WP =AR, L¢=AZ £=E, Lya=A,

where for elasto-viscoplastic model of a material we assume (cf. PERZYNA [103,
104, 105, 122, 123])

(4.12) A=%<¢ ({5—1) >

T}, denotes the relaxation time for mechanical disturbances, the isotropic work-
hardening-softening function & is

£ 9 1/2
(4.13) 5= (2. 8,8), . . €P= / (gd”:dp> dt,
0

® is the empirical overstress function, the bracket (-) defines the ramp function,

LBt ST
£=const :

10T ar
Q, Z, Z and A denote the evolution functions which have to be determined.

It is noteworthy that the material function Z is intrinsically determined by
the constitutive assumptions postulated. To show this it is sufficient to perform a
Legendre transformation what has been presented by DUsZEK and PERZYNA [37].

For our practical purposes it is sufficient to assume that the internal state
vector ¢ is equal to the equivalent plastic deformation €, i.e.

(4.14) P

(4.15) p=(eP,¢ a).
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Then the material function Z is directly determined from
. 2 Hirodo f2
(4.16) EP =AZ = <§d” : d”) = \/;A,

2
4.1 g s

4.3. Constitutive assumption for the plastic spin

The constitutive laws for the plastic spin® based on the application of the
tensor function formulation have been proposed by MANDEL [88, 89], KrA-
TOCHVIL [79], DAFALIAS [21, 23, 24, 25] and LORET [84]. Different proposition
by using generalized normality condition has been introduced by HALPHEN [66],
MANDEL [90], DAFALIAS [22] and VAN DER GIESSEN [161, 162].

Let us postulate that £ has the form (cf. DAFALIAS [21] and LORET [84])

(4.18) Q=n*(a-P-P-a),

where n* denotes the scalar-valued function of the invariants of the tensors a
and P, and may depend on temperature ¢ and porosity .

4.4. Intrinsic microdamage process

An analysis of the experimental observations for cycle fatigue damage mech-
anisms at high temperature of metals performed by SIDEY and COFFIN [149]
suggests that the intrinsic microdamage process does very much depend on the
strain rate effects as well as on the wave shape effects, cf. Sec. 2.

To take into consideration these observed time-dependent effects it is ad-
vantageous to use the proposition of the description of the intrinsic micro-
damage process presented by PERZYNA [116, 117] and DUSZEK-PERZYNA and
PERZYNA [40].

Let us assume that the intrinsic microdamage process consists of the nucle-

ation and growth mechanisms®.

)For the thorough discussion of the concept of the plastic spin and its constitutive descrip-
tion in phenomenological theories for macroscopic large plastic deformations please consult the
critical review paper by VAN DER GIESSEN [163].

®)Recent experimental observation results (cf. SHOCKEY et al. [147]) have shown that coa-
lescence mechanism can be treated as nucleation and growth process on a smaller scale. This
conjecture simplifies very much the description of the intrinsic microdamage process by taking
account only of the nucleation and growth mechanisms.
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Physical considerations (cf. CURRAN et al. [20] and PERZYNA [116, 117]) have
shown that the nucleation of microvoids in dynamic loading processes which
are characterized by very short time duration is governed by the thermally—
activated mechanism. Based on this heuristic suggestion and taking into account
the influence of the stress triaxiality on the nucleation mechanism, we postulate
for rate-dependent plastic flow

(4.19) (f)nuel = E—,ln:h*(f,ﬂ) [exp il ol ;;n(g’ﬁ’ b 1] :

where k denotes the Boltzmann constant, h*(¢,1) represents a void nucleation
material function which is introduced to take account of the effect of microvoid
interaction effect, m* (1) is a temperature-dependent coefficient, Tn(€,9,€P) is
the porosity, temperature and equivalent plastic strain-dependent threshold stress
for microvoid nucleation,

(4.20) jn = aljl + az\/lg + ag (j;;) 4

defines the stress intensity invariant for nucleation, a; (i = 1,2,3) are the mate-
rial constants, J; denotes the first invariant of the stress tensor 7' =1T-a,J,
and J; are the second and third invariants of the stress deviator ¥ = (r - a)l.

For the growth mechanism we postulate (cf. CARROLL and HoLT [11]), JOHN-

SON [77], PERZYNA [116, 117, 119], PERZYNA and DRABIK [127, 128))

: 1 g*(€,9)
421 (€) e [T~ eq(€,9,€7)]
( ) ¢ b Tm JRo Teq(f %)
where Tr, (/Ko denotes the dynamic viscosity of a material, g *(&,19) represents a
void growth material function and takes account of void interaction, 7eq(&, 9, €P)
is the porosity, temperature and equivalent plastic strain- dependent void growth
threshold stress,

(4.22) foipR b2\/JZ s (j;)l/s ,

defines the stress intensity invariant for growth and b; (i = 1,2, 3) are the mate-
rial constants.
Finally the evolution equation for the porosity ¢ has the form

m*(9) | fn = Takbs &l 1%, 1:|
kv

h*(€,9)

(423) €= G

exp

9*(§,9)
Tm\/—

[I — 7eg(€, 9, € )}
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To have a consistent theory of elasto-viscoplasticity we can replace the ex-
ponential function in the nucleation term and the linear function in the growth
term by the empirical overstress function @, then the evolution equation for the
porosity ¢ takes the form as follows:

(4.24) ézfim“””<¢[ﬁﬁé%55_l}>

This determines the evolution function =.

4.5. Kinematic hardening

For a constitutive model describing the behaviour of a material under cyclic
loading processes, the crucial role plays the evolution equation for the back stress
a, which is responsible for the description of the induced plastic strain anisotropy
effects.

We shall follow some fundamental results obtained by DUSzEK and PERZYNA
[36] (cf. also DUuszEK and PERZYNA [34, 35]). Let us postulate

(4.25) Loa = A(d?, 7,9,€).

