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This paper shows numerical comparisons between lubrication of human hip joint gap in
unsteady impulsive and periodic motion. We assume that spherical bone head in human hip
joint moves at least in two directions namely in circumference and meridian directions. Basic
equations describing synovial fluid flow in human hip joint are solved on the analytical and
numerical way. Numerical calculations are performed in Mathcad 11 Professional Program,
taking into account the method of Finite Differences. This method satisfies stability of numer-
ical solutions of partial differential equations and gives real values of pressure and capacity
forces occurring in human hip joints.

1. INTRODUCTION

Many lubrication theories for diarthrodial hip joints have been proposed,
but a theoretical model of joint lubrication capable of operating under impulsive
and periodic conditions of joint unsteady motion has not been completely formu-
lated as yet: [1, 4-7, 13-15]. Comparison between periodic viscoelastic lubrication
and impulsive lubrication of human joint was not considered in foregoing papers:
[9, 11-12, 16-19]. In the present paper two kinds of lubrication of human hip joint
have been considered. The first lubrication is described near two co-operating
hip joint surfaces suddenly set in motion after impulse. The second kind of lu-
brication is presented between bone head and acetabulum in human hip joint for
periodic unsteady motion and for periodic changes of gap of hip joints. Synovial
fluid has non-Newtonian properties according to Dowson investigations [1]. For
a description of such a fluid, one has used the Rivlin—Ericksen constitutive equa-
tions. Bone head has often ellipsoidal shape, but difference between semi-minor
and semi-major axis can not be greater than minimal value of gap height to
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make possible the rotary motion [1]. Thus for normal hip joint we can assume
a spherical shape of bone head. Spherical bone head can be moved by rotary
motion in one or two different directions, Fig. 1. Symbol ¢ denotes coordinate
in circumferential direction, r is coordinate in gap height direction, ¥ denotes
coordinate in meridional direction. For synovial fluid flow in joint gap, three com-
ponents v, vy, vy of velocity in three directions: ¢, r, ¥ are considered. Pressure
p depends on: ¢, 9 and time ¢ variable. The gap height ¢ may be a function of
three variables: ¢, 9 and ¢. Basic equations presenting synovial fluid flow in the
gap of a human joint during impulsive and periodic motion of human limbs are
solved in analytical and numerical way. Numerical calculations are performed
in Mathcad 11 Professional Program taking into account the method of Finite
Differences. This method satisfies stability of numerical solutions of partial dif-

a)

b)

Fi1G. 1. Human hip joint: a) spherical bone head, b) acetabulum.
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ferential equations and gives real values of pressure and capacity forces occurring
in human hip joints. The problem of impulsive and periodic lubrication of hu-
man hip joint will be solved for the human joint surfaces between bone head
and acetabulum by means of equations of conservation of momentum and con-
tinuity equation. These equations and the second order approximation of the
general constitutive equation given by RIVLIN and ERICKSEN can be written in
the following form [10]:

(1.1) DivS = pa, divv =0,

(1.2) S = —pL+moA1 + aAl + BA,,

where: S — is the stress tensor, p — pressure, I — the unit tensor, A; and A, — the
first two Rivlin-Ericksen tensors and 79, a, 8 — three material constants, where
n denotes dynamic viscosity in Pas, and «, 3 are pseudo-viscosity coefficients in
Pas?. Tensors A; and Aj are given by symmetric matrices defined by:

(1.3) AysL+L%, A, =grada + (grada)” + 2L7L, a= Lv—aa—‘t:,
where: L — tensor of gradient fluid velocity vector in s™!, LT - tensor for trans-
pose of a matrix of gradient vector of a synovial fluid in s7!, v - velocity in m/s,
t - time in s, a — acceleration vector m/s2.

Symbol grad a denotes tensor of rank two. The characteristic time ¢, has
very small values during the motion of human limbs after injury. Hence it follows
that the product of Deborah De = fw/no and Strouhal Str = 1/wtg numbers i.e.
DeStr and product of Reynolds number, relative radial clearance, and Strouhal
number, i.e. Re 9 Str, have the order of the same magnitude. Moreover we as-
sume DeStr>> aw/no, Str > 1, with w denoting angular velocity of bone head. We
assume rotational motion of human bone head with peripheral velocity U = wR,
unsymmetrical synovial unsteady flow in the gap, viscoelastic and unsteady prop-
erties of synovial fluid, constant value of density p of synovial fluid, characteristic
value of the gap height €g of hip joint, no slip at the bone surfaces, R — radius
of bone head. To estimate the governing equations we introduce relative radial
clearance ¢ = g9/ R. We neglect the terms multiplied by relative radial clearance
because they are about thousand times smaller than the remaining terms. Thus
taking into account the above mentioned assumptions, the system of equations
of motion in spherical coordinates: ¢, r9 has the following form (Appendix A):

g e % md (0 88%,
fiire ot pRsind, 8p  p Or \ Or p Ot or?’
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Ovg _ 10p  mo O (Ovg [_3631)19
(16) Bt p819+ or \ or +p6t0r2’

e + Rsin (191) — + [Rv,g sin ()] =

(1.7) e

According to experimental research [1], the lubrication and pressure distribu-
tion region localizes in circumferential direction from angle ¢ = 0 to the half
perimeter of spherical bone i.e. ¢ = 7. In meridional direction pressure origin
is in angle ¥; = 7/8, (i.e. about 22 grade from upper pole of spherical bone)
and contains the remaining part of upper hemisphere to the angle 9¥; = /2.
Hence the lubrication region is defined as follows: 0 < ¢ < 27c;, 0 < ¢ < 1,
TR/8 <9 <wR/2, 0<r<e, ¥ =9/R, - gap height.

Symbols v, vy, vy denote synovial fluid velocity components in circumfer-
ence, gap height and meridian directions of bone head, respectively. The terms
multiplied by the coefficient 3 in right side of Egs. (1.4), (1.6) denote influence
of viscoelastic synovial fluid properties variable in the time on the hip joint lu-
brication. The terms in left side describe influences of accelerations occurring in
the motion on the lubrication parameters.

In both classes for impulsive and periodic motions it is not possible to obtain
similar solutions, a series expansion with respect to a non-similarity parameter
will be given.

2. IMPULSIVE LUBRICATION

2.1. Method of solutions

Impulsive perturbations are started at the origin of the time interval. If time
increases, then impulsive perturbations of lubrication parameters decrease. If
time ¢ tends to infinity, then perturbations tend to zero and we have classical
lubrication with Newtonian properties of synovial fluid for human hip joint.
Lubrication and flow parameters varying in the time for impulsive motion are
presented in Fig. 2. In order to solve the system of equations (1.4)-(1.7) one
introduces a solution as a power functional series expansion. Assuming successive
powers of function (3/(not), we obtain finally:

2
TOEEN vwo(x,so,ﬂl)+%v¢1(x,¢,m>+(Ef—t) i
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Fi1G. 2. Flow and lubrication parameters for human hip joint in impulsive, unsteady motion.
The velocity components of synovial fluid vy, vgk, vrk and pressure pyj for

k = 0 depend on the time and viscous properties of synovial fluid but are inde-
pendent of the viscoelastic properties. Flow parameters for k = 1,2,. .. describe
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corrections of synovial fluid velocity components and pressure caused by the
time dependent viscoelastic properties of synovial fluid. The functions: vy, v,
p1k and symbols x, N are dimensionless. By substituting the expressions (2.1)-
(2.2) into system of equations (1.4), (1.6), one gets for the first six unknown

functions vy0, vyo, Vp1, Vo1, V2, Ve the following ordinary differential equations
(Appendix B):

dzv(po dveo 4ut
2 £ =
dx? T dx  €sin(v;)
(2.3)
d2U190 rh dvﬁo e, 4qut 8p10
dx? X dx 2 0%
d21}(p1 dve 4ut 5p11 d*v 0 1 d3% 0
) L4 4 L @ e 4
dx? & dx R edsin (91) Oy dx? 9X dy3 '’
d?vgy dvgr qutOp1;  d*vge 1 dBuygg
J S B Cnidbni >
aya b Ko TS By B e
(2.4)
R dvys vt Opra | dPvp | 1 dPuy
9 ¥ 8 o 9 ¥ el ¥
dx? NTRE e edsin (¥1) 9y i dx? +oX dx3 '’
d?vyy dvgy vtdpy  _d*vg; 1 dug
B il Mo 2 &
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where 0 S x=rlN<elN, 0<rn<e;,-0< ¢ <2r, R/8<9< FR/2.

2.2. Boundary conditions and particular solutions

Spherical bone head moves in circumferential ¢ direction only. Hence synovial
fluid velocity components on the bone head surface in circumferential direction
equals the peripheral velocity of spherical surface of bone head. These velocity
values are changed in meridional direction 9 according to the variations of func-
tion sin(*). Peripheral velocity in circumferential direction on the pole of bone
head for ¥J; = 0 has value zero and on the equator of spherical bone for ¥; = 7/2
has dimensionless value 1. Synovial fluid velocity component on spherical bone
head surface in meridional direction ¥ equals zero, because spherical bone head
is motionless in ¥ direction.

