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An initial stability of Kirchhoff plates is analysed in the paper. Proposed approach avoids
Kirchhoff forces at the plate corner and equivalent shear forces at a plate boundary. Two
unknown variables are considered at the boundary element node. The governing integral equa-
tions are derived using Betti theorem. The integral equations have the form of boundary and
domain integral equations. The constant type of boundary element are used. The singular and
non-singular formulation of the boundary-domain integral equations with one and two collo-
cation points associated with a single boundary element located at a plate edge are presented.
To establish a plate curvature by double differentiation of basic boundary-domain integral
equation, a plate domain is divided into rectangular sub-domains associated with suitable col-
location points. A plate curvature can also be establish by considering three collocation points
located in close proximity to each other along line pararel to one of the two axes of global
coordinate system and establishment of appropriate differential operators.
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1. Introduction

The Boundary Element Method (BEM) is one of many tools applied to the
numerical analysis of structures. The main advantage of BEM is its relative sim-
plicity of formulating and solving problems of the potential theory and the theory
of elasticity. Many authors applied the boundary element method in wide aspects
to static, dynamic and stability analysis of plates. Burczyński [1] described in
a comprehensive manner the boundary element method and its application in a
variety of fields, the theory of elasticity together with the appropriate solutions
and a discussion of the basic types of boundary elements. The BEM found a wide
application in the analysis of plates too. There are well known works of Altiero
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and Sikarskie [2], Bèzine and Gamby [3] and Stern [4] applied the bound-
ary element method to solve the plate bending problem. The direct boundary
element method in plate bending was applied by Hartmann and Zoteman-
tel [5]. Comparisaon of the effectiveness of the boundary element method with
the finite element method and application of the BEM in the analysis of thick
plates was done by Debbih [6, 7]. The evaluation of boundary integrals for
thin plate bending analysis was proposed by Abdel-Akher and Hartley [8].
Hartley [9] also proposed the plate bending theory for frame structures analy-
sis. Beskos [10] andWen, Aliabadi and Young [11] applied the BEM in the
dynamic analysis of plates. Aliabadi and Wrobel [12] described an applica-
tion of BEM in the thick plate analysis together with procedures for calculating
singular and hypersingular integrals. A number of contributions devoted to the
analysis of plates were presented by: Katsikadelis [13, 14], Katsikadelis and
Yotis [15], Katsikadelis, Sapountzakis and Zorba [16], Katsikadelis
and Kandilas [17], Katsikadelis and Sapountzakis [18]. Shi [19] applied
BEM formulation for vibration and initial stability problem of orthotropic thin
plates. In order to simplify the calculation procedures Guminiak, Okupniak
and Sygulski [20] proposed a modified formulation of the boundary integral
equation for a thin plate. This approach was extended for static, dynamic and
stability analysis of thin plates and it is presented together with several nu-
merical examples in many papers, e.g. [21–25]. Myślecki [26, 27] proposed
BEM to static analysis of plane girders and BEM combined with approximate
fundamental solutions for problem of plate bending resting on elastic founda-
tion. Author used non-singular approach of boundary integral equations wherein
the derivation of the second boundary integral equation was executed for addi-
tional collocation points located outside of a plate domain. The same approach
of derivation of boundary integral equation was proposed by Myślecki and
Oleńkiewicz [28, 29] to free vibration analysis of thin plates. Authors also
used isoparametric, three-node boundary elemnt and applied dual reciprocity
principle to dermine the inertia forces inside a plate domain. Very interesting
approach was presented by Litewka and Sygulski [30, 31] who applied the
Ganowicz [32] fundamental solutions for Reissner plates to static analysis of
plates.Katsikadelis [33] applied BEM in a wide aspects of engineering analysis
of plates.
In classic form the BEM is limited to linear problems with known fundamen-

tal solutions. To fully overcomes this drawback the conception of the Analog
Equation Method (AEM) was created and introduced by Katsikadelis [34].
This version of BEM is basing on formulation of boundary-domain integral equa-
tion method and can treat efficiently not only linear problems, whose funda-
mental solution can not be established or it is difficult to treat numerically, but
also nonlinear differential equations and systems of them as well. The method