Making use of the tensorial representation of the function A and taking into
account that there is no change of & when # = 0 and d? = 0 the evolution law
(4.25) can be written in the form (cf. TRUESDELL and NOLL [159))

(426) Lua =md® +moF +nyd” +myi? 415 (d° - 7 + 7 - )
+ 76 (dp2 ﬁ'-.*.-’,’-dP?) +7]7(dp'7~'2+‘7'2'dp> + 8 (dp2 _;7~_2+_"~_2.dp2)’

where 7y,...,ng are functions of the basic invariant of d? and 7, the porosity
parameter ¢ and temperature 9.
A linear approximation of the general evolution law (4.26) leads to the result

(4.27) Lya = mdP + no7.

This kinetic law represents the linear combination of the Prager and Ziegler
kinematic hardening rules.

To determine the connection between the material functions n; and 7, we
take advantage of the geometrical relation (cf. DUSZEK and PERzZYNA [36, 37])

(4.28) (Lya—rd?): Q =0,
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where

ok 6 =
o o=l (E-2)3

or

e (6f an> o¢

or ' \o¢ 0¢) ot

o6~ Of

)

and r denotes the new material function.
The relation (4.28) leads to the result

= f PQ
(4.30) = <<I> <,.g 1)> r(&9) -ml s
Finally the kinematic hardening evolution law takes the form

1 f s
s v —_ —— pE Ve [} P b) ~ )

(4.31) Lya T <(I)(/-c 1>>[r1(§ )P +ro(€ 19)1_:Q7-
where
(4.32) ri(§9) =m, (&) =r—n.

It is noteworthy to add that the developed procedure can be used as a general
approach for obtaining various particular kinematic hardening laws. As an ex-
ample let us assume that the evolution function A in (4.25) instead of d? and
7 depends on d? and a only (cf. AGAH-TEHRANI et al. [3, 4]). Then instead of
(4.31) we obtain

4 tea=(o(L-1))aEor - ae o,
where
(434 G=ry  G=-nE)—g

When the infinitesimal deformations and rate-independent response of a mate-
rial are assumed and the intrinsic microdamage effects are neglected, then the
kinematic hardening law (4.33) reduces to that proposed by ARMSTRONG and
FREDERICK [5].

The kinematic hardening law (4.33) leads to the nonlinear stress-strain re-
lation with the characteristic saturation effect. The material function (;(¢,%)
for £ = & and ¥ = ¥y can be interpreted as an initial value of the kinematic
hardening modulus and the material function (3(¢,1) determines the character
of the nonlinearity of kinematic hardening. The particular forms of the functions
¢1 and (o have to take into account the degradation nature of the influence of
the intrinsic microdamage process on the evolution of anisotropic hardening.
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4.6. Thermodynamic restrictions and rate type constitutive relations

Suppose the axiom of the entropy production holds. Then the constitutive
assumption (4.1) and the evolution equations (4.11) lead to the results as follows:

o __ ¥ &%

1
) = il -L . dd > 0.
(4 35) T = ORef Je’ 6'(9 6[1. v — pﬁq gradd > 0

The rate of internal dissipation is determined by

130 0= tp= - [ 222 20 (rp 1235 |a- e

Operating on the stress relation (4.35); with the Lie derivative and keeping the
internal state vector constant, we obtain (cf. DUSZEK-PERZYNA and PERZYNA
[40])

(4.37) Lyr=Le:d-LPd—[(L+gr+T18+W) :P]TL<<I> (%—1)>,

where
: 0%
L = PRef‘(%Q‘,
(4.38) o %
L7 = —PRefm,

W =n*((gT — 78) : (ag — ga)].

Substituting z/} into the energy balance equation and taking into account the
results (4.35)3 and (4.36) we obtain

(4.39) P17 = —divq + pdi.

Operating on the entropy relation (4.35)2 with the Lie derivative and substi-
tuting the result into (4.39) we obtain

(4.40) pcpﬂ = —divq + 9

Refaﬁ td+ px*r : dP + px™*,

where the specific heat

%)

(4.41) & =~
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and the irreversibility coefficients x* and x** are determined by

SEOT pppalpuoiuloig TouE
X="|\oer "ov5er | V3
) % \ PO
(442) < <a—a —"(9678—'&) g (7‘1P +'r2;’__ : QT)

X+ \ 0t \ o9k |

4.7. Fracture criterion based on the evolution of microdamage

1
T:P’

We base the fracture criterion on the evolution of the porosity internal state
variable €. The volume fraction porosity ¢ takes account of microdamage effects.

Let us assume that for & = ¢f a catastrophe takes place (cf. PERZYNA [113,
114]), that is

(4.43) k= R(€7,9,8)|¢eer = 0.

It means that for ¢ = ¢F the material loses its carrying capacity. The condition
(4.43) describes the main feature observed experimentally that the load tends to
zero at the fracture point.

In is noteworthy that the isotropic hardening-softening material function &
proposed in Eq. (4.13); should satisfy the fracture criterion (4.43).

5. RATE-INDEPENDENT PLASTIC RESPONSE

5.1. Rate-independent plastic response as a limit case

Let us assume that the relaxation time Ty, = 0, then from (4.11); and (4.12)
we have the yield criterion

(5.1) f-k=0.
The coefficient A can now be determined from the consistency condition
(5.2) f-k=0,

which yields

(5.3) A=<%{Q:[+—(d-a—+—a-d)]+m9}>,
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where
HZH*-I-H**,
2 [ Ok 8f ok Bf of ~ 1k o]
el (-2 S D5
(5.4) 3|10€p 3§ o€ o8 DL
B =rif Q)

g 5 i S ‘9_"“ + g s ey 5
—l\ag  a¢ 09 09| ||or 9 ot
The relations (5.3) and (5.4) suggest the interpretation of H* and H** as the

isotropic and anisotropic hardening modulus rates, respectively.
Finally, we have for rate-independent plastic response

