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The problem of stability of fluid conveying carbon nanotubes clamped at one end and
pinned at the other end and subjected to an axial magnetic field is investigated in this paper.
Non-local continuum mechanics formulation is utilized to derive the governing fourth-order
partial differential equations, which takes into consideration the small length scale effects and
the axial magnetic field. Galerkin’s technique is used to find the solution of the governing
equation for the case of clamped-pinned boundary. Closed-form expressions for the critical flow
velocity above which the system becomes unstable, of the fluid conveying carbon nanotubes,
are obtained and numerical results for different values of axial magnetic field parameter are
presented in this paper for use in industrial dynamic design of such devices. The results obtained
from these simple and approximate expressions are compared with those existing in literature,
wherever available and an excellent agreement is found between them. Along with extensive
results on critical velocities new and interesting results are also reported for varying values of
nonlocal length parameter. From the results presented in this paper, it is observed that the
non-local length parameter along with axial magnetic field parameter are having considerable
influence on the critical velocities of the fluid conveying nanotubes.

Key words: critical flow velocity, Single-Walled Carbon Nano-Tubes (SWCNT), non-local,
axial magnetic field.

1. Introduction

In recent times, a number of researchers are focusing their research on various
aspects of carbon nanotubes. Carbon nanotubes have very good mechanical,
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electrical and chemical properties, with potential applications as bio-sensors,
nano-oscillators, fluid transporters, mass flow sensors, drug delivery systems, or
as purely structural components in nano-devices. In the area of fluid transport,
and particularly in the field of dynamics of fluid conveying carbon nanotubes,
research has accelerated in the last five years.
Analysis of the dynamic behavior of fluid conveying Single-Walled Carbon

Nano-Tubes (SWCNT) started around 2005. Researchers have applied theory of
classical continuum mechanics and used the same equations developed for pipes
conveying fluid to study the carbon nanotubes conveying fluid, see for example,
Yoon et al. [1], Reddy et al. [2] and Chang and Lee [3].
The diameter of a single-walled carbon nanotube is in the range of 1–7 nm

and the length, even for an aspect ratio of 20, is in the range of 20–140 nm. At
such small length scales, the properties of the material at atomic level, such as
lattice spacing or C-C bond length, may have an influence on the dynamic be-
haviour. Hence, application of classical continuum mechanics models to carbon
nanotubes is questionable. To address this problem, researchers are increasingly
using Eringen’s non-local continuum mechanics theory [4, 5], wherein the stress
at any point is defined to be a functional of the strain field at every point in
the body. The first to apply non-local mechanics to study vibrations of a fluid
conveying SWCNT were Lee and Chang [6]. Again Lee and Chang [7], stud-
ied the vibration behaviour of fluid conveying carbon nanotubes embedded in
a Winkler type of elastic medium. Wang and Varadan [8] develpoed a non-
local continuum mechanics model and applied to study the vibration of both
single-walled nanotubes (SWNTs) and double-walled nanotubes (DWNTs) via
elastic beam theories. However, Tounsi et al. [9] pointed out an error in the
formulation of Lee and Chang [6] and derived the correct governing equa-
tion. Wang [10] also formulated a consistent model, perhaps independently of
Tounsi, but did not consider any embedding elastic medium. Farshidianfar
et al. [11], have considered a two-parameter elastic embedding medium in their
analysis of fluid conveying carbon nanotubes. Both Pasternak and viscoelastic
type two-parameter foundation models have been used. However, their formu-
lation of the problem is based on classical continuum mechanics and does not
include the most important nonlocal elasticity effects. Ghorbanpour Arani
and Amir [12] studied nonlocal vibration of embedded coupled CNTs conveying
fluid under thermo-magnetic fields via Ritz method. The results indicate that
magnetic field has significant effect on stability of coupled system.
Very recently, including the small scale nonlocal and surface effects along