Viscous synovial fluid flows around the bone head. Hence on the bone head
surface the synovial fluid velocity component in gap height direction equals zero.
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Spherical acetabulum surface is motionless in circumference and meridional
direction. But spherical bonehead has any vibrations in gap height direction.
Hence gap height changes in the time. Thus synovial fluid velocity components
on the acetabulum surface are equal zero in circumference and meridional direc-
tions. Synovial fluid velocity component in gap height direction r equals the first
derivative of the gap height with respect to the time.

The corrections of synovial fluid velocity components cannot change the
above presented boundary conditions which are assumed on the bone head and
acetabulum surface in circumference and meridional and gap height directions.
Therefore for fluid velocity components of synovial fluid and its corrections we
have following boundary conditions:

ri=0L e =10, Vo0 = sindy, Vo1 =0,..., v =0,...
(2.5) rE L e, vyo = 0, Ve B0, .5, et =D005
vl =0, vpo = 0, Vel =000 S W =005
r=¢, x=Ney, vy =0, Vo1 =0,..., vor=0,...
(2.6) r=e¢, x=Ney, vy =0, 75 R 1| RO TPORE 3 | N
v =€, ‘x = Ney/ Upg'= Stefei /81, vr1=0;: .7 veu=0...

with Str = 1/wyto, t1 = t/ty. For = 0 one obtains the equation for the original
Reynolds problem. Boundary conditions for velocity components in unsteady
~ Newtonian and non-Newtonian flow in impulsive motion are presented in Fig. 3.

Vv,

k=0

bone head
corrections for unsteady,
non-Newtonian flow

bone head
unsteady and Newtonian flow

F1G. 3. Boundary conditions for velocity components on the bone head and acetabulum in
impulsive unsteady Newtonian flow and corrections caused by the unsteady non-Newtonian
flow for impulsive motion.
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Solutions of equations (2.3), (2.4) have been found in closed form. Imposing
boundary conditions (2.5);, (2.5)2, (2.6)1, (2.6)2 on the general solutions of dif-

ferential equations (2.3), (2.4),we obtain finally the following particular solutions
(Appendix C):

: : VT Opwo
(2.7) wvpo(p,71,91,t1) = +sinddy — {Slnﬂl - m—&?y(x = Ney)
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T 0
(2.8) wgo(p,r1,91,t1) = %%Y(X = Ney)

3 erf(rlN) \/7_T 8;010

erf(e;N)  2N? 99, ¥ AT
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0
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0

1N e1N
~Y1(x=nN)/Y3(x)dx— / Yl(x)i’s;(x)dx],
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(2.10) vg1(p,91,71,11)

1N
4not o 0 N?
BEUE P / YY1 (X)dx + - (62 = )Y (x = e1N)
pE o0 2
r1 N
a eiN e1N
+% /Y2(X)dX—Y1(X=51N)/Xe—XY2(X)dX+Y1(X=TlN)
: r1IN 0
N 9 5 e1N
~yitadde |t Plo/yYYd
X /xe 2(x)dx T o, 1) Y3 (x)Y (x)dx
0 r1N
e1N "N
~Yilx=e1V) [ Ya(oY (dx + Yilx = riV) [ ¥aoy x| ¢
0 0
with
X X
Y(x) = /exferfxldxl—erfx/exfdxl,
0
X1
2
erfyi = 7r/GXP —x3) dx2,
0
(2.11) Bog e
Yi (X)E/_QCXI(ZXI’
X1
b}
, X
Yaix)= (§x—x3) 2xe"‘2/e"fdxl =l T

Ya(x)=x*(3-2x%) X,

and 0. <ty < o0, 0<ri< eidobm <91 < by, s <2me;, 0L 1 <00,
0<x2 € x1 S x=nNsalNe = é(p, 41)

Synovial fluid velocity components in circumference and meridional directions
for unsteady Newtonian fluid flow in impulsive motion have the forms (2.7), (2.8).

Corrections of values of synovial fluid velocity components caused by the
unsteady conditions and viscoelastic non-Newtonian properties of the fluid flow
in impulsive motion have in circumference and meridian directions the forms:
(2.9), (2.10).
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We put series (2.1);-(2.1)3 into continuity equation (1.7) and we equate terms
multiplied by the same powers of small coefficient 3/not. Hence we obtain fol-
lowing equations:

a'Uch d'UTO 0 y i
B + sin (9/R) — ar, 6191 [vgo sin (J/R)] =
(2.12) a 4 3
'Uzpl 1)71
B0 + sin (9/R) oy (9 [vg1 sin (I/R)] =

Integrating equations (2.12);, (2.12)2 with respect to the r; and imposing
boundary conditions (2.5)3 on the synovial fluid velocity component and its
corrections in gap height direction we obtain:

1 T1
1 0 1 0
b= N dr S Pein g Yugod
vro(p, 91,71, 1) wrwies a(p/”(po O e, 0, /(%ln 1)vgodry,
0 0
r1
(2.13) vyl 91, ri i) = $a:0f /} (p, 91,71, t1)dr
. ri\¥,V1,T1,t1) = sind; Op Vp1\p,V1,T1,11)ar
0
71
¥ /(s'ﬂ) Bl 03 e 1
w — 1 r
3in 9, 09, ML) v91\P, V1,71, 01)ar

0

Velocity component of the synovial fluid in gap height direction for unsteady
but Newtonian fluid flow in impulsive motion has the form (2.13);.Corrections
of velocity component of the synovial fluid in gap height direction caused by
the unsteady and viscoelastic non-Newtonian fluid flow properties in impulsive
motion, have the form (2.13). Imposing boundary conditions (2.6)3 on the ve-
locity components (2.13) and substituting into equations (2.13) the solutions
(2.7)-(2.10), thus we obtain following modified Reynolds Equations:

€1
[ erf (riN) dry
0

TRV e

2N2sind, O erf (¢, N) Kot )

€1

—/Y(X = Nry)dr

0

dp1o
Op



(2.14)

[cont.]

with

(2.16)
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1 .
(216) X2(€1) £ Z (1 e EfN2) E%YI(X = N€1),

[cont.]

1N riN
Xa(r1) 2 Yia = #iN) / WGl 2 Xidos 7100 / Ya(x)dx
0
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3 / Y1 (Y3 (o) dx,
r1N
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1 —e—¢iN? e
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Xo(ry) = / ¥ Lhybe st ¥ Gr= rh V) / Ya () xe~X'dx,
riN 0
j 6—61N2 FLly
Xi(er) = T —¥i (x = 1) / Y (xe Xdy

DS sri S, 0sp 20, 0e.< 1, 0.9 <0/2 .05 &€,
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Modified Reynolds Equation (2.14) determines unknown function pio(p, 91t1).
If ¢, tends to infinity i.e. N — 0, Str — 0, then equation (2.14) tends to classical
Reynolds equation (Appendix D):

1 9 [ 30pwo 9 ([ 30pw . R
(2.17) S, 9p ( 95 ) + 59, ( 159, sind; | = 6&0 sind.

Equation (2.15) determines unknown function pi1(g,?1,t1) of pressure cor-
rections caused by the viscoelastic properties of synovial fluid under unsteady
conditions.

Time depended gap height with perturbations has the following form
(see Fig. 4):

(218) € =€Ep€1 = 6(0) [1 +s- exp(—totlwo)] )
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(219)  £O(p,91) = Aeg cospsinddy + Agysin psind; — Ae,cost — R
+ [(Aez cos psindy + Agy sin psin ¥y — Ae, cos 1 )?
+ (R + emin)(R + 2D + €min)]*®.
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Fi1G. 4. Lubrication region for impulsive motion: a) human hip geometry and eccentricities,
b) gap height variations in the time, c) region of lubrication.

Stationary part of gap height £(©) is derived in Appendix E. Concentrated
force see Fig. 4 acts on the spherical surface of hyper-elastic acetabulum and
cartilage and generates cartilage and gap height deformations s (p,) in radial
direction. If longer the time up to the impulse is, then we have the smaller
deformations multiplied by s according to the exponential function. Coefficient
s describes the changes of gap height caused by the impulsive load during the
motion. Gap height increases, if s > 0. Gap height decreases, if s < 0. If the
concentrated force of impulse is greater, then absolute value of coefficient s is
greater. Symbol wy denotes an angular velocity in s~! and describes changes
of time perturbations in unsteady flow of synovial fluid in joint gap in height
direction. If ¢; tends to infinity, then Eq. (2.17) tends to the classical Reynolds
equation for stationary flow and gap height (2.18) tends to the time independent
gap height for stationary flow. We assume a centre of spherical bone head in point
0(0,0,0) and centre of spherical cartilage in point O, (z—Aez, y—Agy, 2+ Ag,).
Eccentricity has value D. Lubrication region (2:0 < ¢ <7, 7R/8 <9 < 7R/2)
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for impulsive motion and gap height changes in the time for impulsive motion is
presented in Fig. 4c. It is a section of the bowl of the sphere. Pressure distribution
P10 and its corrections p11, p12, ... occur in lubrication region and on the boundary
of the region have values of atmospheric pressure pas.