(5.5) d”=<—}1?{Q:[+—(d~a+a-d)]+m9}>P

5.2. Rate-independent intrinsic micro-damage process

For rate-independent response when T}, = 0 the evolution equation for poros-
ity (4.24) yields

(5.6) I, = fg = (£,9,€P) = 1q(§, 9, €7) =

To obtain the evolution equation for porosity parameter ¢ we shall follow the
procedure developed by DUSZEK-PERZYNA and PERZYNA [121]. The result (5.6)
leads to the evolution equation as follows

(5.7) € = Ay + AoJy + AgJy + BEP + O9),

where A;, Az, A3, B and C are determined material functions. The evolution
equation (5.7) can be directly related to the Gurson proposition modified by
Tvergaard (cf. GURSON [59], MEAR and HUTCHINSON [96], TVERGAARD [160],
Duszek and PERZYNA [34]) by the assumptions

Ay =kd,  Ay=Az=0,
(5.8)
€P = ko7 : dP + kg : dP.
Introducing the assumptions (5.8) into (5.7) we obtain

(5.9) € = kyy + koF : dP + kag : & + C9.
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The first two terms in (5.9) are responsible for the description of the nucle-
ation, the first due to the cracking of the second-phase particles and the second is
generated by debonding of the second-phase particles from the matrix material
as the plastic work progressively increases. The third term describes the growth
process and is assumed to be controlled only by the plastic flow phenomena. The
last term can be interpreted as the description of the nucleation induced by the
transient change of temperature. For processes in which temperature change is
smooth and small, this term can be neglected (i.e. we can assume C = 0).

5.3. Fundamental rate-type constitutive equations

The rate equation (4.37) can also be written in the form as follows:

(5.10) LI EES T e i tp Uy
where
(5.11) b=P+Q)-74+7-(P-9Q)

(cf. here the results for single crystals presented by HILL and RICE [69] and
Duszek-PERZYNA and PERZYNA [39]).

Substituting in (5.10) A and 2 from Egs. (5.3) and (4.18) we finally obtain
the rate-type constitutive equation for the Kirchhoff stress tensor 7 in the form

(5.12) Lyr =L:d - M%,
where the fundamental elasto-plastic matrix £ and the thermal tensor M are
defined as follows:

LE+gr+T1g+W):PQ: (L°+ Tg+gF)

c= i
H+P:(Le+gT+718):Q+P:W:Q ’

{5.13)
(L4 gT+T8+W):P(Q: L —7)
H+P:(Le+gr+7g8):Q+P:W:Q’

It is noteworthy to point out here that the fundamental elasto-plastic ma-
trix £ determined by (5.13); is nonsymmetric. There are three reasons for the
nonsymmetry of the fundamental elasto-plastic matrix £, namely the kinematic
hardening effects (i.e. the stress tensor # = 7 — a arises in the second bracket
in the numerator of the second term instead of 7), the plastic non-normality
(i.e. P # Q) and the plastic spin (this effect is represented by the additional
term W). For the particular case when these three effects are neglected we have
a very important result, namely the fundamental elasto-plastic matrix £ becomes
symmetric.

M=L"—
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The rate equation (4.40) for rate-independent response takes the form

or
2 |
PRef 6'19

(5.14) pcp'ﬂ = —divq + ¢

+px1A+ px2 [LvT:g+(g- T+ 7-8) : d],

where the irreversibility coeflicients x; and y2 are defined as follows
e op % \/5 op 0%\ ¥iQ
Xl“[(&_‘?aﬁa) 35408 7 Vovear )} \ B BErg T
2
(5.15) +(a¢ Ve P 1/) )(k‘z“f':P-l-kgg:P) ;

0¢ 090€
o %
X2 d) k].

0E 9V0E
It is noteworthy that the rate-type equations (5.12) and (5.14) take into ac-
count such effects as the plastic spin, plastic non-normality, plastic strain-induced
anisotropy (kinematic hardening, i.e. nonsymmetry of the fundamental matrix
L), covariant terms, micro-damage process (i.e. softening generated by microc-
rack nucleation and growth mechanisms), thermomechanical couplings (i.e. ther-

mal plastic softening and thermal expansion) and of course, due to cooperative
phenomena the synergetic effects.

6. ADIABATIC INELASTIC FLOW PROCESS
6.1. Formulation of an adiabatic inelastic flow process

Let us define an adiabatic inelastic flow process as follows (cf. PERZYNA [121,
122] and LopyGowskI and PERZYNA (85, 86]). Find ¢, v, p, 7, a, € and ¥ as
function of ¢ and x such that

(i) the field equations
$=v,

V=

-
—grad +divr> -
PRef (pg 5

(6.1) p = —pdivv,

9 or ov ov
o RV = Y 51111 AL T et e
5 <[, cppRefL 819) : sym ; + 2sym <7- : 8x>

I * **
- <<I> (i - 1)>[<£e+ —X—[,th'r+g'r+‘rg+W) : P] UKL A
oo K pCp pCp
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&=2m (o 32) + o (2 (L-1) e op +rie 327,
61) ¢

[cont.]

(1]

 §

: 9 Or ou " 1 "4 x* Y
. ACBMBIASIRE N4 WA BT T dIRT =,
gy sym8x+Tm< <,«, )> Pty s

(ii) the boundary conditions

(a) displacement ¢ is prescribed on a part dy of d¢(B) and tractions (7-n)® are
prescribed on part 97 of d¢(B), where 95N 07 = 0 and 9, U 0y = d¢(B);

(b) heat flux q - n = 0 is prescribed on d¢(B);
(iii) the initial conditions ¢, v, p, T , «, £ and ¥ are given at each particle

XeBatt=0;
are satisfied.

