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Summary of the whole paper: By now, the SADSF method is practically the only tool
of shape design of complex machine elements that provides an effective solution even to the
problems of 3D distribution of the material, and at the same time it is still enough user-friendly
to be useful for engineers. This unique property of the method is due to the existence of its
simple application version. When using it, a design engineer does not need to solve by oneself
any statically admissible field ~ which could be very difficult — but obtains such a solution
by assembling various ready-made particular solutions. The latter are in general obtained by
means of individual and complex analyses and provided to a designer in a form of libraries.

The algorithms presented in this paper break up with the individual approach to a particu-
lar field. The algorithms are the first ones of general character, as they apply to the fundamental
problems of the method. The algorithms enable solving practically any boundary problem that
one encounters in constructing 2D statically admissible, discontinuous stress fields, first of all
the limit fields. In the presented approach, one deals first with the fields arising around iso-
lated nodes of stress discontinuity lines (Parts II and III), then integrates these fields into 2D
complex fields (Part IV).

The software, created on the basis of the algorithms, among other things, allows one to
find all the existing solutions of the discontinuity line systems and present them in a graphical
form. It gives the possibility of analysing, updating and correcting these systems. In this way,
it overcomes the greatest difficulty of the SADSF method following from the fact that the
systems of discontinuity lines are not known a priori, and appropriate relationships are not
known either, so that they could be found only in an arduous way by postulating the line
systems and verifying them.

Application version of the SADSF method is not described in this paper; however, a ref-
erence is given to inform the reader where it can be found.

PART III

SOFTWARE IMPLEMENTATIONS AND EXAMPLE PROBLEMS
FORMULATED FOR FIELDS AROUND NODES

Summary of Part III: Boundary problems, characteristic for the already-known fields
around convex and concave corners, are used in this part of the paper as the examples to
present juxtaposition of conditions, and to obtain a solution for general conditions of the
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system — important for the fields that appear around nodes. The presented variants of these
systems and the sets of unknowns, after minor completion, give the basis for deriving series
of elementary problems, which are necessary to create the algorithm for solving arbitrary
boundary problems, such as those encountered in the fields around nodes. The algorithm
created on such a basis does not require formulating any particular relationships, and its
implementation makes it possible to find any solution to the field around the node. The solution,
presented in an illustrative graphical form, can then be easily edited. In effect, it becomes
possible to test, almost instantaneously, admissibility of the structures, and verify the existence
of solutions on the physical plane.

The paper also presents short description of properties of the fields around nodes that
facilitates interpretation of the results. It is particularly useful in the cases when one obtains
surprising results, for example when structural degenerations (collapses) appear.

It is worth mentioning that, with boundary conditions formulated for fields around both
the above-mentioned types of corners, one obtains not only fields identical with the prototype,
but also a whole variety of other fields that until now have been treated as different ones.
Actually, these are the fields being solutions to the same boundary problem.

Key words: shape design, limit analysis, numerical methods.

12. EXAMPLES OF PROBLEMS

12.1. Ezample 1 (Field type A - Fig. 14)

Let us consider a limit field around a node, which consists of three homo-

geneous regions 1, 2, 3 (Fig. 14a). Let us omit determination stress parameters

{ik2 (1) (3) 3 :
from boundary conditions, and now assume that w = 60, w = 60 are given in

the regions 1, 3, and the angle between principal directions of stresses in these
regions (Fig. 14a) equals x = —60°.
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FiG. 14. a) prototype solution of the A type field obtained for the Huber-Mises yield
condition with the data: & = 60, & = 92.4364, & = 60, y = —60°, ¢"? =4, ¢>* = 1;

b) area of existence A with plotted subareas Ai:g, Af:g, (heavy lines) and images P12,

P23 of the lines £12, L*3,

€y
Although it is not necessary, let us also assume that the angle ¢ is equal to
30°. Assuming the Huber-Misses yield condition, we have to find the admissible
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state of stress in the intermediate region 2, and determine all parameters of the
limit field around the node.