with a viscoelastic sandwich-beam model, Liang and Bao [13] presented a sta-
bility analysis of a fluid conveying carbon nanotube which is embedded in
a Kelvin-Voigt type of two-parameter foundation. However, in the formulation of
governing equation for the fluid conveying pipe, while appropriately considering
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the nonlocal effects due to fluid mass and fluid velocity, the authors ignored the
nonlocal effects that arise due to the presence of Kelvin-Voigt foundation param-
eters because of which results presented by them on the stability regions for the
case of simply supported boundary condition may become incorrect predictions.
Kiani [14] studied the vibration and instability of a single-walled carbon nan-
otube (SWCNT) under a general magnetic field, using nonlocal Rayleigh beam
theory and Maxwell’s equations. They have shown that the critical transverse
magnetic field increases with the longitudinally induced magnetic field and its
value decreases as the effect of the small-scale parameter increases.
Ponnusamy and Amuthalakshmi [15] studied the effect of constant axial

force due to thermal effects and the longitudinal magnetic field on the vibra-
tion analysis of a fluid conveying double walled carbon nanotube using nonlocal
elasticity theory and Euler-Bernoulli beam equation. It is concluded that the
frequencies of fluid conveying DWCNT embedded in an elastic medium under
thermal and longitudinal magnetic field is lower than the frequencies of fluid
conveying SWCNT embedded in an elastic medium under thermal and longi-
tudinal magnetic field. Milan et al. [16] studied the vibration of a nanobeam
under axial magnetic field using Finite Element Method. The exerted magnetic
field increases the natural frequency of the system due to the increase in overall
stiffness of the system. An increase of nonlocal parameter, which represents the
nonlocal effects on nanoscale level, leads to a decrease of frequency compared
to the classical local elasticity models. Very recently, Hosseini et al. [17] pre-
sented a differential transformation method (DTM) of solution for the problem
vibration and instability of fluid conveying carbon nanotubes.
From the literature survey, it is observed that many researchers have ad-

dressed various aspects of the dynamic behaviour of fluid conveying carbon
nanotubes but none have considered the combined effect of non-local elasticity
effects due to presence of axial magnetic field in a mathematically consistent
and exact manner. In this paper, it is proposed to study the influence of axial
magnetic field on the critical velocities of fluid conveying single walled carbon
nanotubes using assumed modes method of solution wherein the mode shape
of a beam for the specific boundary conditions without considering the effects
of conveying fluid mass, fluid velocity and any other effects also is used as an
approximate solution for solving the governing differential equation of motion.
The objective is to obtain simple closed-form expression for computing fun-
damental frequencies of fluid conveying pipe having one end clamped and the
other end pinned. The governing equations are derived for a fluid conveying
single-walled carbon nanotube (SWCNT) modelled as an Euler-Bernoulli beam
including the effect of axial magnetic field, using the consistent formulation of
Tounsi et al. [9]. The solution for the clamped-pinned end condition is ob-
tained by utilizing the Galerkin’s method. Closed-form expressions are obtained
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for the critical velocity for clamped-pinned boundary conditions considered here
and are solved for different values of non-local length parameter and the axial
magnetic field parameters. Extensive data on critical velocities is presented in
this paper both in numerical as well as graphical form for use in design as well
as to highlight the effects of both the non-local parameter and also the axial
magnetic field parameters. Excellent comparison is found between the results
obtained for critical velocities in this paper with those reported in the available
literature.
The critical flow velocity Vcr is an important parameter for the study of

stability of fluid conveying SWCNTs. At the critical flow velocity, the natural
frequency becomes zero, leading to divergence instability of the SWCNT. The
lowest root of V in Eq. (2.14) is the critical flow velocity, Vcr. In view of the
excellent comparison obtained, as shown in Table 1, the simple and approximate
expression, Eq. (2.14), is derived for the critical velocity in this paper for the
case of fluid conveying pipe having one end clamped and the other end pinned,
for use in the industrial dynamic design of fluid conveying nanotubes.

2. Equations of motion and solution

2.1. Non-local relations

As discussed by Eringen [5], the non-local constitutive relations take the
form

(2.1)
[
1− (e0a)

2∇2
]
σkl = τkl,

where the right hand side term τkl(x) denotes the classical stress, σkl(x) is the
non-local stress tensor at any point x, the local (classical) stress tensor at any
point x′ in the body is represented by σkl(x

′), e0 is a material constant which
depends on the results of experiments, a is an internal characteristic length which
could be the C-C bond length or the lattice parameter. Equation (2.1), for a one-
dimensional structure, is transformed into the following non-local constitutive
equation,

(2.2) σxx − (e0a)
2 ∂

2σxx
∂x2

= Eεxx,

where σxx is the axial stress, εxx is the axial strain and E is Young’s modulus
of the carbon nanotube.