6.2. Formulation of the evolution problem

Find ¢ as function of ¢ and x satisfying”

() @ =Alt o) +f(t,¢);
B (i) (0) = P(x);
(i) The boundary conditions

(e.g. as have been postulated in Sec. 6.1),

where the unknown ¢ takes values in a Banach space, A(t, ¢) is a spatial linear
differential operator (in general unbounded) depending on t and ¢, and f is
a nonlinear function.

The evolution problem (6.2) describes an adiabatic inelastic flow process
formulated in Section 6.1 provided

SR D S X e

[ 9 ]

"'We shall follow here some fundamental results which have been discussed in RICHTMYER
and MORTON [136], STRANG and Fix [152], HuGHES, KATO and MARSDEN [72], RICHTMYER
[135], DAUTRAY and LioNs [26], GusTAFssoN, KREiss and OLIGER [61] and LoDYGOWSKI
and PERzZYNA [85, 86].
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[ 0
0
—i<q> <i—1>>[<£9+X—Lthr+gr+-rg+w> :P]
Tr K pCp
X**Eﬁth
f= PCp ’

Tl-; <<1> (£ by 1)> [rl(f,ﬂ)P +r2(§,19)§ 8%]

(6.3)
[ 0 il g T
PRefP PRef
—pdiv 0 0 000
0 0
E.syma—£+2sym<'r.$) 0 0 000
A= 9 :
2sym (a : &> 0 0 000
0 0 0 000
9 o0r ad
—_— — 0 00
L CpPRef 09 N ox 0 ? d
where
9 or
6.4 I OF iy eiises (W0 C 0
( ) CpPRef oY

It is noteworthy that the spatial operator A has the same form as in thermo—
elastodynamics while all dissipative effects generated by viscoplastic flow phe-
nomena influence the process through the nonlinear function f.

6.8. Strict solution of the evolution problem

A strict solution of (6.2) with f(¢,¢0) = 0 (i.e. the homogeneous evolution
problem) is defined as a function ¢(t) € E (a Banach space) such that

p(t) € D(A), forall tel0,ty],
(5:5) ot + At) — p(t)

lim o

At—0

—Ap(t)|| =0 forall ¢el0,ty].

E
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The boundary conditions are taken care of by restricting the domain D(A) to
elements of E that satisfy those conditions; they are assumed to be linear and
homogeneous, so that the set S of all ¢ that satisfy them is a linear manifold;
D(A) is assumed to be contained in S.

The choice of the Banach space E, as well as the domain of A, is an essential
part of the formulation of the evolution problem.

6.4. Well-posedness of the evolution problem

The homogeneous evolution problem (i.e. for f = 0) is called well posed (in
the sense of Hadamard) if it has the following properties (cf. RICHTMYER [135]
and HUGHES et al. [72]):

(i) The strict solutions are uniquely determined by their initial elements;
(ii) The set Y of all initial elements of strict solutions is dense in the Banach
space E;
(iii) For any finite interval [0,%o], to € [0,¢f] there is a constant K = K (to)
such that every strict solution satisfies the inequality

(6.6) le@)ll < Kll°ll, for 0<t<to.

The inhomogeneous evolution problem (6.2) will be called well posed if it has
a unique solution for all reasonable choices of ¢° and f(t, ) and if the solution
depends continuously, in some sense, on those choices.

It is evident that any solution is unique, because of the uniqueness of the
solutions of the homogeneous evolution problem. Namely, the difference of two
solutions, for given ¢° and given f(-), is a solution of the homogeneous problem
with zero as an initial element, hence must be zero for all ¢.

It is possible to show (cf. RICHTMYER [135]) that strict solutions exist for
sets of ¢ and f(-) that are dense in E and E; (a new Banach space), respectively.

Of course it is easier to do this for the initial value problem (the Cauchy
problem) than for the initial-boundary value problem (the evolution problem).

Let us consider the initial value problem (6.2)(i),(ii), i.e.

6.7)  @=Altx e +ftxe), telt], 0% =¢’x)

In order to examine the existence, uniqueness and well-posedness of the initial
value problem (6.7) let us assume that the spatial differential operator A has
domain D(A) and range R(A), both contained in a real Banach space E and the
nonlinear function f : E — E. To investigate the existance as well as stability of
solutions to (6.7) it is necessary to characterize their properties without actually
constructing the solutions. This can be done by considering the properties of a
nonlinear semi-group.
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Let {IFy";t > 0} be a semi-group generated by the operator A + f(-) and
{IF};t > 0} be a semi—group generated by the operator A.

Then we can write the generalized solution of the nonhomogenous initial-
value problem (6.7) in alternative forms

(6.8) o(t,x) = F*(t)¢’(x)

t
= Ft)e'(x) + / F(t — 5)E(s, p(s))ds.
0

We say that the problem (6.7) is well posed if JF}* is continuous (in the topology
on D(A) and R(A) assumed) for each ¢ € [0, ¢y].
Let us postulate as follows:

(i) the strong ellipticity conditions in the form:

1 or
6.9 E=L°———3,%"—
( ) CpPRef 09
is strongly elliptic (at a particular deformation ¢) if there is an € > 0 such
that
(6.10) B*%aCcbséa > ell€IP €)1

for all vectors ¢ and & € IR3;
(i) for positive numbers A} and A? and for T, > 0

f(t,‘P) = E’ ”f(t? So)”E < ’\tl‘a

(6.11) ; <
I£(t, 0 ) — £(t, 0)lle < Ml — @llE,

and
(6.12) t — f(t,) € E is continuous.

Using the results presented by HUGHES et al. [72] and MARSDEN and HUGHES
[93] it is possible to show (cf. PERZYNA [121, 122]) that the conditions (i) and
(ii) guarantee the existence of (locally defined) evolution operators IFj : E — E
that are continuous in all variables. In other words, the solution of the Cauchy
problem (6.7) in the form (6.8); exists, is unique and well-posed.

The generalized solution of the nonhomogeneous initial-value problem (6.7)
in the form (6.8) is the integral equation.