3. PERIODIC LUBRICATION PROBLEM

3.1. Method of solutions

Because of linear form of Eq. (1.4)—(1.7) a separation of steady and un-
steady flow of synovial fluid is possible. All flow and lubrication parameters and
gap height variations are changed periodically in the time. Flow parameters in
periodic flow varying in the time are presented in Fig. 5. We assume velocity
components of synovial fluid and the pressure in following form of convergent
series:

(k)

(3.1) vi =00 (p,7,9) + v; (@, 1,9) exp(jkwot), i=p,r,9,

o0

)+ v

k=1

o0

32  p=p9¢,9) + ) pH(p,9)exp(jkwot).
k=1

Symbol wy denotes an angular velocity in s™! and describes periodicity of per-

turbations in unsteady flow of synovial fluid in joint gap. Symbol j = /=1 is an

imaginary unit.

stationary and Newtonian corrections for unsteady
lubrication periodic and non

Newtonian lubrication

stationa eriodic iethunttona
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86, A e S A
R gy
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timet

p periodic station
g8 hoem
v irmas oS
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o
8
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Fi1c. 5. Flow and lubrication parameters for human hip joint in periodic, unsteady motion.
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Unknown functions with upper index (0) describe velocity vector components
and pressure for stationary, non-viscoelastic fluid properties. Unknown functions
with upper index (k), denote corrections of velocity vector components and pres-
sure caused by the non-stationary viscoelastic properties of synovial fluid.

We put series (3.1)—-(3.2) in set of Eqs. (1.4)—(1.7) and we compare terms of
the same upper indexes in brackets with the same powers of exp functions.

Equations of motion for steady conditions have the form:

(3.3) 0 = —?lz-cosec (%) 85((:) o -8-67 (770 82%0)) ;

(3.4) Oke agf),

(3.5) 0= —Qg:TO) 4 % (no agi(f)) ,

69 P nan(2) 22 fnua(2)0] <0

for0< o S Irér, U er <1 "2 A RIS SO TR/IZE b,,; ) £1r'<E

with average gap height.

System of equations (3.3)-(3.6) determines unknown pressure function p(®)

0 (0 (0

and unknown components vy, vr, vy, of oil velocity vector in ¢, 7,9 direc-
tions respectively for steady motion. Equations of motion of k-steps of correction
values for unsteady conditions and viscoelastic fluid properties, have the form:

(3.7) jkwopovg‘) = —%cosec (%) —((-)g—((:—) + % (nk 8;%“)
(3.8) 0= ag(:),

(3.9) jhwopovy? = _Bg_::) ik % (le 8;1(5))

(3.10) a;i’z) + Rsin (%) ag,(:’ + 5% [Rsin (%) vf,’“)J =0,

fors ik dp 258 5. Qi Brey 10 oy € 1y o8 <4< wRIR, - 0SB

Nk = o + jkwo.
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System of equations (3.7)-(3.10) determines unknown corrections p(¥) of pres-
sure function and unknown corrections vfpk), v,(‘k), vf,k) of components of oil ve-
locity vector in ¢, 7,9 directions respectively. Symbol 7, — denotes apparent vis-
cosity of synovial fluid and depends on pseudoviscosity coefficient §. If 3 tends

to zero, then apparent viscosity tends to the classical dynamic viscosity 7.

3.2. Boundary conditions and particular solutions

During the motion of human hip joint take place the periodically changes
of gap height in the time and in circumferential and meridional directions. Un-
steady part of gap height will be expressed by the trigonometric sin and cos(*)
functions with variable period. We assume that the total gap height has following
form:

(3.11) etot = €V (¢, 9)

821
+ Z o) exp(jkwot)} i
kY

where: symbol €(®) - time independent primary gap height value defined by the
equation (2.19). Time independent average gap height with periodic perturba-
tions has following form:

lio o ) sin woté
(3.12) € _re—/stotdt e’ (e, [ Z E Ve

where t5 — average time period of joint gap perturbations. Viscous synovial fluid
flows around the bone head. Hence on the bone head surface the synovial fluid
velocity component in gap height direction equals zero. On the acetabulum sur-
face, synovial fluid velocity component in gap height direction r equals the first
derivative of the gap height with respect to the time. Equating the terms of the
same powers of exp functions in Egs. (3.1) and the first derivative with respect
to the time of formula (3.11) we have:

o0 o0
: Oe . (o 1 :
(313) Y o(p,r =&, 9) exp (jhwot) = —2 = 3~ je® woexp (jkwot),
k=1 k=1
hence
(3-14) (k)(‘Par =€ 19) = ]kE(O)WO = Vik.

Bonehead realizes angular velocity w; in ¢ direction and wg in 9 direction. Ac-
etabulum moves in circumference ¢ and meridian 9 direction. Moreover we take
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into account tangential acceleration of bone head and acetabulum surface vari-
ation in the time. Time dependent total tangential velocities of bone surface
and acetabulum surface in ¢, 9 directions have following forms of trigonometric
sin(*) and cos(*) functions with variable period:

o0
Up=Up+ > Uprexp(hwot), Ug=-2,
k2

k=1
o0 U*
jo ; — Yp
Us = Upo + ; Usk exp (jkwot),  Upk = -5
(3.15) T
) V.
Ve = Z Vik exp (jkwot) , Vor = kL;O’
k=1
— Vo
Vo = Vi exp (jkwot), Vor = 2
k=1

where: Uy, Upg, Viok, Vi — time independent coefficients of tangential velocity
changes of bone surface and acetabulum for k£ = 1,2,3,....

Synovial fluid velocity component on the bone head surface in circumference
direction equals the peripheral circumference velocity of spherical surface of bone
head. These velocity values are changed in meridional direction ¥ according to
the variations of function sin(*). Peripheral velocity in circumferential direction
on the pole of bone head for ¥ = 0 has value zero and on the equator of spherical
bone for ¥ = mR/2 has value w; R.

Synovial fluid velocity component on the bone head surface in meridional
direction equals the peripheral meridional velocity of spherical surface of bone
head. These velocity values are changed in circumference direction ¢ according
to the variations of function sin(*). Peripheral velocity in meridian direction
on bone head for ¢ = 0 has value zero and on the prime meridian of spheri-
cal bone for ¢ = mR/2 has value w3R. Hence time independent circumference
and meridional velocities for spherical bonehead in stationary motion have fol-
lowing forms:

(3.16) Uy = w1 Rsin(d¥/R), Ugo = w3 Rsin(p),
' Ujo = wioRsin(9/R), Ujo = wsoRsin(p).

We denote: wy, wijg — angular velocity and its perturbations of spherical bone
head along circumference ¢ direction and w3, w3p — angular velocity and its
perturbations for spherical bone head along the meridional ¥ direction. Symbol
R denotes radius of spherical bone head.
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Equating the terms of the same powers of exp functions in series (3.1) and
(3.15) and taking into account Eq. (3.14), therefore for fluid velocity components
of synovial fluid and its corrections we have following boundary conditions:

ri=:0); v(o) Ugo, v&l) = Uy, v( ) =, 68 < s (k) = Upk;, - -
(317) r=0, vé) == Uas ( ) = = Ust1, 1)1(9) W, . v s ”1(9) = Hlans o
r =0, vﬁo) =), vﬁl) =0} v£2) 10 L vﬁk) =02
T =g, 'v‘(po) =0, v(g,l) = Vo1, v(2) =W, Lo v‘(pk) = Voky: .
318) r=¢, o =0, ofP="Vy, vf,) b Vs . o = Vg, ...
r =g, vﬁo) =0, v(l) Ve, v,(, ) = Voo, . v vﬁk) =V b

Boundary conditions for velocity components for steady Newtonian and un-
steady non-Newtonian flow in periodic motion are presented in Fig. 6.

(0)
Vo =0_

v
0 F0

bone head bone head
statlonary and Newtonian flow corrections for !msteady,
non-Newtonian flow

F1G. 6. Boundary conditions for velocity components on the bone head and acetabulum in
stationary Newtonian flow and corrections caused by the unsteady and non-Newtonian flow
for periodic motion.