In literature ([1]), the field around a convex corner is called the field type
A. In this example, however, it is treated as a fundamental solution, used for
illustrative presentation of the problem on the basis of a commonly known case.
As it turns out, if one starts from the boundary conditions characteristic for such
a type of field, a whole series of solutions is obtained, in which the prototype of
field A is just one of the elements.

12.1.1. Solution. According to (7.1), we formulate first the equality condi-
tions of existence for both lines of the field £? and £2? (o = 1, a = 2), then
we get the functions:

1 @ BE.
(a) Ap(9,6,Q") = ¢ — ¢,
(2) (3) 3) (2
(b) A¢( ) 7Q23)=¢_¢7
which, after substitution into (11.1), lead to the condition:
W o @1
(©) A (W,9,Q"7) + ag (&, ,2%) = x

The data in this equation are: g 60, o = 60, x = —60° (x; = x = —60°,

X2 = X+ 180° = 120°) and the parameters Q'?, @3 can take values 1, 2. Then,
for all combinations of indices @2, Q%3, we have four separate equations of

type (c), each of them with one unknown @. The equations must be solved with
the conditions:

(((:)), (2)) Ai g, ((2), (3)) A (see A?”f“ in Fig. 14b).
Four roots are obtained here:
542)) = 113.1370, 92.4364, 20.7006, 0.0000.

Substituting the roots into (7.1) and (7.3), we now can calculate:

(1) (2) (2) (3)
A¢(0,9,2), A (9,5,¢2%),
A’)’ ((1) (2) q ) A’)’ (8}) (w3) q2 3)

for all parameters of subfamilies ¢'? = 1..4, ¢*3=1..4, and then test the struc-
tural conditions (10.1) for the existence of a physical place for each homogeneous
region.
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In this way we obtain 16 solutions related to the roots w and to different
paths determined by the values of the two parameters of subfamilies {¢'?, ¢*3}.

Eight of those are different solutions, for example:

~©=924364, {¢"?=2,¢*°=1}, §=232.952

o 02,4364, {q"? = 4,¢®% =1}, 0 = 52.952°; (4 see Fig. 14)
~ 0 =207006, {¢"?=1,g**=2}, &=096.053

~©'=207006, {¢"?=1,g>*=4}, 6=276.053

~©=00000, {g"?=1,¢*" =3}, &=120.000

~©=00000° {¢"=1,g**=1}, & =300.000°
~W=113.1370, {¢"*=1,¢*=2}, §=150.992

~ W =113.1370, {¢"?=1,¢* =4}, J=330.992%

Sketches of these solutions are presented in Fig. 15.

a) ®=9243636 b) & =92.43636 ) & =20.70061 d) & =20.70061
El,l ‘m\ [2'3
23 12 23 & L'Z'J\©\ /@/£]‘2
L & £
ql.’.!= 2: q2.3= 1 q1,2= 4; q2.3= 1 ql.2= 1 q2.3= ) q1.2= 1; qz,3= 4
& =232.95°; 8 = 52.95° 8 = 96.05° 8 =276.05°
e) ¥=0 5 ®=0 g) ¥-11313697 M F=113.13697
s
\&\ .é. [ .(%. [z 12
‘\®\ /®/ [ZJ
/©/ ri2 Eu‘@\ 12
q1‘2= l, ql.!=3 qm__. l: ql.i: qu: l, q2.3= 2 ql.2= ]’ q2,3=4
8 = 120° 8 =300° & = 150.99° & =330.99 °

F1G. 15. A fragment of the set of fields around a node, generated from the prototype field
type A (solutions for different roots & and different paths (g%, ¢*?%)).
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12.1.2. Discussion of results. The multitude of the obtained solutions re-
sults from the fact that we have not imposed here many limitations that usually
appear in practical problems. It has been done on purpose, in order to find
all the solutions that can be generated from the same prototype field type A.
In fact, we have obtained as much as eight qualitatively different varieties of
the field.