The successive approximations for (6.8); are defined to be the functions
®0, P15 - - -, given by the formulas

QOO(t) = ‘PO,
t
(6.13) eenlt) = FO)e'+ [ F(t- 9t eu(s)ds
k=0,1,2,...; te[oefk
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It is possible to show that these functions actually exist on ¢ € [0,ty] if the
continuous function f is Lipschitz-continuous with respect to the second argu-
ment uniformly with respect to ¢ € [0,%¢]. Then (6.8)2 has a unique solution (cf.
IONESCU and SOFONEA [75]).

To prove the well-posedness of the initial-value problem (6.7) we can also use
recent results obtained for the symmetrizable hyperbolic systems (cf. TAYLOR
[154]).

Let us write the system of equations (6.7) in the form

Op 2
(6.14) 5 = 2 Bilt.x,0)90 +£(t,%,0).

j=1

The system (6.14) due to the condition (6.10) is strictly hyperbolic, however is
not symmetric®).
We shall use the following

PROPOSITION 1. (cf. TAYLOR [154]). Whenever the system (6.14) is strictly
hyperbolic, it is symmetrizable.
So, there exist Ay(t,x, ) positive definite, such that

(615) Ag (t7 X, SO)BJ (tv X, ‘P) w3 A] (tv X, ‘P)
are all symmetric, i.e.
(6.16) Aj=A; and Ag2>cl>0.

The initial-value problem (6.7) can be written in the form

0
Aolt,x,0) 5 =

(6.17) 0

WE

AJ (t, X, 80)6]90 y g(t, X, (P),
1

<.
Il

¢(0,x) = ¢°(x),

with the domain D C E. We shell use the following

THEOREM 1: (c¢f. TAYLOR [154]). If the system (6.14) is symmetrizable,
in particualar if it is strictly hyperbolic, the initial value problem (6.7), with
©(0,x) = ¢°(0,x) € H*(D), has a unique local solution ¢ € C(I, H*(D)) when-

n

ever k > 3 +1;n=3and I =[0,tf].

We can also use here the results of FRIEDRICHS [50, 51] for the symmetric
hyperbolic systems (cf. MARSDEN and HUGHES [93]).

8 For all examples considered for an elastic-viscoplastic model of the material, the system
(6.14) will be strictly hyperbolic.
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7. ANALYSIS OF THE FUNDAMENTAL FEATURES OF THE MODEL
7.1. Invariance with respect to diffeomorphism

Our description of the thermo-elasto-viscoplastic constitutive structure is
invariant with respect to any diffeomorphism, cf. Fig. 32. It means that the
constitutive structure is invariant to any superposed motion. Such constitutive
structure is called covariant, cf. MARSDEN and HUGHES [93].

As it has been already mentioned in Sec. 4.1 (see Postulate (ii)) when
£ : S — S is a regular, orientation preserving map transforming x into x and
T¢ is an isometry from TxS to T/ S, we obtain the invariance with respect to
any rigid motion, i.e. the axiom of material frame indifference, cf. TRUESDELL
and NoLL [159].

The covariance property of the constitutive structure has been achieved due
to the assumption that the rates of the deformation tensors and the stress tensors
(as well as all vectors and tensors) are defined based on the Lie derivative. Of
course, the covariance description has very important consequence for proper
mathematical investigations of some phenomena which will be discussed in the
solution of the evolution problems. It will be also crucial for proper description
of mesomechanical problems and particularly in their numerical solutions.

7.2. Finite plastic deformation; plastic spin effects

The kinematics of finite elasto-viscoplastic deformation is based on notions of
the Riemann space on manifolds and tangent spaces, cf. MARSDEN and HUGHES
[93]. A multiplicative decomposition of the deformation gradient into elastic and
viscoplastic parts is assumed, and Lie derivative is used to define all objective
rates for vectors and tensors.

The viscoplastic spin has been also taken into account in the constitutive
structure.

Due to these assumptions we obtain the consistent description of finite elasto—
viscoplastic deformations.

The main effect generated by the viscoplastic spin can be observed from the

rate-type constitutive relation for the Kirchhoff stress tensor 7 (cf. Eq. (4.37)). In

1
this equation the additional term T <<I> ( i— 1) >W : P describes the influence of

K
the viscoplastic spin. For thermo—gllasto-plastic (rate independent) constitutive
structure we observe a similar influence of the plastic spin on the fundamen-
tal rate constitutive equation for the Kirchhoff stress tensor = (cf. Eq. (5.13)).
Namely, both matrices £ and M are affected by the additional term W. In this
case it caused the asymmetry of the fundamental elasto-plastic matrix £. This
property, of course, has a very important influence on the description of local-
ization phenomena.
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7.8. Plastic non-normality

Plastic non-normality (i.e. P # Q is generated by the influence of microdam-
age mechanisms. This effect is clear from the comparison of P (cf. Eq. (4.14)
and Q (cf. Eq. (4.29)). It has very important influence on the description of
localization and localized fracture phenomena.

7.4. Softening effects generated by microdamage mechanisms

By introducing the internal state variable &, i.e. volume fraction porosity in
the constitutive structure (cf. Sec. 4), the description of the intrinsic microdam-
age process has been achieved. From the available experimental observations we
learn that there are three main mechanisms responsible for the evolution of mi-
crodamage, namely nucleation, growth and coalescence of microcracks. Taking
advantage of the conjecture that the coalescence mechanism can be treated as
nucleation and growth process on a smaller scale, we simplified the description
of the intrinsic microdamage by making allowance only for the nucleation and
growth mechanisms.

From the fundamental rate equation for temperature 9 (cf. Eq. (4.40)) we
observe that the microdamage mechanism generates dissipation effects. On the
other hand, from the form of the isotropic work-hardening-softening function s
(cf. Eq. (4.13)) we see the direct description of softening effects caused by the
intrinsic microdamage process.