Imposing boundary conditions (3.17);, (3.17)2, (3.18)1, (3.18)5 on the system
of equations (3.3)-(3.6) and on the system of Egs. (3.7)—(3.10), we determine

unknown functions of velocity components for stationary flow v&o), 01(90), and

functions of corrections vfo ), vgc) for k =1,2,3,.... caused by unsteady fluid flow
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with viscoelastic properties. Results of mathematical calculations are presented
in following solutions [2]:

(0)
vg’) & hied ol cosec <%> 98 e2s(1 — 8) + Upo(1 — s),

2n0 R O
(3.19)
1 op®
vg)) = v gﬁ e%s(1— 8) + Uso(1 — s).
*®) _ g sinh [(e — 7) A] sinh (rAg)
v“’ ok Wi + Uk sinh (e Ag) Vo sinh (e Ax)’
(3.20)
(k) sinh [(e — r) Ag] sinh (rAg)
=t
Yo ok Wi + Usk sinh (e Ag) + Vo sinh (e Ag)’
with Sk )
=1 g 1 e Wi
Wi = [1 —exp (rAx)] — [1 — exp (e Ag)] “TTww ik
j apt*) j_ o™
Iy = ok =
kwopoRsind; Oy ’ kwopo 99’
(3.21)
_ | _Jhkwopo
Mo + jkwof3
fork=1,2,3,..s =71/, 0 < o < 27c;, 0 < 1<1, b, =7R/8 <9 < wR/2 = b,,
U< r<e

Synovial fluid velocity components in circumference and meridional directions
for stationary flow in periodic motion have the forms (3.19);, (3.19)s.

Corrections of values of synovial fluid velocity components caused by the
unsteady conditions and viscoelastic properties of the fluid in periodic motion
have in circumference and meridional directions the forms: (3.20);, (3.20)s.

Integrating Eqgs. (3.6), (3.10) with respect to ther; and imposing boundary
conditions (3.17)3 on the synovial fluid velocity component and its corrections
in gap height direction, we obtain:

9\ [ o 9\ [ 9\]
00 = — 4, L i &s ( )
Rcosec ( )/ dr — cosec (R)/ a9 | vy sin (R>-dr,
0
i g
dv 9 d.1 VAN
N = = v Aol o o (8
vy cosec ( )/ dr cosec (R)/ 59 _vﬂ sin <R>-dr.
0

(3.22)
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Velocity component of the synovial fluid in gap height direction for stationary
Newtonian fluid flow in periodic motion has the form (3.22);.

Corrections of velocity component of the synovial fluid in gap height direction
caused by the unsteady and viscoelastic non-Newtonian fluid flow properties in
periodic motion, have the form (3.22)s.

Imposing boundary conditions (3.18)3 on the velocity components (3.22) and
using the law of differentiation of integrals with variable limits of integration and
boundary conditions (3.17), (3.18), thus from Eq. (3.22) yields:

/(Odr+Raﬂ/v0 sm( )drz()

0 0 9
Rt (k) (k) =
(3.23) ; / dr + R— ; /vﬂ sin <R)dr

R 9 Oe 9\ Oe
It shar a0 S
Jwoe™™ - sin (R) +Vok = 7 + RVyy sin ( ) ErR

Substituting into Egs. (3.23) the solutions (3.19), (3.20), thus we obtain following
modified Reynolds Equations (Appendix F):

1 9\ 0 [ op® 0 |e2op® 9
(3.24) —Ecosec<§)%{%w +R% n—oﬁ_ﬁsml_%

- (8N O o 0 e
= 6w Rsin (}—2) % + 6wz R sin () 59 [esm (§>] 3

for 2:0<p<m 7"R/8 < a3=19 <7TR/2,
1 9\ 0 |e® ap) d |ed . (9 op®
(325) E cosec (E) % lnk a(p 4 R% T]_k Sin (R) 619
R 9 Oe 9\ Oe
3 ; (0)—.' s ge: * Wnlde
125 woe k sin <R> 12 [Vg,k 90 + RVyy sin <R) 819}

o e e & o
+ 6 [Ugk (9) + Vi) [&p 12&0( )kaopo]

+ 6 Ua (o) + Vaul { 35 [esin ()| ~T5 7 [53 sin ()| bunen

for k = 1,2,3,:.,0.< 0 € 216150 <81 €1, b = rvR/B8.S 9 SHR/2:= b,,
g r<eE.
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Multiplying both hands of Eq. (3.25) by expression exp (jkwot) and equating

terms of real parts of complex number in both hands of equation, we get following
sequence of modified Reynolds equations:

1 9\ 0 |&®ap 9 |e2ap® (9
(326) -}—ZCOSGC (E)%{E}EW +R'3$ n—;; 8’19 sin <§>

Rt - Oe
=-12 wge(o)z sin <E> sin (kwot) + 6 [Urx (9) + Vik] [% cos (kwot)

1.8 ( 63’/]0

Bao\rrrooms )k in (kwot

Oe 0 L
—12 [Vw% + RV‘%EE (6 sin ﬁ)] cos (kwot)

+ 60 () + Vaul { Ry [esin (3 ) | cos ke

v
19 ( e nohi ) ; }
——— | ————— | kwopo sin (kwot

12 8’19 7]8 +wgk2ﬁ2 0P0 ( 0 )

with
1 exp (jkwot) o
3.2% — =re - cos (kwot
420 m; M Zr e e (k)
wokf

2 AHBISTL Bt
ne + wik232

for k=1,2,3,..,0<p<2mc;, 0<e1 <1, TR/8<I<7R/2, 0<r <eand
Eq. (3.26) determines pressure corrections p¥) caused by the unsteady flow con-
ditions of synovial fluid with viscoelastic properties in periodic motion.

Summation of left and right hands of equations (3.24) and (3.26) for
k = 1,2,3,..., respectively is possible if and only if coefficient 8 tends to zero
Le. if viscoelastic properties of synovial fluid are neglected and retain only influ-
ences of unsteady motion [2, 3, 8]. After summation we obtain modified Reynolds
equation in final form [3]:

1 o (€ op 0 (3op 9
3:2 e sy s g Sl Y el
9 Rsi 193<p{noa<p}+R319{noaﬂst}
smﬁ
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) .0 e B 0
[cont.]) = 6w R =y 6<p+ 6ws R (sin ) 5 (esing

9 sin (kwot)
12 woR (sm R) B kE 1 i

Oe 0 Ly >, cos (kwot)
—12 [V]()g(; + RV30—8';9' (€Sln E)] Z s

= 1)
+6 [wloR (smﬁ) +V10jl 3_<p 2 i oy

9 o= cos (kwot
+ 6R [w3oR (sin ) + V3] 6% (6 . E) E cos (k2w0 )

S <e3 : 0) e sin(kwot)}
Trog—ilisaiie | Wl } —teriati

o A

W0<p<2mc1, 0<c1 <1, by, =7R/8<I<TR/2=b;, 0<r<LE.

Modified Reynolds equation (3.28) determines total pressure function p for
unsteady periodic flow. The sums presented in right hand side of equation (3.28)
are convergent for arbitrary time. Presented model describes the hip joint peri-
odic motion without vibration damping and without changes of frequencies in
the time. Thus if the time tends to infinity, then the pressure distribution has
periodic values too.

Center of spherical bonehead and acetabulum and gap height variations
change in the time for periodic motion are presented in Fig. 7a, b, ¢, where
e(t) = re(etot)-

Pressure distribution p(®) and its corrections p™), p® p® . occur in lu-
brication region {2 and on the boundary of region 2 (bowl of the sphere) have
values of atmospheric pressure p,;. Region {2 was indicated in Fig. 7 and for pe-
riodic motion is identically defined by the following inequalities: 2: 0 < ¢ < m,
TR/8 <9 < wR/2.
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F1G. 7. Lubrication region for impulsive motion,: a) human hip geometry and eccentricities,
b) gap height variations in the time, c) region of lubrication.

4. COMPARISONS

Final dimensional form of pressure distribution for unsteady impulsive motion
and viscoelastic properties of synovial fluid has the form:

R? 2
(41) P = w 62770 plo((p,'ﬁl,tl) + 'T;IB_tpll(‘P;'&l,tl) + O (ﬁ) ] i

o not

where dimensionless functions pio, pi1,... are determined by the Egs. (2.14),
(2.15).

Final dimensional form of pressure distribution for unsteady periodic motion
and viscoelastic properties of synovial fluid has the form:

(42 p= p(O)(cp,ﬁl,tl)+p(1)(<p,191,t1)cos(wot)+...+p(k)(<p,191, t1) cos(kwot)+

where dimensional functions p(®, p(!), ... are determined by the Egs. (3.24),
(8:26) for-k-== 1,23,

If coefficient 3 tends to zero i.e. if viscoelastic properties of synovial fluid are
neglected for periodic motion, then we can find the total sum p of infinite terms

of series (4.2) in numerical form. In this case function of pressure p determines
Eq. (3.28).
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If periodic perturbations in solution (4.2) are neglected and if we retain an-
gular velocity in circumference direction only, then we have:

wio =0, w3o = 0, wg =0,
(4.3) Vio = 0, Voo =0, V3o =0,

Vik = 0, Vor =0, V3 =0
with

w) = w, U = wR, € = €p€1,
(4.4) ;
¥ =9R, p = proURny/(e0)”.

If we put (4.3), (4.4) into Eq. (3.28), then equation (3.28) obtained for periodic
motion tends to the classical Reynolds equation (2.17) obtained from impulsive
motion in the case for infinite time after impulse.