2.2. Effect of Axial Magnetic Field

Considering Maxwell’s equations and assuming that the Lorentz force acts
in the longitudinal direction of the fluid conveying carbon nanotube with one
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end clamped and the other end pinned as shown in the Fig. 1, the present paper
aims at deriving a simple quadratic equation for critical value of fluid velocity
V including the effects of nonlocal elasticity as detailed in Subsec. 2.1.

a)

b)

Fig. 1. Fluid conveying SWCNT as nanobeam under the influence of axial magnetic field Hx

undergoing transverse displacement w(x, t) at any point x: a) physical model, b) mechanical
model of clamped-pinned nanobeam.

2.3. Analytical model of the SWCNT conveying fluid

To derive the equation of motion by the Newtonian approach, we first con-
sider the beam equations [8]:

(2.3) εxx = z
∂2w

∂x2
, Mb(x, t) =

ˆ

A

zσxxdA, I =

ˆ

A

z2dA, Q = −∂Mb

∂x
,

where z-axis is vertical axis, I the moment of inertia of the cross section, Mb is
the bending moment, Q is the shearing force.
Multiplying with zdA on either side of Eq. (2.2) we obtain

(2.4)1 zσxxdA− (e0a)
2 ∂

2

∂x2
(zσxxdA) = EzεxxdA.

Substituting the expression for εxx in Eq. (2.4)1 we get

(2.4)2 zσxxdA− (e0a)
2 ∂

2

∂x2
(zσxxdA) = E(z2dA)

∂2w

∂x2
.

Integrating Eq. (2.4)2 over the area of cross-section of the carbon nanotube, we
obtain

(2.4)3

ˆ

zσxxdA− (e0a)
2 ∂

2

∂x2

(
ˆ

zσxxdA

)
= E

(
ˆ

z2dA

)
∂2w

∂x2
.
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Rewriting the Eq. (2.4)3 by moving the nonlocal term to the right side of equa-
tion, we get

(2.4)4

ˆ

zσxxdA = E

(
ˆ

z2dA

)
∂2w

∂x2
+ (e0a)

2 ∂
2

∂x2

(
ˆ

zσxxdA

)
.

Using the expression for moment of inertia I and bending moment Mb we get

(2.4)5 Mb(x, t) = EI
∂2w

∂x2
+ (e0a)

2 ∂
2Mb

∂x2
.

Differentiating Eq. (2.4)5 twice with respect to x we get

(2.5)
∂2Mb

∂x2
= EI

∂4w

∂x4
+ (e0a)

2 ∂2

∂x2

(
∂2Mb

∂x2

)
.

The equation of motion of a fluid conveying SWCNT (which can be considered
a pipe) subjected to axial magnetic field can be derived as follows [15]:

(2.6) −∂
2Mb

∂x2
= −µAH2

x

∂2w

∂x2
+mfafz +mcacz.

In the above equation, the axial force due to magnetic field considered is
µAH2

x, where µ is the magnetic field permeability, Hx is the magnitude of mag-
netic field in x direction and A is the area of cross section of the fluid conveying
carbon nanotube. The inertial force due to the SWCNT element acceleration
in z-direction is given as mcacz. The inertia force due to the fluid acceleration
in the z-direction is mfafz. The fluid flow is considered to be a simple plug
flow.
Nanotube and fluid acceleration terms in Eq. (2.6) have been derived by

many researchers as detailed in [15], and the acceleration terms are given by

(2.7) acz =
∂2w

∂t2
, afz =

(
∂2w

∂t2
+ U2∂

2w

∂x2
+ 2U

∂2w

∂x∂t

)
.