Among the neglected conditions, we can mention first of all those pertaining
to the field within the 27 complement of angle J. By discarding these condi-
tions, we assume a priori that there exists a statically admissible extension of
the analysed field in this area. However, we do not specify this field precisely,
and do not verify the possibility of its realisation on the physical plane. If one
assumes, for example, that the area within the 27 complement of angle ¢ is free
of stress (as it is usually assumed for fields of type A), then there must exist
two more lines of discontinuity £%! and £39, one before region 1, and a second
one behind region 3 (see Fig. 14). At the same time, the solutions shown in
Figs. 15 d,f would be excluded as inadmissible. However, these solutions could
be admissible with different assumptions and for different configurations of stress
discontinuity lines systems. Then, at the stage of analysis, these solutions must
not be neglected.

Neither half-lines &1, &2, nor angles v%!, ¥V0 between whom the field we
sought for should exist, were not specified in the problem. For that reason there
appear all the solutions encompassed by the angle § < 27. Among them, one
can also find identical ones, which are simply rotated by the angles A~y re-
lated to consecutive values of the parameter of subfamily ¢'? = 1..4 in the
homogeneous region 1. It means that the solutions are rotated with respect to
the configuration which is used as a reference for the configurations in next re-
gions, and gives the basis for measuring angular parameters of lines L%**!. The
multitude of solutions results from the possibility of choosing as much as 4 posi-
tions (¢1? = 1..4) of the line £1? that was determined as the first one (see also
Fig. 4).

Let us notice that one of the calculated roots: W=113.1370 would not be
included into the above-presented set of solutions (d) if — besides of x; = —60°
- we would not take into account x2 = 120° (see (11.2)). The latter value also
complies with the conditions of the problem, because the system {{}(3), associ-
ated with principal directions of the stress in region 3, remains associated with
the same state of stress, even if we rotate it by the angle =.

The fields obtained for x2 = 120° are shown in Fig. 15 g,h. It is visible that
they do not fulfil the condition of admissibility if, as in the previous case, one as-
sumes the state of zero stress within the 2 complement of §. However, we obtain
a total of 4 varieties of field type A which satisfy such conditions (Fig. 15 a,b,c,e).
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We give up juxtaposing the full set of solutions whose prototypes are bound-
ary conditions characteristic for field type A.
Finally, it is worth mentioning that, instead of solving four equations of

type (c), one can as well find the roots @ of only one equation, which can be
derived from (c) by elimination of Q2, Q%3:

2,(2) (3) 24(1)(2) 2,(2) (3)

(12.1) {XL[A(}(EB, 8})]2— [A¢(w,w)]2}2—4 [Aqs(w,w) A¢(w,w)]2= 0,

or the equation created in the form of a product of conditions (c) for all com-
binations of signs associated with Q'2, Q?3. Despite formal identity of both
equations, the product form seems inconvenient for numerical methods.

12.2. Ezample 2 (Field type B - Fig. 16)

The prototype of field around concave corner, called field type B [1], also

consists of three homogeneous region, 1, 2, 3 (Fig. 16a). However, in the external
1)
regions there are given the values g 60, o 120, and — for instance — ¢ = 90°.

Let us assume that the angle between the directions of the greatest principal
stresses in these regions equals x = 0° (x; = 0°, x2 = 180°), and let us determine
the admissible state of stress in the region 2 and the remaining field parameters.
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Fic. 16. a) prototype solution of the B-type field obtained for the Huber-Mises yield
condition with the data: {(ulz) =604 =90,% = 120, x = 0, ¢"* = 4, ¢*® =1}, b) area of
existence A with plotted subareas A}3, Af:g (heavy lines) and images P12, P23 of the

lines £!'2, £%3.

12.2.1. Solution. The present problem differs from the previous one only
by the values of data. Let us then formulate an equation similar to type (c)
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(to the one from the previous example), to which we substitute the new data:

B 60, o 120, x = 0°. The equation is to be solved for all parameters of the

families Q®2*! (1,2) with the conditions:

(1) (2) (2) (3)
(w ) /l1 '3 (w ) /11 35 (see Fig. 16b).