For periodic motion the components of velocity of viscoelastic, synovial fluid
(3.1) and pressure (3.2) are periodic functions with respect to the time (see Fig. 5).

For impulsive motion the components of velocity of viscoelastic, synovial fluid
and pressure (2.1) are mostly monotone decreasing or increasing functions in the
interval from time origin to infinite time values. If time tends to infinity, then
pressure function and velocity components tend to the pressure and velocity
components for Newtonian properties of synovial fluid in stationary motion and
without impulsive effects (see Fig. 2).

5. NUMERICAL CALCULATIONS

5.1. Periodic motion

Numerical calculations of variable in the time and periodic distributions of
total pressure p are performed by virtue of equation (3.28) inside the region {2
in the three regular intervals of time namely for ¢t = 0, t = 7/wp, t = 2m/wy.
Results are presented in Fig. 8. Time period of joint vibration equals t; = 27 /wy.
On the boundary of the region {2 pressure has atmospheric values p,;. Region £2
is indicated in Fig. 7 and is defined by the following inequalities: 2: 0 < ¢ < 7,
mR/8 < ¥ < wR/2. It is a section of the bowl of the sphere. Numerical cal-
culations are performed for gap height (3.12), (2.19) and for R = 0.0265 [m],
wi = 0.8 [s7!], w3 = 0.150 [s7'], wp = 0.02 [s7!], wip = 0.09 [s], w3p = 0.01 [8],
Aegy =1 [um], Aey = 0.5 [pm], Ae, = 3 [um], no = 0.20 [Pas], py = 800 [kg/m>].
Minimal value of gap height equals €y = 3.0 [um], maximal value of gap height
equals emax = 7.12 [pum]. Fig. 8 shows variable in time pressure distribution
caused by rotation w; = 0.8 s~! of the bone head in circumference direction %)
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and simultaneously caused by rotation ws = 0.15 s~! of the bone head in merid-
ional direction 1, for normal hip joint. We take into account angular velocity
perturbations wyg = 0.09 s™! on the spherical head in circumference direction %)
and simultaneously velocity perturbations wzg = 0.010 s~! on the spherical head
of the bone in meridional directions. Acetabulum is motionlessi.e. Vi, = Vs = 0.
We assume the gap height perturbations with variable frequencies of joint vibra-
tions in unsteady motion for angular velocity wy = 0.02 s~!. For times ¢t = 0,
t=7/wy, t = 2m/wp, t = 3m/wp, t = 47 /wy we obtain maximal values of pressure
distributions: 2.077 x 108 Pa; 2.002 x 106 Pa; 2.077 x 10° Pa; 2.002 x 10° Pa;
2.077 x 10° Pa; ... , respectively. The first picture in Fig. 8, shows pressure dis-
tributions for origin and end time of the period of perturbations of the motion
of human joint. The second picture in Fig. 8, shows pressure distributions for
middle time point of the period of perturbations of the motion. Afterwards pres-
sure distributions return to the distributions, which had been shown in the first
picture in Fig. 8.

Figure 9 presents three curves of capacity distributions versus time inside the
time period of joint vibration for three assumptions corresponding to the three
cases namely for motion of bone head in meridional direction (), circumference
direction (x), and simultaneously in circumference and meridian directions (?)
respectively. For substantial case in periodic motion we calculate capacity val-
ues for following times: ¢t = 0 [s], t = 7/3wy [s], ¢t = 27/3wp [s], t = 7m/wp [s],
t =4n/3wy [s], t = 57/3wp [s], t = 27 /wy [s],....... For simultaneously periodic
motion of bone head in circumference and meridional directions (see symbol O
in Fig. 9),we obtain capacity values: 1696 N; 1950 N, 1800 N, 1653 N; 1510 N;
1470 N; 1696 N, ...... Hence follows that capacity changes in the time period
attain 22 percent. It is easy to see that the pressure distributions and capacities
in following times ¢t = 0 [s], t = 27 /wy [s], t = 47 /wp [s],. . . have the same values.
Pressure distributions and capacities in times ¢t = (m —1)7/wy [s] for m = 2,4,...
have the same values too.

5.2. Impulsive motion

In impulsive motion the dimensionless pressure p;g and its dimensionless cor-
rections: pi1, pi2,...are determined in lubrication region {2 by virtue of modified
Reynolds Equations (2.14), (2.15), taking into account gap height (2.18), (2.19).
Region 2 is defined in the same manner as for periodic motion. Numerical calcu-
lations are performed for: radius of spherical bone head R = 0.0265 m, angular
velocity of the impulsive perturbations of acetabulum wy = 0.2 s~!, character-
istic dimensional time ¢9 = 0.0001 s. The gap height (2.18), (2.19) is taken into
account, where we assume following eccentricities of bone head: Ae, = 4.0 um,
Agy = 0.5 pm, Ae, = 3 um. After D. Dowson experiment [1] follows that dy-
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R=0.0265 [m], n=0.20 [Pas] t=0 and t=21/w, [s]
=08 [1/5], ®0=0.09 [1/5] Pmax=2.077-10° [Pa)

©35=0.15 [1/5], 030=0.01 [1/s] Cior=1696 [N]

0=0.02 [1/5] Lubrication surface =20.38 [cm?]
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F1G. 8. Pressure distributions in periodic motion caused by rotation of bone head in circum-
ference ¢ direction and simultaneously in meridian direction in 9 direction where nonzero
values of angular velocity wio.8s7!, w30.155™! and nonzero angular velocity perturbations
wi10,ws30, in unsteady flow and nonzero angular velocity perturbations wo of gap height

perturbations are taken into account.
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Fi1G. 9. Capacity distributions versus time in the range of time period for three assumptions

corresponding to the three cases namely for motion of bone head in meridian direction ({),

circumference direction (x), and simultaneously in circumference and meridian directions (O)
respectively.

namic viscosity of synovial fluid has value 9 = 0.02 Pas and according to the the-
ory of viscoelastic fluids [1, 18] we deduce that pseudo viscosity coefficient equals
B = 0.000001 Pas? (Appendix G). Moreover we assume: density of synovial fluid
p = 800 kg/mz, angular velocity of spherical bone head w = 0.8 s™!, average
gap height minimum &p,;, changes in the time interval 0.0001 s < ¢ < 100 s
and attains values from 2 um to 3.5 pm. Average relative radial clearance has
value ¢ = ¢/R = 2 - 1073 Strouhal number Str = 12500, Re-4Str = 0.112,
De-Str = 0.50. In this case we have 0 < 3/not < 1. For dimensionless times:
t1 =1, t; = 100, ¢, = 1000, ¢, = 10000, ¢; = 100000, ¢; = 1000000 i.e. for
dimensional times: t = 0.0001 s; £ =0.01s;t=0.1s;t=1.0s;t=10.0s;¢t =
100.0 s respectively and for s = +0.25 we obtain pressure distributions in Fig. 10,
Figs. 11, 12. To obtain real values of time, we must multiply dimensionless values
t1 by the characteristic time value ¢y = 0.0001 s. For example ¢; = 10000 de-
notes 1s after impulse. Presented time scale enables determination of important
pressure changes in some microseconds after injury.

The pressure distributions on the right side in Fig. 10, Fig. 11 are obtained
for the increasing of gap height caused by impulsive effects. In this case if the
time after the impulse increases, then gap height decreases (see Fig. 4b) hence
pressure increases.

The pressure distributions on the left side in Fig. 10, Fig. 11 are obtained for
the decreasing of gap height caused by impulsive effects. In this case if the time

after the impulse increases, then gap height increases (see Fig. 4b) thus pressure
decreases.
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If the time distant is enough large after the impulse moment i.e. for ¢; — oo,
then pressure distributions for the increasing (s > 0) and decreasing (s < 0)
effects of gap height changes caused by the impulse, tend to identical pressure
distributions (see Fig. 11 and Fig. 12). This border pressure distribution we can
also obtain from classical Reynolds equation (2.17).
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Fi1G. 10. Dimensional hydrodynamic pressure distributions inside the gap of human spherical

hip joint on the region 2 : 0 < ¢ < 7w, TR/8 < ¥ < wR/2 in dimensionless times: t; = 1

(i.e. t = 0.0001s), t; = 100 (i.e. ¢t = 0.01s), t; = 1000 (i.e. t = 0.1s), after the impulse

moment for the increasing(decreasing) effects of gap height changes see the right (left) column

of figures respectively. Results are obtained for the following data: R = 0.0265 m; 7o = 0.02 Pas;

p = 800 kg/m>; Ae; =4 um; Ae; = 0.5 pm; Aez =3 um; P = /R~ 2-107% w = 0857}
wo = 0.257"; Str = 12500; Re-Str = 0.112; De - Str = 0.50.
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Fi1c. 11. Dimensional hydrodynamic pressure distributions inside the gap of human spher-
ical hip joint on the region 2 : 0 < ¢ < m, TR/8 < 9 < mR/2 in dimensionless times:
t1 =10 000, (i.e. t = 1), ¢, = 100 000 (i.e. t = 10 s), ¢, = 1 000 000 (i.e. ¢ = 100 s), after
the impulse moment for the increasing(decreasing) effects of gap height changes see the right
(left) column of figures respectively. Results are obtained for the following data: R = 0.0265 m;
no = 0.02Pas; p = 800 kg/m®; Ae; = 4pum; Aer = 0.5 pm; Aeg = 3um; w = 0.857%;
wo=02s"" ¥ =¢e/R~2-10"%; Str = 12500; Re - Str = 0.112; De - Str = 0.50.
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Dimensional time t=tyt; [s]

Fi1c. 12. Maximal dimensional hydrodynamic pressure values inside the gap of slide spherical

bearing and dimensional capacity values on the region 2 : 0 < ¢ < m, 7R/8 < ¥ < TR/2

versus dimensional time interyal from ¢ = 0.0001s to ¢ = 100s, after the impulse moment for

the following data: R = 0.0265m; 70 = 0.02Pas; p = 800kg/m®; Ae; = 4 um; Aez = 0.5 um;

Aes = 3pm; Y= e/R ~ 21073 w = 0.8571; wo = 0252 Str = 12500; Re-Str =.0.112;

De-Str = 0.50. The upper (lower) curve of presented numerical values refer to the decreasing
(increasing) effects of gap height changes after the impulse moment.