Substituting Eq. (2.5) in Eq. (2.6), using Eqs. (2.7) and Eq. (2.2) and rear-
ranging, the final non-local equation of motion for a fluid conveying SWCNT
including, the effect of axial magnetic field is obtained as

(2.8) EI
∂4w

∂x4
+M

∂2w

∂t2
+
(
mfU

2 − µAH2
x

) ∂2w
∂x2

+ 2mfU
∂2w

∂x∂t

− (e0a)
2

{
M

∂4w

∂x2∂t2
+
(
mfU

2 − µAH2
x

) ∂4w
∂x4

+ 2mfU
∂3w

∂x3∂t

}
= 0,
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where M = mf + mc; mc is the mass of SWCNT and mf is the mass of the
nanofluid flowing inside.

Solution for clamped-pinned case:

The boundary conditions for the fluid conveying carbon nanotubes clamped at
one end and pinned at the other end are as follows:

(2.9)1 at x = 0, the transverse displacement w(0) = 0

and the corresponding slope
∂w

∂x
= 0,

(2.9)2 at x = L, the transverse displacement w(L) = 0

and the bending moment
∂2w

∂x2
= 0.

Again, the procedure given in [15, 18] is adopted to obtain results for clamped-
pinned case. The solution of Eq. (2.8) is taken to be

(2.9)3 w(x, t) = ℜ
[
φn

(x
L

)
eiωt
]
.

In Eq. (2.9), ℜ denotes the real part, φn
(x
L

)
is a series of beam eigen-functions.

ψr (ξ) is given by [21]:

(2.10)

φn (ξ) =

n∑

r=1

arψr (ξ) ,

ξ =
(x
L

)
,

ψr = cosh (λrξ)− cos (λrξ)− σr (sinh (λrξ)− sin (λrξ)),

r = 1, 2, 3, 4, 5, . . . , n.

In the above equation, λr is frequency parameter of the SWCNT without fluid
flow, which is considered as a beam, and its values for r = 1, 2 [19] are: λ1 =
3.926602 and λ2 = 7.068583 for clamped-pinned case.
Substituting Eq. (2.9) in the equation of motion Eq. (2.11) gives

(2.11) Ln (φ) = Ln

(
n∑

r=1

arψr (ξ)

)
= 0,

where Ln is a differential operator given by
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(2.12) Ln =

[
EI − e2nL

2V 2EI

L2
+ e2nL

2δm
EI

L2

]
∂4

∂x4

−
[
2e2nL

2Mβ
V

L

√
EI

Mβ

]
iω

∂3

∂x3
+

[
2Mβ

V

L

√
EI

Mβ

]
iω

∂

∂x

+

[
V 2EI

L2
− δm

EI

L2

]
∂2

∂x2
+
[
e2nL

2M
]
ω2 ∂

2

∂x2
−Mω2.

According to the Galerkin’s method, minimizing the mean square of the function
in Eq. (2.11) over the length of the SWCNT, we have

(2.13)

L̂

0

L

(
N∑

r=1

arψr (ξ)

)
ψs (ξ) dx = 0, s = 1, 2, 3, 4, 5, . . . N.

Following the procedure detailed in [8], substituting Eq. (2.10) in the above
equation, using orthogonality relations and retaining only the first two terms,
the following equation for critical velocity, above which the system becomes
unstable, for a fluid conveying SWCNT having one end clamped and the other
end pinned is obtained as:

(2.14)
[
(C11C22 − C12C21)− e2n

(
λ41C22 + λ42C11

)
+ λ41λ

4
2e

2
n

]
V 4

+
[{
λ41C22 + λ42C11 − 2C11C22δm

}

+2e2n
{
δm
(
λ41C22 + λ42C11

)
− λ41λ

4
2

}
− 2λ41λ

4
2λe

4
n

]
V 2

+
[{
λ41λ

4
2 −

(
λ41C22 + λ42C11

)
δm + C11C22δ

2
m

}

+ e2nδm
{
2λ41λ

4
2 −

(
λ41C22 + λ42C11

)
λ
}
+ λ41λ

4
2δ

2
me

2
n

]
= 0,

where

(2.15) V = UL

√
mf

EI
, en =

eoa

L
, δm =

√
µAH2

xL
2

EI
.