We now obtain one root: & = 90, and by substituting it to (7.1) and (7.3) we

can calculate:
Ag ((” W q1’2), A (‘3 @ q”)

Av(m,m,q ) Av(g)g)q )

for all parameters of the subfamilies ¢''? = 1..4, ¢®»® = 1..4. Next, we test
the fulfilment of structural conditions (10.1). Eight solutions related to different
paths {¢"?, ¢**} satisfy these conditions. The fact that the number of solutions
is so great can be explained by the same reasons as those mentioned in the
example of field type A. Only two of the solutions are different (Fig. 17a,b):

© = 90.0000, {¢? =3,¢>3 =4}, 6 =90°

W =90.0000, {g"?=2,¢**=1}, &=270"

a) &=90 b) & =90
£1.2 % E2,3
¢ Ao
g e X
q?=3; q°=4 q?=2; q*=1
& =90° §=270°

FiG. 17. A fragment of the set of fields around a node, generated from the prototype field
type B (solutions for & = 90 and different paths (¢"2,¢*?%) = 90)).

If one additionally assumes the state of zero stress in the 27 complement of angle
§, which implies the existence of two more stress discontinuity lines £%! and £3?,
then only one among the mentioned solutions will remain the admissible one —
and this is shown in Fig. 17a.
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12.2.2. Practical remarks. Before the analysis of both examples is com-
pleted, it is worth to emphasise the general sense of operating on both the
parameters of families Q and subfamilies g of the lines £, as it was demon-
strated in the solutions of the problems. It turns out that it does not make a
difference whether one uses the families, or alternatively the subfamilies of lines,
in determining the function A¢. The differences arise only during the analysis
of the function A+, where the choice of the parameter value g = 1..4 means that
we choose one out of four possible positions of the line £ with respect to the
principal directions of stress in the existing homogeneous system. In the case of
the analysed nodes, the position of the complete field on the physical plane will
be determined already by the choice of the value ¢'? in the region 1. It explains
the repetition of identical solutions that differ only by the angle of rotation.
However, it becomes important to have these solutions at our disposal when the
conditions for the contents of the field in the half-plane limited by half-lines d;,
da (or %1, ¥'0) become active. Here, determining the function A+ on the basis
of parameters @ instead of ¢ would lead to the rejection of two solutions that
actually exist, and can be found in this sector of the plane.

In practical problems, one often encounters active geometrical conditions,
especially in the cases when a part of the field around a node has already been
solved, and the problem consists in finding a fragment of the field “inscribed”
into the field. The considerations on different configurations of the regions and
lines £ in relation to the values of @ and g, were presented in this section in order
to give a fairly comprehensive explanation for the reasons of selecting specific
parameters of families and subfamilies of the lines L.

13. ELEMENTARY PROBLEMS

In Sec. 11, we presented the formulation of the boundary problem most fre-
quently met in searching for the fields around nodes. The problem pertains to
the case when the limit states of stresses in external regions 1 and N are known.
In practice, besides of such problems, one can also encounter those with other
sets of data and unknowns. These are essentially the variants of the previous one,
however, they require a different approach, and in implementations they must be
treated as specific component problems, later called the elementary problems.

The set of elementary problems, presented in further part of the paper, was
purposefully selected in order to make it possible to solve an arbitrary boundary
problem that can be met in limit fields around nodes, irrespective of particular
characteristics of the problem. The module, which implements these problems is
denoted by symbol A. To avoid repeating the same assumption in the future, we

state now that solutions of all these problems are conditional and are determined

only when for each a = 1..N there is {‘&’3,“’5”} € A.
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18.1. Problem <1> Y

a) (@
There are given ((w), ¢ ) in the current homogeneous region « and a complete
solution of the field in the regions up to «, inclusively.