6. CONCLUSIONS

Present paper shows analytical and numerical comparisons of velocities of
synovial fluid and pressure between impulsive and periodic motion occurring in
gap of spherical human hip joint. Periodic perturbations and impulsive motions
during the unsteady lubrication and simultaneously viscoelastic properties of the
fluid are taken into account. It is proved, that principle of superposition is not
valid for the pressure and capacity values, for simultaneous motion of bone head
of human hip joint in two directions.
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With full particulars are performed numerical calculations for pressure and
capacity distributions after injury taking into account perturbations of the gap of
human hip joint for impulsive motion. New form of modified Reynolds Equation
obtained in this paper tends in particular case to good known form of Reynolds
Equation for steady motion, which was derived in foregoing papers. We show,
that the total apparent viscosity of synovial fluid depends on the time and on
the velocity deformations.

APPENDIX A.

In spherical coordinates (r, ¢, ") conservation of momentum equations have
the following form:

Ovy vy 1 ov, '1: v, U% vg
Al —_ — A ——y— + — -t L
G ”(at i or +rsim91%6<p +rvﬂ8191 7 r
_ OTpy 1 Oty _1_37'719 2T — Tpp — Tow — TroCtgY1
~ Or rsind, Op 1 0% r !
ov ov 1 ov 1 Ov Vp VYU
A2 0 ot sy o o Sl qolelas Uillag
S p<8t+rar+rsmz91‘p8<p+r 019+ r F TCgl
Or  rsind; Op r 0V r ;
vy vy 1 dug 1 0Ovy vy v?,
A. —_—y— + —Vy—— + —— — Lctgd
(44 p((’? 5 r T8r+rsim91%8go+rv'98191+ T ol
_ Oryy 1 Oty _1_87,9,9 379 + (To9 — Tpp)ctgd
 or rsind; dp 1 09 r g
Components of stress tensor are as follows:
(A4) Trr = —p + 0(A1)rr + @(A2), + 8 [grad a + (grad a)T]M
+28(LTL),,,
(A.5) Too = =P+ N0(A1)pp + a(Af)W + 4 [grada + (grad a)T]W

+26(LTL),y,

(A.6) T99 = —p + no(A1)gs + (AT)gg + B [grada + (grada)”]
+26(L" L)y,
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(A7) Trp = +10(A1)ry + (AT)ry + B [grada + (grada) "] +26(L"L),,,
(A.8) Top = +mo(A1)ps + Ot(A%)Wg + 3 [grada + (grad a) T] i 2ﬁ(LTL)W9,
(A9) 709 = +m0(A1)rs + (A})y9 + B [grada + (grada)”] , + 2B(L"L),y.

Tensor G = grad a of rank two has nine coordinates presented in following
matrix:

da 1 0a a 1 da ag
Gor Gpii Uy B o e s 2 -t —
e oo or. rsind, 0p r oy r
Gop. G & day, 1 - 04, o  0p 1 0ay,
A.10 P13 5 PR gR e — + —ctg; ——=
( ) Jr rsind,; 8<p+r+rcg1 r 01
Gor oo Gua || N 0o 1 Oag. ggp 0 MO B
or rsind, 0y pr- r or r
Coordinates of the tensor:
(A.11) U = grad a + (grad a)”
are presented in the following symmetrical matrix:
g 90
B U T, o -
da 1 gy =a
A.12 Usiiloo U =l e el
( ) B N or rsind; dy T
Uwr Uzp Uz, ddy 41 daz ay
or r 01 r
Qo fo-dood B 3y Qi Ll of e
or  rsind; dp T & S0 S
=% da a ay il O ) 0o a
2 =2 g b L Peted =2 L S e
(rsinﬁl Op £ r a8 o 1) rsindy dp T O, o
1 . Ode - 100, a 1.dan .-G
- — —=ctgd 2 —— + —
rsin i, 6<p+7'8191 ng” r Or 25 r
where:
v, v, v, Ovy V2 vy v, V3
A3 = Sl @ ey o L
( ) oy ot b L or & rsind; do r r Oy r
v ov v, Ov VpU vy OV VU
Al4 o Dy P0ip: Ma. 0% o YoV o 20 Do Yol o
( b M " rsind; dp r r Oy s i
(A.15) e Qz)_,z Ovy v, Ovyg vy v_g% s Yéctgﬁl

ot +UTW ¥ rsind; dy r r 09y
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Tensor L = grad v of rank two has nine coordinates presented in following
matrix:

Ovy 1 Ou, % 10v, vy

Lir Lrp Ly, Or rsind; dp g rod, r
(A_16) L‘PT L<PSP L‘PZ - % .1 6_112 4 & + %Ctgﬁl l‘?ﬁp_
or rsind; dp r T r Oy

Lir Lap L Ovg 1554 Buy Yowg 10vy v,

or rsin % e ror 1

Tensor L*= LTL is symmetrical and has following components:
I* - v\ 2 G v, 2 o g \?
A ar Bed.

1 ? 1 :
Ly, = (——%J)—‘P) +( %+%+v70ctgz91>

rsind; Op r rsind, dp

0. 1 Ovy
rsind; dp

v =1 LGy g 4 1 0v,, # 19vy v, \2
LW_(FM—T) t\ras,) *\ros,"7)
(A.17) L:‘p=%< 1 8UT—P—‘£>+%( : avlp—&+v—:-ctg191)

or rsinﬁlw 7 or rsim91-87 r

vy 1} “Oug > v,
02 4 S
1o (rsinﬂl dp Tctg 147

o _Our (100 v  Ovp (10v,) Ovp (10vs o,
9 9r \r 09 r or \\r 0% or-\rody —r /)
P G L R .
#0 = \rsind, 8p 1 routip
g e vy 1 0v,,
E: (rsim?l Oy +7+ rctgﬁl) (réﬁ)

1 Ovy Vyp 10vy v,
+(rsims;a; rctgﬂl) (Faﬁl 13/ 5
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We put results (A.10)-(A.17) into Eqs. (A.4)-(A.9). Hence we obtain following
form of stress components:

Ovy
(A.18) Trr = =P+ Mo (2 81:” )

vy . v, L Oup . Uy : Ovg 10v, wy .
“’[4(@») +(—ar+mimal%‘?) +(W+Faﬂl ‘7)
v, 0 ovy 1 ov 1w O, vg, v,% ]
e [arat T (

LA T v L o e
vy o v, 2 vy .
”f’[(ﬂ *(W) +<W) :

Oy vy . 2wg
— + — + —ctg?
rsind; dy Y r X b

2 2
2
+a[<%+ 1 av’"_v_“’> +( 2 @24‘&—%%@01)

(A19) Tpp = —p+mno [

or rsind; 8p r rsind; dy 7

2
+( L v + Ot —UTﬁctgﬁl) J

rsind, 5; ro,

' 2 0%, 20vu; 2ctgd, dug
rsind; 0pdt  r Ot r t
2 ad v, 1 Ovp, 1 v, v, vyv,
_— — + —— U, + —vy—~= + —2 4+ L Pty
+ rsind; Oy (UT or * rsind, e dp T rwaﬁl e T £ r i
2
+g UT‘Q& _.1_1)¢91.)l lv,&g&_v_(p_&%.
r Or rsindy "9p r oY% r 7

2ctgyd B} 1 B 1.5 2
¢l Ctgv ('Ur Vy VY _Ui+v’v19 Vy

i or P rsin ”“’_85 3 ;Wc')ﬂl

S BT & 1 ow v vy
2 -2£ —£ + T 4+ Zctgo
Siins {(rsinﬂl Oy r) g (rsinﬂ1 Oy 4 r i3 et

L sove .9, 5
EaY TP b
: (rsim?l dp 7 : g191) '
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10vy v, vy 10v, vy $
(A.20) 799 = p+2770( (9'!91+ >+a[(3r +7‘8’l91 7‘)

1 vy i@y, v, % 20v5 20, \2
g (rsinﬂl Oy s r oY TCtgﬁl) i v 00, | v

20 vy 1 Ovg 1 Ovy vy V3
LR s N TR S
o r 0V, (vr e rsind; ¥ dyp i r 059, A e gt

2 ( v, 1 Ov, ©1 Ov, 4 UZ’ U??)