Equation (2.14) is quadratic in V 2 which can be easily solved for critical value
of non-dimensional fluid velocity parameter V . The constants C11 and C22 in
Eq. (2.14) are integral values taken from Felgar [20] which are also reproduced
in Rao and Simha [21].
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3. Results and discussions

The critical flow velocity Vcr is an important parameter for the study of
stability of fluid conveying SWCNTs. At the critical flow velocity, the natu-
ral frequency becomes zero, leading to divergence instability of the SWCNT.
In Eq. (2.14), the lowest root of V is the critical flow velocity, Vcr. For the
clamped-pinned boundary conditions, this parameter has been evaluated for
different values of the axial magnetic field parameter, δm and the non-local pa-
rameter en by using a specifically written MATLAB computer program for this
case. In the formulation of Lee and Chang [6], critical velocity is shown to
be not dependent on the non-local parameter due to the inherent error in their
formulation. However, it can be noticed from the results presented here, that the
non-local parameter has a considerable influence on the critical velocity, which
is more pronounced at low values of axial magnetic field parameter. In Table 1,
the results obtained from the analysis presented in this paper (for the case where
the nonlocal elasticity effect (en = 0) and axial magnetic field effect (δm = 0)
are neglected) are compared with those obtained by using differential trans-
formation method (DTM) [22], differential quadrature method (DQM) [17] and
the exact solution [23]. One can easily observe that the results obtained from the
present analysis method are in good agreement with those obtained from dif-
ferent numerical methods and the exact solution showing the accuracy of the
present method.

Table 1. Critical velocities of a clamped-pinned supported pipe conveying fluid neglecting
nonlocal and axial magnetic field effects (en = 0 and δm = 0).

DTM [22] DQM [17] Päıdoussis [23] Present

1st mode 4.4934 4.4937 ≈ 4.49 4.4998

Clamped-pinned case

Critical flow velocities are found by solving Eq. (2.14) for Vcr, for the case
of fluid conveying pipe clamped at one end and pinned at the other end. Ta-
bles 2, 3 and 4 show the numerical results in the tabular format. Tables 2, 3
and 4 show the values of Vcr for different values of axial magnetic field param-
eter

(
δm = 0− 105

)
and non-local parameter (en = 0 to 1.0). It is seen from

the Tables 2–4 that as the value of the non-local parameter en increases, the
values of the critical flow velocity parameter Vcr decreases. This decrease is more
pronounced for lower values of the axial magnetic field parameter, δm. The se-
lected values of axial magnetic field parameters (δm) provide a wide range of
characteristics varying from lower to higher values of magnetic fields in this
study.



328 C.K. RAO, L.B. RAO

Table 2. Values of the critical flow velocity parameter, Vcr, for different values of the non-
local parameter, en, and the magnetic field parameter, δm, for a clamped-pinned fluid conveying

SWCNT.

en = 0.00 0.05 0.10 0.15 0.20 0.25 0.30

δm Vcr

0.0 4.4998 4.3900 4.1035 3.7297 3.3447 2.9896 2.6785

0.01 4.5009 4.3912 4.1047 3.7310 3.3462 2.9912 2.6803

0.05 4.5053 4.3957 4.1095 3.7364 3.3522 2.9979 2.6878

0.075 4.5081 4.3985 4.1126 3.7397 3.3559 3.0021 2.6924

0.10 4.5108 4.4014 4.1156 3.7431 3.3596 3.0062 2.6971

0.50 4.5550 4.4466 4.1639 3.7961 3.4186 3.0721 2.7702

0.75 4.5823 4.4746 4.1938 3.8289 3.4550 3.1125 2.8150

1.00 4.6095 4.5025 4.2235 3.8614 3.4910 3.1524 2.8591

5.00 5.0247 4.9267 4.6732 4.3486 4.0233 3.7333 3.4892

7.50 5.2676 5.1742 4.9334 4.6271 4.3229 4.0543 3.8307

10.0 5.4998 5.4104 5.1806 4.8898 4.6030 4.3517 4.1442

50.0 8.3814 8.3230 8.1755 7.9944 7.8222 7.6771 7.5614

75.0 9.7595 9.7094 9.5832 9.4292 9.2837 9.1617 9.0650

102 10.9658 10.9212 10.8092 10.6729 10.5445 10.4373 10.3525

103 31.9413 31.9260 31.8879 31.8420 31.7992 31.7638 31.7360

104 100.1012 100.0963 100.0842 100.0695 100.0559 100.0447 100.0359

105 316.2598 316.2582 316.2544 316.2498 316.2455 316.2419 316.2391

Table 3. Values of the critical flow velocity parameter, Vcr, for different values of the non-
local parameter, en, and the magnetic field parameter, δm, for a clamped-pinned fluid conveying