g (a+1) , y
For the mentioned value of stress parameter w ~ in the region a + 1 we

calculate:
Ad ((a) (a&l)) fad DA% ((a) (a‘jl)) ’

and next, for each parameter of the subfamily ¢®®*! = 1..4 and for the calculated

values
(a) (or+1) (a) (a+1)
A¢ ( qa,a+l) : Q’Y ( ) ,qa+a+1)

we verify the structural conditions (10.1), and also the possible geometrical con-
ditions of solution existence for the whole considered field. The admissible values
of ¢»**+1 are proposed for choice. Determining the value of ¢*®*! can be done by
inspection of graphs of all admissible solutions presented on the physical plane.
Obviously, the greater the number of constrains imposed by the solution on the
region up to «, inclusively, the lower the possibilities of choice of ¢*®*!. The
existence of the preceding homogeneous regions leaves less and less freedom for
creating new ones.

The state of stress in the region a + 1 in the co-ordinate system of the total

o (a+1)
field {a} is determined by ( Jl), ¢ whlle the angle of principal stresses can be

(a+1) (a) (a+1)
calculated from formula (7.1) ¢ = qﬁ +AP(w
ment Agb((a) B , q®°*1) is defined in the local system {€}(@) . Consequently,
the direction of dlscontinuity line £%%*! in the global system {a} determines
the angle y®o+l = pa-la L Ay .
(2)

In the particular case, when a = 1, it is necessary to specify not only c:) w,
)
but also the angle ¢,

g®°*1), because the incre-

13.2. Problem <2>

o) (@

Similarly as in the previous problem, the given data are ((w), ¢) in the current

homogeneous region a and a complete solution of the field in the regions up to
this one, inclusively.

Additionally, we input the value “6” in the region a + 2 and the angle

i ofp) (@) (a+2)
X= ¢ — ¢ between the directions o1, o .

UThe denotations of elementary problems used here are consistent with those assumed in
the implementation.
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e a+1) (at1) A
The quantities to be found are G , ¢ and the parameters of the lines

Lxatl gothaet? which separate the intermediate region o + 1.
The problem can be reduced to finding a conditional solution to equation of
the following form:

(a) (a+l) (a+1) (a+2)
A¢( Qaa+1) +A¢( Qa+1a+2) X

whose unknowns are: (051), i R b 8 i ok

Similarly as in the previous examples, the technique of solving such equations
consists, first of all, in eliminating Q***!, Q+19+2 which essentially means
reduction of the equation to a set of four equations defined on the functions Ad;,
and formulated for all four combinations of the signs:

¥ = :]:A(i) ((a (a+l)) L Ad’ ((a-H) (a‘:;?)) :

Alternatively, we can create one fourth-order equation of type (12.1), from

¢ g1 e ) a+1)
which we determine single and multiple roots oL

Next, for all roots i (not more than four roots) we test the values of pa-
rameters ¢®%t! = 1..4, ¢®+12+2 = 1 4 to find the roots for which the conditions
of existence (structural (10.1), and possibly also geometrical ones) are satisfied
for the field on the physical plane. In doing so, we have to take into account
the whole of the previously solved field (up to the region «, inclusively). The
series of the admissible paths {g®*! g@+1.e+2} (for which conditions (10.1) are
satisfied) are put together in the object created by the algorithm, and presented
in a graphical form that enables us to make a choice.

13.3. Problem <3>

Also in this case, there is a solution of the field given for the region up to

a+1
a, inclusively. We have to find ( w ) and the line £t when the increment of

(a) (o+1) =i (a+1)
the principle stress angle Ag( w) iy , @°*1) is given, so that ¢ in the next

region a + 1 is also given.
In order to solve this problem, we formulate the equation [(7.1)]:

(a+1)  (a)

(a) (0+1) 1
— ¢ =49 (8, G, @re1),
(a) (a+1)

whose unknowns are (autl), Q®**! and which must be solved with {w, @ } € A.

For ‘& determined in this way (not more than four roots) we test the
conditions of existence of the solution on the physical plane for all values of
g®**t! = 1.4. Only admissible values of the subfamilies, i.e. those satisfying

conditions (10.1), are available for the choice.
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18.4. Problem <0>

This problem concerns the boundary line £%! externally loaded by the stress
vector p»! (see Figs. 4 and 6).