N e e o

1 ovy oy 2 1 0v, ¢ 1 Ovy ¢
”4( aaf?) +(Fa—«91) +<r8191+7 ’

"4 v, 1 Ov v,
22 Sy ( A rsind; dp 1

v 1 ov v v 1. O v
oY% P Ve \ (O o A A
+a[ (87" +1‘sin'¢91 Oy r)((?r +7‘sm191 Oy i 3 Ctgﬂl)

Ovg 10v, wy L..0va.. JO0uq v
+(E‘—+r8191 r) (rsinﬂ] op +7_6191 T tedh

d (0v, o e
+ﬁ[ (81" +7'sm191 acp_T)

+<2_1)< 8v<p+ 1 v%-i—l 81)¢+v¢vr+v<pv,9ctg191>
r

or Or  rsind; ? dp 6191 r
b o, oy (90 1wt B 61 au,+u30+v3,
rsind; Op \ ' Or = rsind; op “ir 06191 r r

ol (-
or

-
ov Tus Ov 0 vy ()1119 1 vy v

et —£ 4+ L J— tgd —L = Lotgd
or (rsinﬁl dp g r ro 8r rsind; dp Pl v -
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By r——Gr
10v, vy Ovyg o, 10vs v,
+a{2(r3191 _+3r><8r+r601+7)
v, 1. 0y 1 Ovy  10v, v,
§ ( or e rsind; dp r ) (rsinﬂlr’i—(p— s r o0y ¥ ctgds

3'!),9 la’UT Vg
”’[ (81" e algta

a =1 Ovy 1 Ovy 1 8% VY Uy vi
— == —_—t ——v,— — — ——ctg?
" (8r r) (Ur or * rsinz?lv(‘o 0y + 8191 23 r e

li vavr_.l_..__l ’UQ:I-}i'f-l %‘_-ﬁ_ﬁ

rd9y \ ' Or  rsind; © O rvﬂaﬂl T T

Ovy (10v, vy Ov, (100, Ovy (10vy vy
+2’8[E<FE9‘1 r)%?'(Fa_ﬂl T o v

i 1 Ove "1y uy
(A.23) Ty = 10 [——7‘ PRV R % it 7‘6—19; —(‘tg'l9

v, L @up v, (18y, vy Ouy
+a[( or +rsim915$_7 rod; T * o ar

1 0wy 10v, w,
(rsim?l Bp pe Fol . r ctgds

1. Ouy, " 20, 1 Ovy
b A P ol 4
. (rsim?l Oy e r L il r 09

e _1_ 1 A%y 32% & v,
sindy Opdt 09,0t

1 0 vy v Ovyg Uy (91)19 Vpy Uf,
e _—t — —Zctgd
rsind; dp (UT or e rsind; dy e r o9 . 7 gl

1 0 ctgdy v, Vo Ovy vy v,  vrvy  vevy
" (r 09 r )(vr or 2 rsin'ﬂl—(??-{_ r 0 < e r . 2 ctgds

1.0 Oupist: ‘0 10v, vy
e [(rsinﬂl dp T) (?6191 ?)

1'Ovs v ov
(A22) 'rm—no[ 0 ’9]
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(AB)u Iy (;% gallfng zrzctg,gl) Lov,
T T T

[cont.] rsindy de
1 v ©, 10vg vy
T (mwﬁ& T"tgﬁl) (Faﬂl T/

and 7,9 = Toy, Tor = Trp, Tro = Tor-

Continuity equation has the following form:

1 0 0 0
A.24 ——— | =— (vr?sind,) + — — ind;)| = 0.
(A.24) - Fe [87"1 (vrr?sind;) + 9 (rvy) + a9, (vgr sin 1)]
We assume following dependencies between dimensionless synovial fluid velocity
components vy, Ury, Uyxn, pressure piy and adequate dimensional values in
following form:

(A.25) v, = Unv,y, v =UWvys, vy=Uvgs, p=(URno/ed)pis

Dependence between dimensional and dimensionless radial coordinate and time
has the form:

0 1 8
( ) r=R+erp =R(1+Yry), o

Deborah Numbers, Strouhal and Reynolds Numbers are as follows:

t = tot.

1 R

(A.27) Deg = @)—, De, = %}-, Str = —, Re = 4 %0
70 o wtg Mo

In the system of equations (A.1)-(A.3) we put formulae (A.18)-(A.23) and next

we put dependencies (A.25), (A.26), (A.27). Hence we obtain following system

of equations of conservation of momentum in following dimensionless form:

Oy oy ogi ) A

(A28)  Re¥Str 3t + O(Re V) = g
0 8%2 83’U<p2
+ 8'[‘1 ( 67‘1 ) + O(Dea) + O(W) = Deﬁ Stl‘-a'tl—ar—%,
(A.29) O(Deg) = P12
8T1

Ovyy: Opiz 0 (Ovyy
A. ey R
(A.30)  Re®Str o, + O(Re V) 9, + o, (Bm )

63v02

D D —.
+ O(Deqy) + O(¥) + eﬂStrBtlarf
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In continuity equation (A.24) we put dependencies (A.25), (A.26). Thus conti-
nuity equation has the form:

8UTE avﬂ(’z =h _a._ (1)192 Sin'l91) =+ O(\I’) =0.

(A.31) (sindy) 5 B B9;

Neglecting the terms of order O(Dey), O(¥), O(Re¥), then dimensionless sys-
tem of equations of conservation of momentum and continuity equation (A.28)-
(A.31) tend to the dimensional form (1.4)-(1.7).

APPENDIX B.

In Egs. (1.4)—(1.7) the derivatives with respect of the variable ¢, r; can be
replaced by the derivatives with respect of the one variable x only, by using the
following relationships:

0 0 0x 1 — mn 0 x 0
) G Bt A b, Wb
(B.2) & _ 9B\ 8 [90xyox Red
: 07’% ;s 67‘1 67‘1 i 6)( 0)( 37"1 87‘1 S 4t1 8X2,
& & [Res &
B3 For? = o4 (?5;)

_ _Res 8° Res 0 ﬁ)a_x__% sObiogoly 104
TUMT 2 At O\ Bx2) Bt AT\ FxE T 28X )¢

Next, the series (2.1) were put into the changed system (1.4)-(1.7), where the
variables t;, r; were replaced by the variable x, and Res = Re¥Str.

ApPENDIX C.
General solutions of ordinary differential equations:

d*vip dvig 1 Opio
dx? g dx  N? da;’

(C.1)

fori = ¢, 9, a,'= p, ay = % and (N¢)2 = NZ2sin(9;), Ny = N, has the
following form:

(C.2) vio(x) = Ci1vo1 (x) + vo2Ci2 + vio3(x),
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where: Cj1, Cjp are integral constants and particular solutions of homogeneous
and non homogeneous differential equations are as follows:

X
(C.3) vo1(x) = /e_X%dXh vo2(x) = 1,
0

X X
10 :
(C4) vio3 (X) = — 73 312? /efoiOI(Xl)d)ﬂ _UiOI(X)/eX%d)ﬁ ;
1 (2
0 0

where 0 < x; < x =rN. For t; — 0, then N — oo, thus x — oo. For t; — oo,
thus N — 0. Hence for r; > 0 we have x — 0. For £; > 0 and r; = 0 we have
Xx = 0. Following limits are true:

vo1(x) — 7r0'5/2, for x > 00, t1 =0, N — oc;
vo1(x) — 0, for o 2530, 0 =0y 05 4y Kitol <ooy w N> 0;
vios(x) — 0, for x =0, =0, 0<t <tz <00, N>0;
1= p,9,
(C.5)
vo1(x) — 0, for x -0, 1 >0, t; > 00, N —0;
2
(45 Op10
—_— fi 0, t; = N -
vp03(X) — PR RN X0, ri>8 1 # 00, 0,
7“%31710
vgo3(x) — Pl for x >0, >0, t1 200, N —0,
1

Imposing proper conditions (2.5), (2.6) on the general solution (A3.2) we obtain:

C‘pﬂ)m (X = 0) + C(pz + 'UchS(X = 0) = sin ¥, forr r1.=0,

(C ) Cnpl”Ol(XzM)+C<p2+7)<p03(X=M) =4, fory ri.=é61;
.6

Cy1v01(x = 0) + Cya + vgo3(x = 0) =0, for r =0,

Corvo1(x = M) + Cy2 + vgos(x = M) =0, for ri=g.