It is noteworthy to add that the fundamental fracture criterion (cf. Eq. (4.43))
is also based on the evolution of microdamage. The evolution equation for the
porosity internal state variable ¢ is assumed in the form (4.24) which takes
into consideration the influence of the stress triaxiality on the nucleation and
growth mechanisms. This assumption has crucial importance for the description
of fatigue fracture phenomena.

7.5. Plastic deformation-induced anisotropic effects

Experimental observations of plastic flow processes have shown that finite
plastic deformations induced the effect of anisotropy of a material. To describe
this effect, the residual stress (the back stress) a has been introduced to the
constitutive structure as the internal state variable. The aim of this is to take
into account the kinematic hardening phenomenon, which can be treated as the
first approximation of the description of plastic deformation-induced anisotropy.

The evolution equation postulated for the back stress a represents the lin-
ear combination of the Prager and Ziegler kinematic hardening rules. As a re-
sult of this description of plastic deformation-induced elasto-plastic matrix £
(cf. Eq. (5.13)), i.e. the stress tensor ¥ = T — a arises in the second bracket in
the numerator of the second term instead of T.
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This kind of anisotropy generated by the kinematic hardening law will have
very important influence on the localized fracture phenomena in thermo-visco-
plastic flow processes under cyclic dynamic loadings.

7.6. Thermomechanical couplings (thermal plastic softening
and thermal ezpansion)

An analysis of thermomechanical coupling effects can be based on the in-
vestigation of the evolution problem formulated for a thermo-elasto-viscoplastic
model (cf. Egs. (6.2) and (6.3)). Thermal expansion effect influences the fun-
damental matrix IE (cf. Eq. (6.4)) for an adiabatic process, so it can have very
important influence on the propagation and interaction of the deformation waves.

On the other hand, the thermal plastic softening as a typical dissipative effect
influences an adiabatic process through the nonlinear function f (cf. Eq. (6.3)).
Of course, it will have a lot of influence on the localization phenomena as well

as on the fracture phenomena?.

7.7. Influence of stress triaziality on the evolution of microdamage

The introduced modification of the kinetics of microdamage presented in
Sec. 4.4 leads to the description of the influence of stress triaxiality. This has
been done by assumption that the stress intensity invariants for nucleation and
growth depend on three invariants of the stress tensor, cf. Eqgs. (4.20) and (4.22).

It has been shown by Dornowski and Perzyna [27, 28, 29, 30, 31, 32] that this
modification helps to describe the accumulation of damage during the dynamic
loading process.

7.8. Rate sensitivity

To analyse the influence of the strain rate effect let us write the evolution
constitutive equation (4.11); in the form as follows:

.y 1971 = 7= (2 (£ -1) ) i,

where || - || denotes the norm of the vectors in the 6-dimensional space.
The equation (7.1) yields the following dynamical yield criterion

(7.2) f =&(€r,9,6 [1 s (Tm Hllfl:l)] .

9For a thorough analytical discussion of the thermal plastic softening and thermal expan-
sion effects on the localization of plastic deformation please consult the papers by Duszek—
PERZYNA and PERZYNA [40, 43].
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This relation may be interpreted as a description of actual change of the yield
surface during the thermodynamical process, cf. Fig. 33. This change is caused
by isotropic and anisotropic work-hardening-softening effects, by dependence on
temperature and by the influence of the strain rate effects. It is noteworthy to
add that the relation (7.2) constitutes a basis for experimental investigations
which seek to examine the theoretical assumptions.

dynamic loading surfacc at 7=,

4

Initial yield surface at 1=1¢,

Subsequent dynamic loading surface at r=1¢, \

F1G. 33. Dynamic loading surface for the elasto-viscoplastic response.

To show this possibility deeper let us take assumptions concerning the plastic
potential function f and the isotropic work-hardening-softening function s as
have been postulated in DORNOWSKI and PERZYNA [29), cf. also EFTIS [44] and
EFTIS and NEMES [45, 46, 47]. Then we have a particular form of the dynamical
yield criterion

(7.3) {J; + [n1(9) + na(9)€] j12}1/2
= {Kfs [/’\75 ) 44 ’{'0("9)] €xp [—6(19) EP}}

BONIBSC )]

7.9. Length—scale sensitivity of the constitutive model

The constitutive equations for a thermo-elastic-viscoplastic model introduce
implicitly a length-scale parameter into the dynamic initial-boundary value prob-
lem, i.e.
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(7.4) l=8cTh,

where Ty, is the relaxation time for mechanical disturbances and is directly
related to the viscosity of the material, ¢ denotes the velocity of the propagation
of the elastic waves in the problem under consideration, and the proportionality
factor B depends on the particular initial-boundary value problem and may also
be conditioned on the microscopic properties of the material.

The relaxation time T, can be viewed either as a microstructural parameter
to be determined from experimental observations or as a mathematical regulari-
zation parameter.

To go deeply into length-scale sensitivity of the constitutive model let us con-
sider one-dimensional longitudinal wave propagation for an elastic-viscoplastic
material. The constitutive equations are assumed in the form as follows

(7.5) el  g=phe

where 7 denotes the viscosity parameter, oy the yield stress and h the hardening-
softening parameter.
The wave equation takes the form

1 8%v v E + hd%v 0%v
(7:6) ¢ <_2W = 3x28t> Frge ~hym =0
where
(7.7) ¢ =2 = 6yT
gy

denotes the macroscopic viscosity (or dynamic viscosity) and ¢ = (E/p)'/2.

For v =+ 0o = ¢ — 0 (7.6) reduces to the wave equation for an elastic-
plastic rate-independent material. To investigate the dispersive nature of wave
propagation in an elastic-viscoplastic medium, a general solution for a single
linear harmonic wave with angular frequency w and wave number k is assumed

(7.8) v = Aeilkz—wt) k= 2%,
and A denotes the amplitude.