The given quantities are the angle parameter v%!, which determines the
system of co-ordinates {¢}(?) associated with the line £%!, and the components
of stress vector p®! applied on this line. The quantity we seek for is the limit

)
state of stress {(ul)) ¢} in the region 1 adjacent to this line.
In order to solve the problem, we assume that the axis &2 of the system {¢ }(0)
(perpendicular to £%!) is drawn outside the field in the region 1 (Figs. 4 and 6)

in such a way that the direction parameter %! of the line £%! is associated with
O] ©)
¢ through the following dependence: ¢ = v%! — . Therefore, it is sufficient to

specify v%! in order to define the line £%! and the system {¢}(©). In so defined
system {£}(), the vector ¥ normal to £%! has the co-ordinates (0,1), which
enables us to use formulae (8.3).

Next, we input the components of loads p®! into the system {¢}(?), which

must satisfy the condition (8.3); (A(p,e)>0). Consequently, from (8.3)2

((wl) = &(p,n,Q%")) we calculate two roots & (Q%! = 1,2). The choice of the

index Q%! of root & means that we have established one of the roots of the

parameter A¢(®) determined from (8.3)3 (A¢®) = @(p,n, W, Q%)).

The angle A¢© is measured with respect to the axis {fl}(o), and, similarly
o (©
as in the previous problems, the condition ¢ = ¢ +A¢(© holds here.

The state of stress outside of the field is not defined, however, in the algorithm

one assumes ((07) = 0, and the boolean variables 0B, wB(® defined there, are
given values TRUE or FALSE, respectively. It means that the stresses are defined,
although they have no relation with the parameter w.

The case of loaded external line £N? of the field is solved in the next sub-
section, as elementary problem <d>.

13.5. Problem <d>

This problem is included into the set of elementary problems in order to
facilitate solving fields where the load p®®*! is applied along internal lines of
discontinuity £%*!. It turns out that it is convenient to extend this problem to
include also the case of an external line of the field £V:?, which might be loaded
or not.

Then, two cases will be discerned within Problem <d>:

1. The considered line type £? might be externally loaded or not, but behind

Yl (N+1)
it exists the state of zero stress ( ¢ = 0);
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: +1
2. Some arbitrary limit state of stress is created ((ac ) # 0) behind the line
of type L*2+1

(a)
In both cases, the given data create (31), ¢ in the start region «, and the

solution of the field in the region up to this one, inclusively.
In order to define the position of the created discontinuity line £&%*! or
LNO one must specify its parameter v®2+! (,N:0) which makes it possible to

@ 1
calculate Ay® = @+l _ ¢ +§7r, and to place this line in the local system {£}2.

(N+1) A . 3 1

In the Case 1. ( o = 0), the system {¢}(V*1) is associated with line LN,
(N+1)

and its axis &, is directed outside the region N; it is assumed that ¢ = V0

which is different from that on line £%!. The load determined in this system,
p™0, is applied to the line £N0.
In the Case 2., the state of stress in the region a + 1 does not depend on

the states in preceding regions, so that it is necessary to input additionally the

(a+1) (a+1)
parameters w ', ¢ .

The calculated external load on the line p»®*! is also given in the system
associated with the stress discontinuity line.

14. PROPERTIES OF LIMIT SYSTEMS OF STRESS DISCONTINUITY LINES
IN THE FIELDS AROUND NODES

14.1. General remarks

The solutions of boundary problems formulated for fields around nodes are
sometimes surprising and their interpretation might be difficult. It results, first
of all, from the properties of the problems themselves and these reasons can be
shortly described as follows:

1. The problems met here often lead to the situation in which even the di-
mension of the system of conditions is not a priori known. Then, we can
define a priori neither the number of regions (), nor the number of stress
discontinuity lines that separate them. At the same time, it is known that,
when these numbers are arbitrarily (incorrectly) assumed, the solution to
the field we seek for might not exist (and in general it does not exist).