AN ALTERNATIVE APPROACH OF INITIAL STABILITY ANALYSIS. . . 35

is based on the principle of the analog equation of Katsikadelis for differen-
tial equations. This conception was established to analysis of plate buckling by
Nerantzaki and Katsikadelis [35] and Chinnaboon, Chucheepsakul and
Katsikadelis [36]. Similarly Babouskos and Katsikadelis [37, 38] solved
problem of flutter instability of dumped plate subjected by conservative and
non-conservative loading. A wide review of literature devoted to application of
BEM in plate analysis takes place in work of Guminiak and Litewka [39].
Authors compared thin [20, 21] and thick (Reissner) [30, 31] plate theory in
therms of the modified BEM formulation and application of Ganowicz funda-
mental solutions [32]. Additionally, in the paper [39] the analysis of plate resting
on internal flexible supports and plate with variable thickness in terms of AEM
were presented.
In present paper, an analysis of plate initial stability the BEM will be

presented. The analysis will focus on the modified [23] formulation of thin
plate bending. The Bèzine [3] technique will be established to directly derive
boundary-domain integral equation.

2. Integral formulation of plate bending

and initial stability problem

The differential equation qoverning of plate initial stability has the form
[40, 41]:

(2.1) D · ∇4w = −p,

where p is the substitute load, which has the form:

(2.2) p = Nx ·
∂2w

∂x2
+ 2Nxy ·

∂2w

∂x∂y
+Ny ·

∂2w

∂y2
.

In the majority of contributions devoted to the application of BEM to the
thin (Kirchhoff) plate theory, the derivation of the boundary integral equation
involves the known boundary variables of the classic plate theory, i.e. the shear
force and the concentrated corner forces. Thus, on the plate boundary there are
considered the two physical quantities: the equivalent shear force Vn, reaction
at the plate k-th corner Rk, the bending moment Mn, the corner concentrated
forces and two geometric variables: the displacement wb and the angle of rotation
in the normal direction ϕn. The boundary integral equation can be derived
using the Betti’s theorem. Two plates are considered: an infinite plate, subjected
to the unit concentrated force and a real one, subjected to the real in plane
loadings Nx, Nxy and Ny. The plate bending problem is described in a unique
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way by two boundary-domain integral equations. The first equation has the
form:

(2.3) c(x)·w(x)+
∫

Γ

[V ∗

n (y,x)·wb(y)−M
∗

n(y,x)·ϕn(y)]·dΓ (y)−
K∑

k=1

R∗(k,x)·w(k)

=

∫

Γ

[Vn(y) · w
∗(y,x)−Mn(y,x) · ϕ

∗

n(y,x)] · dΓ (y)−
K∑

k=1

Rk · w
∗(k,x)

+

∫

Ω

(
Nx ·

∂2w

∂x2
+ 2Nxy ·

∂2w

∂x∂y
+Ny ·

∂2w

∂y2

)
· w∗(y,x) · dΩ(y),

where the fundamental solution of this biharmonic equation

(2.4) ∇4w∗(y,x) =
1

D
· δ(y,x)

which is the free space Green function given as

(2.5) w∗(y,x) =
1

8πD
· r2 · ln(r)

for a thin isotropic plate, r = |y − x|, δ is the Dirac delta, D =
E h3

12(1 − v2)
is

the plate stiffness, x is the source point and y is a field point. The coefficient
c(x) is taken as:

c(x) = 1, when x is located inside the plate domain,
c(x) = 0.5, when x is located on the smooth boundary,
c(x) = 0, when x is located outside the plate domain.

The second boundary-domain integral equation can be obtained replacing
the unit concentrated force P ∗ = 1 by the unit concentrated moment M∗

n = 1.
Such a replacement is equivalent to the differentiation of the first boundary
integral equation (2.3) with respect to the co-ordinate n at a point x belonging
to the plate domain and letting this point approach the boundary and taking n
coincide with the normal to it. The resulting equation has the form:

(2.6) c(x)·ϕn(x)+

∫

Γ

[
V

∗

n(y,x)·wb(y)−M
∗

n(y,x)·ϕn(y)
]
·dΓ(y)−

K∑

k=1

R
∗

(k,x)·w(k)

=

∫

Γ

[Vn(y) · w
∗(y,x)−Mn(y) · ϕ

∗

n(y,x)] · dΓ (y)−
K∑

k=1

Rk · w
∗(k,x)

+

∫

Ω

(
Nx ·

∂2w

∂x2
+ 2Nxy ·

∂2w

∂x∂y
+Ny ·

∂2w

∂y2

)
· w∗(y,x) · dΩ(y),
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where{
V

∗

n(y,x),M
∗

n(y,x), R
∗

(y,x), w∗(y,x), w∗(y,x), ϕ∗

n(y,x)
}

=
∂

∂n(x)
{V ∗

n (y,x),M
∗

n(y,x), R
∗(k,x), w∗(k,x), w∗(y,x), ϕ∗

n(y,x)} .