where M = &) N. Taking into account limits (C.5), then system of equations
(C.6) has the following solutions:

ol _sin191 e ’U<p03(M) G = __'01903(M)
(C.7) 4 v (M) vor

Cyp2 = sinvy, Cya. = 0.
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Now into the right hand of equations:

d?vi1x dvi1x 1-Gmy dvpls g
4(v; s S T
ax2 + 2x dx T ('Uzlz) Nz2 dog dx? ( )

2
for i = ¢, ¥9; ay, = ¢, ay = ¥ and (N,)? = N?sin(9,), Ny = N, we put
solution (C.2), (C.3), (C.4), (C.8). Thus general solution of ordinary differential
equation (C.8) has the following form:

(C.9) vi1(x) = Cizv11(x) + Ciavi2(x) +viis(x) for =, 9.

where Cj3, Cj4 are integral constants. Particular solutions are as follows:

(C.8)

L2 v 4
v11(x) = xe ™,

(C.10) g 08
’()12 /_2 deXla
X1
4

(C11)  wvas(x,Ca)
X

3 d?
= v11(X) / {Cil x13 —2x3) — (5 - X%) eX%d—Xg ['UiOB(Xl)]
1
0

i1x1(3 — 2X%)} v (x1)dxa,

fori=p,d 0<éd< 1 €% Followmg limits are true:
v11(x) =0, for x>0, r =0, 0<t; <ty <o0, N >0,
vi2(x) > -1 for x>0, r =0, 0<t;<ty<oo, N >0,
S viiz(x) =0, for x>0, r =0, 0<t;<ta<oo, N >0
1=, 9.
Imposing proper conditions (2.5),(2.6) on the general solution (C.9) we get:
Cp3v11(x = 0) + Cpav21(x = 0) + vp13(x =0) =0, for 7 =0,
(C.13) Cyav11(x = M) + Cpgvai(x = M) + vp13(x = M) =0, for r =e,
Cosvii(x = 0) + Coavar(x = 0) + vg13(x =0) =0, for r =0,

Cozvi1(x = M) + Cyqva1(x = M) +vg13(x = M) =0, for r =e¢;.
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Taking into account limits (C.12), then system of equations (C.13) has the fol-
lowing solutions:

(C.14) Ciz = — Ciu =0, for i=¢,9.

APPENDIX D.
If ¢, tends to infinity i.e. N tends to zero, then Eq. (2.14) tends to classi-

cal Reynolds equation for steady motion. To explain this fact we calculate the
following limits:

(D1}, Aabbl Ty (3 =< 8 W)

N—0 2N?2
N—>0 2N2 /exp Jerf(x)dx—erf(e1N) /exp x?)dx
0 0
e1N
i o 2 2
= lim - exp(x°) exp(—xl)dxl dx
0 0
e1N eiN
“ / e><1>(—><2)d><) / exp(x”)dx
0 0
Ne; -
d
du €1 Of exp(xi)dx1 2 i exp(e2N?) oy
N-0 2N exp(e?N?) 2 N0 exp(e?N?) + 2e2N2exp(e2N2) =  2°
Analogously:
VT e ol
(D.2) lim >=5Y (1 = Nry) = ~a
(D.3) erf(rN) r

NS0 exf(e1N) &1

Thus Eq. (D.1) for N — 0 tends to the following form:

ko 2\ | [ 9

€ r1 r P10
D.4 - L) [ =dr - [ (-2 —
(D) sind; Jy l:( 2 ) ) Eldrl 0/ ( 2 ) . Oy }
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2 €1 €1 2
(D.4) 1R A g e /T_l _/ i Yo dp10
[cont.] + 8191 2 Slnﬂl £ drl 2 Sln'ﬂldrl ———8191
0

0
a $% )
e oy g D g FET 4
- (Smﬂl)&p [/ (1 61) drq Str o, sin ;.
0

If Str tends to zero after final calculations, then we obtain following form of
classical Reynolds Equations in spherical coordinates (2.17).
APPENDIX E.

Dependencies between rectangular (z, y, z) and spherical (¢, r,9) co-ordinates
(see Fig. 4) have a following form:

(E.1) z=rsin(d1)cosp, y=rsin(d)sinp, z=rcos(?d;), 0<r<R.

Graphical illustration of a centre of spherical bone head 0(0,0,0) and centre of
spherical acetabulum in point Oy(z — Aeg, y — Agy, 2z + Ae;) is presented in
Fig. 4. Equation of spherical acetabulum surface at centre point O1(z — Agg,
y — Aey, 2+ Ae;) we can write in following form:

(z — Aeg)® + (y — Agy)? + (2 + Ae,)? = (R+ D + emin) %,

(E.2) I [(Aex)2 +(Aey)® + (A‘EZ)‘Z]O.S‘

We put dependencies (E.1) in Eq. (E.2 ), hence we obtain:

E.3) (rcospsind; — Ae;)? + (rsinpsind; — Ae )2 + (rcosd; + Ae,)?
y
= (R+ D+ emm)>

Gap height has following form:
(E.4) e d)=r - R

We find r from Eq. (E.3) and put in formula (E.4). Hence gap height has finally
a following form (2.19).
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APPENDIX F.

If we substitute solutions (3.20) + (3.21) in Eq. (3.23)3, then we have:

(k) (k)
(F.1) i : dp /Wkdr + = 2 Rsin dp /Wkdr
dp : (19) o9
Rsin | —

R

€ € -
0 | kwopo sinh [(e — ) Ag] sinh (rAy)
& dp { J {ka / sinh [e Ax] ¥k Yon / sinh (¢ Ay) #:
0

0 i

&
0 Jkwopo ., . [V sinh [(e — ) Ak] / smh
o 09 { 7 Hoaiz (R) [Uﬂk/ sinh [e Ag] or ab=Now
0

3 9 k,‘wgpo Oe 5 9 Oe
gt —k2w§p06(k)Rs1n (ﬁ) + j—- V*"’“% + VyiRsin =) a9l
fork=1,2,3;..;0 < p<2mc;, 0 <er <1, 7R/8LY <wR/2,0<r L&
For the further reduction of Eq. (F.1) it is necessary to calculate for ¢ = ¢,
the following integrals:

€ €
kwopo /sinh [(e — r)Ag] kwopo /e(e_r)"‘k — e (e-1)Ax
F.2 ; = ;
(0i® P sinh [e Ak] drprisl et Ak — g—¢ A dr

EAk e —eAg
kwopoU 2+e _ kwopo U taih <5Ak)

s dlp et Ak = ecAy Ak ol 3

il 1
= ——2-_] kwopoUik {E = E€3A12€ + 0 (84)] A

(]

y rA rA
A e
(F3) /Wkd’r‘g = / [(1 ey Ic) o (1 et k) St e—EAk]dr
0 0
€

|

0

s Sl xR L
1+ ef A 6+Ak1+e6/‘k

eTAk £ey e(e—r)AkJ 230 efAk
—_———|dr =

s e ya i wl & e
5+A an ( 2) e kwopo — O (%),
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kwopg /E Sinh’I‘Akd

F4) V;
(F4) Ve j sinh e Ay ¥

0

&
g kwopo ek — =T Ak d kwopo EAk —D o g%
= Vik g ef Ax — e—€ Ag sy j A €Ak — e—€A;
k A e 1
= ;;(;:10 Vik tanh (6—25) oy kwopoVix |€ — ﬁ€3A;2c +0 (%)

Integrals (F.2), (F.3), (F.4) we put in equation (F.1). Thus we get Eq. (3.25).

APPENDIX G.

Classical stress-strain relation has the following form [1, 6]:
(G.1) S = —pl + npAy,

The majority of experiments performed on the biological synovial fluids indicate
that dynamic viscosity decreases with shear rate increasing [1]. By virtue of
Dowson’s experimental values, the apparent viscosity we can show in following
form [18]:

0 — Tloo

i) Tl D) = 1 + AtrAy + BtrA; trA, + BtrA,’

where coefficient A obtained by the experimental way has value from 1.200 s
t0 2.000 s and coefficient B most often attain values from 0.00300s2 to 0.00600 s2.
Symbol 79 — denotes dynamic viscosity in Pas of motionless synovial fluid or
for the very slow movement of synovial fluid, 7, - dynamic viscosity in Pas
of synovial fluid in large motion. Viscoelastic properties of synovial fluids are
described by means of Rivlin Ericksen constitutive relations (1.2). We assume
following approximate form:

tI‘Ag

(G.3) E—pl+Amp, mp=mn+atrA; + ﬂ

Apparent viscosity (F.2) as a function of two variables A and B we expand
in Taylor series in neighborhood of point A = 0, B = 0 and obtain series we
equate with the apparent viscosity presented in formula (G.3). Hence we obtain
following approximation dependencies between unknown coefficients «, 3 and
known experimental values A and B:

a = —A(no — 1) + m0B/A + O(B%/A?),
B = 0.570B/A + O(B%/A?).

1

(G.4)
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