2. We have at our disposal only one equation type (11.1) (nonlinear, with
singularities and very complicated) for determining the parameters of field
around a node. The equation is formulated for all possible combinations
of parameter values Q2, @%3,.., QV~1N and the conditional solutions to
this equation can be found for a fixed (assumed) number N. The number of
unknowns, however, becomes equal to the number of equations only when
the field we seek for contains N = 3 homogeneous regions.
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3. The set of limitations comprises the conditions for the contents in the

: (a) (a+1) ¥ A !
domain ({w, w }e€ A‘f’f\",ﬂ), which are the necessary conditions of exis-

tence. Moreover, it comprises structural conditions (10.1) and — possibly —
geometrical ones, all of them nonlinear.

The properties of the equations (11.1) and the conditions formulated on
lines £ can be best characterised by the graphical forms of functions A and AY
(7.2), (7.4), on which these equations are determined. The plots of the functions
are sketched in Fig. 18a,b in the form of three-dimensional graphs spread over
the admissible area A, which is the domain of the functions. The Huber—Mises
yield condition was assumed when deriving these functions.

//4////////4/7/ e

Fic. 18. Plots of functions AJ) ((alz), (1‘2))) and ’y((d)), (:))) drawn over the area A for the

Huber—Mises yield condition (similary as for arbitrary (:J), “S" in adjacent regions).

As it can be seen in Fig. 18, the function |A<f5((¢7}), (autl))| initially takes

an approximately cylindrical shape when moving from its central cross-section

(&!))+(au451) = m towards the origin of the co-ordinate system. Then, one can
see a growing and finally rapid change of the function shape near the section
@ + i n/3, and finally the function takes — in the same section — the form

of a U-shaped broken line. Similar changes of the function shape can be observed

when moving in opposite direction, because the function is symmetrical about

(@)  (a+1)
the plane w + w =7

We omit the description of the surface A’y((cz), “’23”), which is clearly repre-

sented in Fig. 18b. It is worth noticing, however, that the function is undefined

(@)  (a+1)
forse) 1= wirs
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Each equation of type (11.1) comprises as many functions AdAJ((:J), (at;”) as

many lines L%%*! exist in the field. Then, properties of each particular function
A, its singularities and possible undefined points will repeat in the same number
and will be superimposed on one another. It may give some idea what is the level
of technical difficulties in solving each discontinuous, limit field of stresses.

14.2. Structural degenerations

The previously described properties of function AJS may explain, to some
extent, the reasons why the systems of stress discontinuity lines in complex fields
do not exhibit any regularity, and why various singularities appear in such fields.

One of the most visible effects that accompany the singularities are structural
degenerations, which consist in disappearing of one or more stress discontinuity
lines from the field. Degenerations have been examined so far only for the fields
created around isolated nodes, and this case will be shortly presented here ([2]).

In order to do so, let us consider - as in the previous examples — the data

in external regions { 8)), ((iv)), x} and two limit fields having different numbers of
homogeneous regions, N; < Ny. Assume that both fields satisfy all conditions of
the problem. For the field with N; regions and determined data in the external
regions, one can always select such Ny > N; that the field’s solutions exist for
both structures. However, one can also meet cases when N; and Ny may not be
a pair of arbitrary natural numbers.

We say that structural singularity (degeneration) takes place when the in-
crease of the number of homogeneous regions from N; to Ny causes that the
solution ceases to exist for the framework of the structure of Ny regions.

The boundary conditions { 53,‘&3), x} for which degeneration takes place are

called the singular conditions. In the space {2)), (c!‘VJ), X}, singular boundary condi-
tions form a set whose dimension is lower than the dimension of the space itself.
Such conditions are then difficult to detect, and create difficulties when applying
numerical analyses, which - because of the complexity of the problem — are the
only methods of analysis that could be used.