The second boundary-domain integral equation can be also derived by in-
troducing additional collocation point, which is located in the same normal line
outside the plate edge. According this approach, the second equation has the
same mathematical form as the first one (2.3). This double collocation point
approach was presented in publication [27–29].
The detailed procedure for the derivation of the fundamental solution, the

integral representation of the solution and the two boundary-domain integral
equations is presented by Katsikadelis in [33]. The issues related to the assembly
of the algebraic equations in terms of the classical boundary element method
are discussed in many papers, including [33].
The plate bending problem can also be formulated in a modified, simplified

way using an integral representation of the plate biharmonic equation. Because
the concentrated force at the corner is used only to satisfy the differential bihar-
monic equation of the thin plate, one can assume, that it could be distributed
along a plate edge segment close to the corner. Hence, the terms in the bound-
ary integral Eqs. (2.5) and (2.6) which correspond to the corner force R can be
substituted in the following way:

−

K∑

k=1

Rk · w
∗(k,x) =

∫

Γk

Rn(y) · w
∗(y,x) · dΓk(y),(2.7)

−
K∑

k=1

Rk · w
∗(k,x) =

∫

Γk

Rn(y) · w
∗(y,x) · dΓk(y),(2.8)

where the subscript k denotes an unknown segment of the plate edge near the
corner. In the Eqs. (2.7) and (2.8) the fundamental twisting moment M∗

ns(y)
must be considered, too. Hence, the boundary integral equations will take the
form:

(2.9) c(x)·w(x)+

∫

Γ

[T ∗

n(y,x)·w(y)−M
∗

n(y,x)·ϕn(y)−M
∗

ns(y,x)·ϕs(y)]· dΓ (y)

=

∫

Γ

[Tn(y)·w
∗(y,x)−Mn(y)·ϕ

∗

n(y,x)]·dΓ (y)+
∫

Γk

Rn(y)·w
∗(y,x)·dΓk(y)

+

∫

Ω

(
Nx ·

∂2w

∂x2
+ 2Nxy ·

∂2w

∂x∂y
+Ny ·

∂2w

∂y2

)
·w∗(y,x)·dΩ(y),
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(2.10) c(x)·ϕn(x)+

∫

Γ

[
T
∗

n(y,x)·w(y)−M
∗

n(y,x)·ϕn(y)−M
∗

ns(y,x)·ϕs(y)
]
·dΓ (y)

=

∫

Γ

[Tn(y) · w
∗(y,x)−Mn(y) · ϕ

∗

n(y,x)] · dΓ (y)

+

∫

Γk

Rn(y) · w
∗(y,x) · dΓk(y) +

∫

Ω

(
Nx ·

∂2w

∂x2
+ 2Nxy ·

∂2w

∂x∂y
+Ny ·

∂2w

∂y2

)

· w∗(y,x) · dΩ(y).

Because the length k of the plate edge segment is unknown, the selected com-
ponents of the Eqs. (2.9) and (2.10) can form a common integral:

(2.11) c(x)·w(x)+
∫

Γ

[T ∗

n(y,x)·w(y)−M
∗

n(y,x)·ϕn(y)−M
∗

ns(y,x)·ϕs(y)]·dΓ (y)

=

∫

Γ

[Tn(y) · w
∗(y,x) +Rn(y) · w

∗(y,x)−Mn(y) · ϕ
∗

n(y,x)] · dΓ (y)