To satisfy the equation (7.6), constants £ and w have to be related by the
dispersion relation

1
(7.9) ¢ (—2w3 — k%) . J; b 4 hk? =0,
C &
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By sophisticated analysis of the dispersion relation (7.9) we can obtain the result
for the internal length-scale parameter (cf. SLUYs [151])

st 20‘0

Comparison (7.10) with (7.4) gives
200
b =
(7.11) i=2

for a one-dimensional longitudinal wave propagation problem.

It is noteworthy to stress that the length-scale sensitivity of the constitu-
tive structure is of great importance for proper description of mesomechanical
problems.

7.10. Regularization of the evolution problem

The analysis of shear band development in nonhomogeneously deforming
solids requires a full initial-boundary value problem solution. Such a solution
can be obtained only by means of numerical methods. In recent years the initial-
boundary value problems with the development of shear bands have been solved
by using numerical methods. All solutions obtained for a rate-independent plas-
tic flow model with the development of shear bands have some shortcomings:
(i) They are mesh-dependent. In other words, the pathological mesh size effects
influence the results obtained. (ii) They are obtained by superposing some arti-
ficial inhomogeneities. Without some mechanism to make the deformation non-
homogeneous, the solid body considered will undergo unlimited homogeneous
deformation and no shear band localization will occur. Very recently, it has been
widely recognized to consider an elastic-viscoplastic model of a material as a reg-
ularization method for solving mesh-dependent problems of plasticity. In these
regularized initial-boundary value problems, wave propagation phenomena play
a fundamental role. Since an elastic-viscoplastic model introduces dissipative
as well as dispersive nature for the propagated waves, the analysis of disper-
sive, dissipative waves and particularly their interactions and reflections have
to be considered as the most important problem, cf. GLEMA, LODYGOWSKI
and PERZYNA [54, 55, 56]. The dispersion property implies that in the elastic-
viscoplastic medium any initial disturbance can break up into a system of groups
of oscillations or wavelets. On the other hand, the dissipation property causes the
amplitude of a harmonic wavetrain to decay with time. In the evolution problem
considered in such a dissipative and dispersive medium, the stress deformation
due to wave reflections and interactions are not uniformly distributed, and this
kind of heterogeneity can lead to strain localization in the absence of geometrical
or material imperfections.
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It may happen that for some constitutive models the nonhomogeneous evolu-
tion problem (6.2) is not well posed (e.g. for a rate-independent plastic model).
Then we can find a parameter § € [0,0*] (6* is given) such that the new

evolution problem ;
¢ = As(t, ) + f5(t, ¢);

(7.12) p(0)=¢%  te[0,tf];
The boundary conditions;

has the generalized solution

t
(7.13) o(t,%) = Fs(t)p°(x) + /0 Fiy(t — 5)fs(s)ds

which satisfieds the assertions as follows:
(i) The evolution operator [Fy(t) is continuous in the topology on D(As) C E
assumed for each ¢ € [0, ¢y];
(i) The function f5(t) satisfies the conditions

fg(t,(ﬁ) € Ea ”fé(ta‘P)”E S >‘t1'a
(7.14) If5(t, @) — £5(t, @)lle < Ml — @l

and t — f5(t, ¢) € E is continuous;
(ii)
F5(t) |s=0 = FF(t),
£5(t, () ls=0 = £(t, (t)).

[t means that the regularized evolution problem (7.12) is well-posed. Then
the parameter ¢ is called the regularization parameter.

For the regularized evolution problem formulated by means of an elastic-
viscoplastic constitutive model (6.2), (6.3), (6.4), that is for an adiabatic inelastic
flow process, the regularization parameter § = Tj,,. Thus, the relaxation time T},
(or viscosity) can be viewed either as a mathematical regularization parameter or
as a microstructural parameter to be determined from experimental observations.

It is possible to prove that the regularization evolution problem (6.2), (6.3),
(6.4) is well-posed, cf. Sec. 6.4.

Let us postulate as follows:

(7.15)

1. The strong ellipticity condition in the form: the adiabatic-elastodynamic
matrix JE defined by (6.4) is strongly elliptic (at a particular deformation
¢) if there is an € > 0 such that
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(7.16) B Cempna > €ll€I? (Inlf?

2. The condition (ii) (cf. Eq. (7.14)) is satisfied for the function fj.
For an elasto-viscoplastic model the strong ellipticity condition is satisfied pro-
vided it is assumed that the elastic properties of the material are reasonable.
The condition (ii) for the function fs is also satisfied if and only if we postulate:
The material functions f = f(J1,2,€,9), & = &(€P,&,9), g* = g*(€,9) and
Teq = Teq(€EP,&, 1) are continuous functions in all variables and the overstress

viscoplastic function & = @ (i - 1) is an absolutely continuous function, cf.
K

PERZYNA [121].

Then the rate dependence (viscosity) allows the spatial differential operator
in the governing equation to retain its ellipticity and the regularized evolution
problem is well-posed. Viscosity introduces implicitly a length-scale parameter
into the dynamical initial-boundary value problem.

Since the rate-independent plastic response can be obtained as the limit case
when the regularization parameter (the relaxation time) § = Ty, is equal to zero,
hence the theory of elasto-viscoplasticity offers regularization procedure for the
solution of the initial-boundary value problems under dynamic loadings.