SWCNT.

en = 0.35 0.40 0.45 0.50 0.55 0.60 0.65

δm Vcr

0.0 2.4120 2.1854 1.9925 1.8276 1.6858 1.5629 1.4557

0.01 2.4141 2.1877 1.9950 1.8303 1.6887 1.5661 1.4592

0.05 2.4223 2.1968 2.0050 1.8412 1.7005 1.5788 1.4728

0.075 2.4275 2.2025 2.0112 1.8480 1.7079 1.5867 1.4813

0.10 2.4326 2.2081 2.0174 1.8548 1.7152 1.5946 1.4897

0.50 2.5135 2.2969 2.1142 1.9596 1.8281 1.7154 1.6184

0.75 2.5628 2.3507 2.1726 2.0224 1.8952 1.7868 1.6939

1.00 2.6111 2.4033 2.2294 2.0833 1.9601 1.8554 1.7661

5.00 3.2890 3.1266 2.9950 2.8879 2.8003 2.7281 2.6682

7.50 3.6493 3.5037 3.3867 3.2924 3.2159 3.1532 3.1015

10.0 3.9772 3.8439 3.7376 3.6524 3.5835 3.5274 3.4813

50.0 7.4711 7.4011 7.3464 7.3034 7.2692 7.2417 7.2194

75.0 8.9899 8.9317 8.8865 8.8510 8.8228 8.8002 8.7818

102 10.2868 10.2360 10.1966 10.1656 10.1411 10.1214 10.1054

103 31.7146 31.6982 31.6855 31.6755 31.6677 31.6614 31.6563

104 100.0291 100.0239 100.0198 100.0167 100.0142 100.0122 100.0106

105 316.2370 316.2353 316.2340 316.2330 316.2323 316.2316 316.2311
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Table 4. Values of the critical flow velocity parameter, Vcr, for different values of the non-
local parameter, en, the magnetic field parameter, δm, for a clamped-pinned fluid conveying

SWCNT.

en = 0.70 0.75 0.80 0.85 0.90 0.95 1.00

δm Vcr

0.0 1.3616 1.2784 1.2044 1.1382 1.0787 1.0250 0.9762

0.01 1.3653 1.2823 1.2085 1.1426 1.0833 1.0298 0.9813

0.05 1.3798 1.2978 1.2250 1.1600 1.1016 1.0491 1.0015

0.075 1.3889 1.3074 1.2351 1.1707 1.1129 1.0609 1.0139

0.10 1.3978 1.3169 1.2452 1.1813 1.1241 1.0726 1.0261

0.50 1.5343 1.4609 1.3966 1.3400 1.2898 1.2452 1.2054

0.75 1.6137 1.5441 1.4834 1.4302 1.3833 1.3418 1.3050

1.00 1.6894 1.6230 1.5654 1.5151 1.4709 1.4320 1.3975

5.00 2.6180 2.5757 2.5398 2.5091 2.4827 2.4598 2.4399

7.50 3.0584 3.0223 2.9917 2.9657 2.9434 2.9241 2.9074

10.0 3.4430 3.4109 3.3839 3.3609 3.3412 3.3242 3.3095

50.0 7.2010 7.1857 7.1729 7.1621 7.1529 7.1450 7.1381

75.0 8.7666 8.7541 8.7436 8.7347 8.7272 8.7207 8.7151

102 10.0923 10.0814 10.0723 10.0646 10.0580 10.0524 10.0475

103 31.6521 31.6486 31.6457 31.6433 31.6412 31.6394 31.6378

104 100.0093 100.0082 100.0073 100.0065 100.0058 100.0053 100.0048

105 316.2307 316.2304 316.2301 316.2298 316.2296 316.2294 316.2293

Figure 2 presents a plot of critical velocity ratio dependence on the variation
in nonlocal parameter en and the magnetic field parameter δm. The ordinate in
Fig. 2 is plotted as a critical velocity ratio, as defined by Eq. (3.1).