+

∫

Ω

(
Nx ·

∂2w

∂x2
+ 2Nxy ·

∂2w

∂x∂y
+Ny ·

∂2w

∂y2

)
· w∗(y,x) · dΩ(y),

(2.12) c(x)·ϕn(x)+

∫

Γ

[
T
∗

n(y,x)·w(y)−M
∗

n(y,x)·ϕn(y)−M
∗

ns(y,x)·ϕs(y)
]
·dΓ (y)

=

∫

Γ

[Tn(y) · w
∗(y,x) +Rn(y) · w

∗(y,x)−Mn(y) · ϕ
∗

n(y,x)] · dΓ (y)

+

∫

Ω

(
Nx ·

∂2w

∂x2
+ 2Nxy ·

∂2w

∂x∂y
+Ny ·

∂2w

∂y2

)
· w∗(y,x) · dΩ(y).

Then, the common factor w∗ can be separated:

(2.13) c(x)·w(x)+
∫

Γ

[T ∗

n(y,x)·w(y)−M
∗

n(y,x) · ϕn(y)−M
∗

ns(y,x)·ϕs(y)]·dΓ (y)

=

∫

Γ

[(Tn(y) +Rn(y)) · w
∗(y,x)−Mn(y) · ϕ

∗

n(y,x)] · dΓ (y)

+

∫

Ω

(
Nx ·

∂2w

∂x2
+ 2Nxy ·

∂2w

∂x∂y
+Ny ·

∂2w

∂y2

)
· w∗(y,x) · dΩ(y),
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(2.14) c(x)·ϕn(x)+

∫

Γ

[
T
∗

n(y,x)·w(y)−M
∗

n(y,x)·ϕn(y)−M
∗

ns(y,x)·ϕs(y)
]
·dΓ (y)

=

∫

Γ

[(Tn(y) +Rn(y)) · w
∗(y,x)−Mn(y) · ϕ

∗

n(y,x)] · dΓ (y)

+

∫

Ω

(
Nx ·

∂2w

∂x2
+ 2Nxy ·

∂2w

∂x∂y
+Ny ·

∂2w

∂y2

)
· w∗(y,x) · dΩ(y).

Now, the new notation is introduced:

(2.15) T̃n(y) = Tn(y) +Rn(y).

Hence, the boundary integral equations will have the form:

(2.16) c(x)·w(x)+
∫

Γ

[T ∗

n(y,x)·w(y)−M
∗

n(y,x) · ϕn(y)−M
∗

ns(y,x)·ϕs(y)]·dΓ (y)

=

∫

Γ

[
T̃n(y) · w

∗(y,x)−Mn(y) · ϕ
∗

n(y,x)
]
· dΓ (y)

+

∫

Ω

(
Nx ·

∂2w

∂x2
+ 2Nxy ·

∂2w

∂x∂y
+Ny ·

∂2w

∂y2

)
· w∗(y,x) · dΩ(y),

(2.17) c(x)·ϕn(x)+

∫

Γ

[
T
∗

n(y,x)·w(y)−M
∗

n(y,x)·ϕn(y)−M
∗

ns(y,x)·ϕs(y)
]
·dΓ (y)

=

∫

Γ

[
T̃n(y) · w

∗(y,x)−Mn(y) · ϕ
∗

n(y,x)
]
· dΓ (y)

+

∫

Ω

(
Nx ·

∂2w

∂x2
+ 2Nxy ·

∂2w

∂x∂y
+Ny ·

∂2w

∂y2

)
· w∗(y,x) · dΩ(y).

The expression (2.15) denotes shear force for clamped and for simply-supported
edges:

T̃n(y) =

{
Vn(y),

Rn(y).

Because in all the cases (Eqs. (2.3), (2.6) and (2.11), (2.12)) the forces on the
real plate: Vn(y) and Tn(y) are multiplied by the same fundamental functions
w∗(y,x) and w∗(y,x), the force T̃n(y) can be treated as an equivalent shear
force Vn(y) on a fragment of the boundary which is located far from the cor-
ner. In the case of the free edge we must combine the angle of rotation in the
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tangent direction ϕs(y) with the fundamental function M∗

ns(y). Because the re-

lation between ϕs(y) and the deflection is known: ϕs(y) =
dw(y)
ds
, the angle of

rotation ϕs(y) can be evaluated using a finite difference scheme of the deflection
with two or more adjacent nodal values. In this analysis, the employed finite
difference scheme includes the deflections of three adjacent nodes. As a result,
the boundary integral Eqs. (2.16) and (2.17) will take the form:

(2.18) c(x)·w(x)+
∫

Γ

[
T ∗

n(y,x)·w(y)−M
∗

ns(y,x)·
dw(y)
ds

−M∗

n(y,x)·ϕn(y)

]
·dΓ (y)

=

∫

Γ

[
T̃n(y) · w

∗(y,x)−Mn(y) · ϕ
∗

n(y,x)
]
· dΓ (y)

+

∫

Ω

(
Nx ·

∂2w

∂x2
+ 2Nxy ·

∂2w

∂x∂y
+Ny ·

∂2w

∂y2

)
· w∗(y,x) · dΩ(y),

(2.19) c(x)·ϕn(x)+

∫

Γ

[
T
∗

n(y,x)·w(y)−M
∗

ns(y,x)·
dw(y)
ds

−M
∗

n(y,x)·ϕn(y)

]
·dΓ (y)

=

∫

Γ

[
T̃n(y) · w

∗(y,x)−Mn(y) · ϕ
∗

n(y,x)
]
· dΓ (y)

+

∫

Ω

(
Nx ·

∂2w

∂x2
+ 2Nxy ·

∂2w

∂x∂y
+Ny ·

∂2w

∂y2

)
· w∗(y,x) · dΩ(y).

3. Construction of set of algebraic equations

The plate boundary is discretized by elements of the constant type. Three
approaches of constructing the boundary integral equations are considered. Ac-
cording to the first one, singular approach, the collocation points are located
exactly on the plate boundary (Fig. 1).
According to the second, non-singular approach, the boundary integral equa-

tions can be formulated using one collocation point (Fig. 2a) or two collocation
points (Fig. 2b) located outside of the plate boundary on the line normal to the
plate edge.
It is assumed that a rectangular plate is compressed only by Nx forces.

Then, in the boundary integral Eqs. (2.16) and (2.17) takes a stand only the
part Nx ·

(
∂2w

/
∂x2

)
. The unknown variable in internal collocation points is the

parameter κ = ∂2w
/
∂x2, the plate curvature in x direction [19, 23]. It is also

assumed, that a plate has a regular shape without any holes. According to these
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Fig. 1. Collocation point assigned to the boundary element of the constant type.

a) b)

Fig. 2. One collocation point a) and two collocation points b) assigned to the boundary element
of the constant type.

assumptions it is possible to accept an arbitrary linear distribution of the normal
loading along plate edge perpendicular to the x direction. The plate domain Ω
is divided into finite number of sub-domains just to define a plate curvature in
selected internal collocation points associated with these sub-domains Ωm. The
normal loading Nx is constant on the length of the single internal sub-domain
side which shows Fig. 3.

Fig. 3. Distribution of in plane loading.
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The set ofN (i)
x forces is expressed by the comparative normal loadingN=Ncr.

Hence, the set of algebraic equation can be written in the form [23]:

(3.1)




GBB GBS −λ ·GBκ

∆ −I 0

GκB GκS −λ ·Gκκ+ I


 ·





B

ϕS

κ





=





0

0

0




,

where λ = Ncr and GBB and GBS are the matrices of the dimensions of the
dimension (2N × 2N) and of the dimension (2N × S) grouping boundary in-
tegrals and depend on type of boundary, where N is the number of bound-
ary nodes (or the number of the elements of the constant type) and S is the
number of boundary elements along free edge; GBκ is the matrix of the di-
mension (2N × 2N) grouping integrals over the internal sub-domains Ωm; ∆ is
the matrix grouping difference operators connecting angle of rotations in tan-
gent direction with deflections of suitable boundary nodes if a plate has a free
edge.
The third matrix equation (3.1)3 in the set of equation (3.1) is obtained

by construction the boundary integral equations for internal collocation points
associated with internal sub-domains Ωm. According the typical approach, in
this equation, the plate curvature can be derived by double differentiation of
boundary integral Eq. (2.16) and by constructing one integral equation with
respect to central collocation point “1” belonging to each internal sub-surface.
Therefore GκB is the matrix of the dimension (M × 2N) grouping the bound-
ary integrals of the second derivatives with respect to the co-ordinate x of the
appropriate fundamental functions, where M is the number of the internal col-
location points and N is the number of the boundary nodes; GκS is the matrix
of the dimension (M ×S) grouping the boundary integrals of the second deriva-
tives with respect to the co-ordinate x of the appropriate fundamental functions;
Gκκ is the matrix of the dimension (M ×M) grouping the integrals of the sec-
ond derivatives with respect to the co-ordinate x over the internal sub-surfaces
Ωm ∈ Ω.
In accordance with the simplified approach, the plate curvature can be also