One of the simple cases of structural degeneration can be found in the fields
consisting of only N = 3 homogeneous regions. It is known that the construction

of field with only one line £ is not permissible for an arbitrary ternary set of

1) (3) : CORNE)
numbers {w, w, x} from the domain. It turns out, however, that when {w, w, x}

are chosen in such a way that they can be separated with one line (it means

( ) 4 s 5 4
(cb), (:J) 6.4, b= |A¢(2)), 8)[), then the construction of a field with two lines

L£42, £23 and one intermediate region 2 is impossible. The effect of increasing
the number of regions from N; = 2 to Ny = 3 is that the solution of the field
would not exist for the structure of Ny = 3 regions.
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14.8. Ezample

Let us first consider a field consisting of two homogeneous regions 1, 2, sep-
arated by line £12. Let there be given: Wi 60, @ = 90. By substituting these

data into (7.2) we obtain A¢ = 27.36781°. For the considered field of two regions,

the value AqS(w) (w) q"?) that we seek for (according to (7.1), with ¢1'2 = 1, there

is A¢>((al)) (Z)) g7 = A@) is the angle x between principal directions of stress

in the external regions, because the regions 1 and 2 are the external ones in the
considered field.

In the second case, we consider a field of three regions 1, 2, 3, and assume

identical data in the external regions: 3 e 60, W= = 90, x = 27.36781°. Sub-
stituting these data into equation of type (11.1), and assuming now N = 3,
(equation (c) in the examples) we get the equation:

A ((1) (2) QL 2) +Ag ((2) @ Q> 3)

from which we determine two roots: R 60, s 90.

Then, identical states of stress exist either in the regions 1 and 2, or in the
regions 2 and 3. The lines £ drawn between these regions actually would not
be the stress discontinuity lines, because they would separate identical states of
stress.

The conclusion we can draw from this example is that the determined de-

1 @) 1 (3)
generation points belong to a surface set |x| = |Ad( ul;) Eu)| in the space {w (a?)

x|}, and this set is exactly equivalent to the function |A¢| shown in Fig. ISa

When the point-image B(E:J), (ws), |x|) of the boundary conditions is situated on
this surface, then one of the lines £ disappears. To describe it in a graphic way
we say that a structural collapse takes place there.

14.4. Reduction of the set of variables and partial autonomy
of component problems

In the description presented in this paper, the field parameters are determined

! . : (@) (a+1) . ;
on the smallest, irreducible set of variables {w, w , ¢®**1}. Moreover, in this

set all the roots are explicitly specified by means of parameters ¢®**! = 1..4. On
©, “B", g»e+1y ((7.3)), and when the

equality conditions of existence (defined by functlons A(j)((a) i , ¢*%T1)) are
satisfied on each line, then the equilibrium equations on lines [, are identically
satisfied. Then, what remains to be done is to formulate only one equation of
type (11.1) for each field around a node.

top of that, when we use functions Ay(w
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Besides of the properties presented so far, this equation has other interesting
features, quite important for the methods of solving complex fields. First of
all, it is defined exclusively on functions A¢. Consequently, it can be solved
independently of the geometrical characteristics of line £, and one can initially
determine the unknown states of stress which, nonetheless, can be separated by
admissible discontinuity lines. The increments A~y and the directions of lines £
can be calculated separately later, using the equations (7.3), and taking into
account, of course, the structural (10.1) and geometrical conditions.

The latter property is very valuable, because not only the reduction of the
set of variables, but — first of all — the possibility of dividing the problems into
partly autonomous ones, has an essential meaning for the effectiveness of solving
the nonlinear problems encountered in the limiting fields. This property is then
exploited everywhere, whenever it is possible.

In Part IV of this study, we will present yet another kind of partial autonomy,
the one often exploited in analyses of fields of great complexity.

All the properties described here for the fields around nodes can be trans-
ferred, in a natural way, to the cases of the complex fields that contain more
nodes, homogeneous regions and lines. Besides obvious multiplication of the ef-
fects already shown, the effects resulting from various couplings and mutual
interactions between adjacent nodes will be also superimposed.
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