7.11. Dissipation and dispersion effects

Internal dissipation for the thermo-elasto-viscoplastic model is as follows

(cf. Eq. (4.36)):

B [%\/?L g% : (r1P+r2§;gi‘) —T% <<1> (£ = 1)>
=)}
Teq(€, 9, €F)

o | 1 ik 1
- =—h (| —————1]| )+ —g" (D
9 {Tm < [Tn(s,ﬂ,ef’) > TRt <
From this equation we observe that for an adiabatic process, the dissipation
effects are generated by the following phenomena: (i) viscoplastic flow; (ii) vis-
coplastic deformation-induced anisotropy; and (iii) microdamage mechanisms.
For an adiabatic process (q = 0) Eq. (4.40) takes the form
R

7.18 cpd =9——— :d+y*7:dEf + e
(7.18) » A X £rg

The first term on the right-hand side of Eq. (7.18) has not a dissipative nature

and is of the second order when compared with the internal dissipation terms.
The second term on the right-hand side of Eq. (7.18) represents the rate

of internal dissipation due to plastic flow process while the last term gives the
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contribution to the rate of internal dissipation generated by the intrinsic micro-
damage mechanism.
When the nondissipative term is neglected, then Eq. (7.18) takes the form

(7.19) Cp'lé = x*7 : dP + x"*E.
From Eq. (7.19) we can compute the irreversibility coefficient x*. It gives

X* " Cpﬂ e X**ﬁ'

(7.20) o

For x** = 0, i.e. when the influence of the intrinsic microdamage mechanism is
not taken into consideration, Eq. (7.20) takes the form

v _ Y
(7.21) : W5
For this particular case the irreversibility coefficient x* has a simple inter-
pretation as the heat rate conversion to plastic work rate fraction. However,
Eq. (7.20) shows that the remaining work rate is attributed to the energy rate
lost for microdamage effects.

When modelling the thermomechanical behaviour of materials, x* is usually
assumed to be a constant in the range 0.85 —0.95 (a practice that dates back to
the work of TAYLOR and QUINNEY [153]).

Recent experimental investigations performed by MASON et al. [95] by using
a Kolsky (split Hopkinson) pressure bar and a high-speed infrared detector array
have clearly shown that this assumption may not be correct for all metals, cf.
Fig. 34.
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F1G. 34. The irreversibility coefficient x* versus strain calculated for Ti-6Al-4V titanium
using the average of the temperature of the two detectors (after MASON et al. [95].)
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The reason for this considerable discrepancy is clearly visible from Eq. (7.20).
The rate of the stored energy implied by the evolution of microdamage is re-
sponsible for the decreasing of x* (e.g. as it has been observed for Ti-6A1-4V
deformed at high strain rates x* decreases from 0.975 to 0.5, cf. Fig. 34).

MASON et al. [95] observed that the irreversibility coefficient x* depends
on strain and strain rate in a range of metals. Their experimental observations
have significant implications in the study of the conditions preceding and gov-
erning adiabatic shear band formation and shear band growth as well as on
the establishment of a criterion governing dynamic fracture mode selection in
rate-sensitive materials.

It is a very well known fact that the stress wave propagation in an elasto-
viscoplastic medium has a dispersive nature. We can observe a dispersive char-
acter of waves in a very simple example considered in Sec. 7.8, namely one-
dimensional longitudinal wave propagation in an elastic-viscoplastic model of
a material. From this consideration it can be seen that the dispersion relation
(7.9) suggests the dispersive nature of elasto-viscoplastic waves, while the elastic-
plastic (rate independent) waves (i.e. when ¢ = 0) are non-dispersive, because
for ¢ = 0 the dispersion relation (7.9) gives the linear dependence between the
angular frequency w and the wave number k.

The dispersion effect is very crucial for the development of regularization
procedure for the rate independent plastic flow evolution problems, cf. Sec 7.10.

Of course, the dispersion effects will also influence very much the initiation
and development of the localization phenomena. A thorough analysis of these
consequences has been presented in GLEMA, LODYGOWSKI and PERZYNA [54].

7.12. Synergetic effects generated by cooperative phenomena

In previous sections of this section we have discussed the fundamental features
of a thermo-elastic-viscoplastic model. In that discussion we have investigated
many cooperative phenomena which have been responsible for these features.

The question arises as follows: can the cooperative phenomena described by
a thermo-elasto-viscoplastic model lead to some synergetic effects? This funda-
mental question has no simple answer. However, some investigations of the in-
fluence of synergetic effects on the localization phenomena have been already
presented, cf. for single crystals: DUSZEK-PERZYNA and PERzZYNA [39, 42],
DuszEK-PERZYNA, KORBEL and PERZYNA [38], PERZYNA and KORBEL [130,
131] and PERZYNA [123, 125]; and for polycrystalline solids: DUSZEK-PERZYNA
and PERZYNA [39, 40, 41, 43] and PERZYNA [121, 122, 123]. Numerical inves-
tigation of synergetic effects for localization and fracture phenomena has been
given in DUSZEK-PERZYNA and PERZYNA [40, 43].
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8. EPILOGUE

It is noteworthy that the thermodynamical theory of elasto-viscoplasticity of
polycrystalline solids presented in this paper has been inspired by the experi-
mental observations and physical concepts discussed in Sec. 2. The mentioned
experimental works have brought deep understanding of the intrinsic microdam-
age mechanism during dynamic loading processes and have clearly shown that
fracture mechanism of metals does very much depend on the strain rate and
wave shape effects.

The crucial idea in this theory is the very efficient interpretation of a finite
set of the internal state variables as the equivalent plastic deformation, volume
fraction porosity and the residual stress (the back stress). To describe suitably
the time and temperature-dependent effects observed experimentally and the
accumulation of the plastic deformation and damage during dynamic loading
processes, the thermomechanical coupling has been taken into account and the
kinetics of microdamage and kinematic hardening law have been modified and
generalized.

Since the rate-independent plastic response is obtained as the limit case when
the relaxation time is equal to zero, hence the theory of elasto-viscoplasticity of-
fers a regularization procedure for the solution of the dynamical initial-boundary
value problems. The existence of a solution to the initial-boundary value problem
is examined and its stability property is investigated based on the application
of nonlinear semi-group methods and on the analysis of continuity of evolution
operators.

The viscoplastic regularization procedure assures a stable integration algo-
rithm by using the finite difference and finite element methods.

All fundamental features of the thermo-elasto-viscoplastic model have been
deeply examined and discussed.
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