Fig. 2. Variation of the critical velocity ratio with non-local parameter en for different values
of the magnetic field parameter δm for a clamped-pinned fluid conveying SWCNT.
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Critical Velocity Ratio,

(3.1) CVR =

[
(Vcr)en
(Vcr)en=0

]
.

It is clearly seen from the Fig. 2 that as the non-local parameter increases,
the critical velocity decreases. The effect of the axial magnetic field parameter
δm is also brought out clearly in the Fig. 2. It is observed from the Fig. 2,
that the critical velocity ratio decreases with increasing values of the non-local
parameter, (en) for a given values of axial magnetic field parameter (δm =
0, 0.5, 1, 5, 10, 50, 75, 102 , 103, 104, 105). The higher the axial magnetic field pa-
rameter, the lower is the rate of decrease in the critical flow velocity as the
non-local parameter (en) increases.
It is also observed from Fig. 2 that the critical velocity increases as magnetic

field increases for a given value of non-local parameter. This effect diverges as
non-local parameter increases. The variation of percentage change in the critical
velocity with the magnetic field as non-local parameter changes from 0 to 1.0 is
shown in Fig. 3. This is the dependence of percentage change in critical velocity
from en = 0 to 1 on the magnetic field. It is noticed that the percentage change in
the critical velocity decreases from 78.31% to 0.0096% with increase in magnetic
field parameter as non-local parameter changes from 0 to 1.0. Hence, the non-
local parameter has considerable influence on the stability of the SWCNT in the
presence of magnetic field. As the magnetic field parameter δm attains a highest
value such as 105, the effect of non-local parameter en on the critical flow velocity
gradually becomes negligibly small.

Fig. 3. Variation of the percentage of critical velocity with the magnetic field parameter δm as
non-local parameter en changes from 0 to 1.0 for a clamped-pinned fluid conveying SWCNT.
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But, the critical flow velocity converges to a constant value as the value of
magnetic field parameter become higher and higher. It can also be seen that
the magnetic field parameter in general acts similar to an axial tensile force and
thus adding to the stiffness of the SWCNT conveying fluid. In the formulation
of Lee and Chang [6], critical velocity is shown to be not dependent on the
non-local parameter due to the inherent error in their formulation. However, it
can be noticed from the results presented here, that the non-local parameter
has a considerable influence on the critical velocity which is more pronounced
at low values of axial magnetic field parameter.

4. Conclusions

This study has attempted to address the gaps in the literature by presenting
numerical results for the stability of a fluid conveying SWCNT subjected to axial
magnetic field. The governing equations have been formulated in the present
paper duly taking into account the concept of non-local mechanics and the most
important problem formulation errors made by Lee and Chang [7] in their
study, as pointed out by Tounsi et al. [9]. A two-term Galerkin’s procedure has
been used for the case of clamped-pinned boundary conditions. It has been very
well established that when the flow velocity reaches a certain value, called the
critical flow velocity, the frequency becomes zero leading to instability. Simple
quadratic equations in the critical velocity parameter are derived and presented
here for the first time. The real values of the critical flow velocity parameter
obtained for the clamped-pinned fluid conveying SWCNT subjected to axial
magnetic field are presented in numerical as well as graphical form. In summary,
it can be said that, higher the values of the non-local parameter the higher are
the effects of reducing the stability of the system, which is the outcome of the
consistent formulation presented here. One can easily see that in the Lee and
Chang’s analysis [6, 7], the non-local parameter does not have any effect on
the critical flow velocity, which is actually not the case as can be seen from the
results presented in this paper. It can be observed that even a two-term solution
using Galerkin’s methods gives almost accurate results as can be seen from the
excellent agreement obtained between the results with those results presented
by Wang [10], who also used a correct non-local formulation.
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23. Päıdoussis M.P., Fluid-structure interactions: slender structures and axial flow, Aca-
demic Press, London, 1998.

Received August 9, 2016; accepted version February 6, 2017.