establish by addition two internal collocation points (“2” and “3”). Due to this
conception it is necessary to construct three integral equation considering three
collocation points (“1”, “2” and “3”) and using Eq. (2.18) in unchanged form.
These two approaches are illustrated in Fig. 4.
According the second approach the plate curvature at central point “1” is

calculated by constructing difference quotient:

(3.2) κ = κx =
∆2w

∆x2
=
w2 − 2 ·w1 +w3

(∆x)2
.
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a) b)

Fig. 4. Definition of the curvature in central collocation point.

Hence elements of the matrices GκB,GκS andGκκ can be evaluated using three
boundary integral equations based only on the boundary integral Eq. (2.18).
Elimination of boundary variables B and ϕS from matrix Eq. (3.2) leads to
standard eigenvalue problem:

(3.3)
{
A− λ̃ · I

}
· κ = 0,

where λ̃ = 1/λ and

(3.4) A =
{
Gκκ− (GκB −GκS ·∆) · [GBB +GBS]

−1 ·GBκ

}
.

The same problem of plate stability can also be formulated in terms of
the Analog Equation Method. The plate bending is expressed by differential
Eq. (2.1). It is assumed, that plate is compressed only by Nx forces, the govern-
ing equation will take the form

(3.5) D · ∇4w +Nx ·
∂2w

∂x2
= 0.

The real problem can be replaced by the analogous issue, which is described
by the following differential equation

(3.6) ∇4w = b(x, y).

In this issue, the boundary conditions are the same as in the real one and
b(x, y) is the unknown function of a fictitious loading. The solution of Eq. (3.6)
can be expressed using integral representation by two equations:
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(3.7) c(x)·w(x)+
∫

Γ

[
T ∗

n(y,x)·w(y)−M
∗

ns(y,x)·
dw(y)
ds

−M∗

n(y,x)·ϕn(y)

]
·dΓ (y)

=

∫

Γ

[
T̃n(y) · w

∗(y,x)−Mn(y) · ϕ
∗

n(y,x)
]
· dΓ (y)

+

∫

Ω

b(y) · w∗(y,x) · dΩ(y),

(3.8) c(x)·ϕn(x)+

∫

Γ

[
T
∗

n(y,x)·w(y)−M
∗

ns(y,x)·
dw(y)
ds

−M
∗

n(y,x)·ϕn(y)

]
·dΓ (y)

=

∫

Γ

[
T̃n(y) · w

∗(y,x)−Mn(y) · ϕ
∗

n(y,x)
]
· dΓ (y)

+

∫

Ω

b(y) · w∗(y,x) · dΩ(y),

where the fundamental solution is known and expressed by Eq. (2.5).
The plate domain may be discretized using internal sub-surfaces acting as

constant domain elements Ωm ∈ Ω or linear elements [33, 35]. In each internal
collocation point the fictitious loading vector b is introduced. The boundary-
domain integral Eqs. (3.7) and (3.8) allow to specify the boundary conditions
on each plate edges and the second derivetives of the plate displacement in each
of the internal collocation points. Substitution of Eq. (3.6), Eqs. (3.7) and (3.8)
which express the boundary conditions and double-differentiated Eq. (3.7) which
describes second derivatives with respect to the x global coordinate into govern-
ing Eq. (3.5) leads to the standard eigenvalue problem where the eigen multiplier
is equal λ̃ = 1/Ncr. If the plate domain is divided into rectangular sub-surfaces
of the constant type (each sub-surface is associated with one central collocation
point in which the plate curvature is established) the AEM approach becomes
special case equivalent to the direct Bèzine technique.

4. Modes of buckling

The elements of the eigenvector κ obtained after solution of the standard
eigenvalue problem (3.3) present the plate curvatures. The set of the algebraic
equation indispensable to calculate the eigenvector w elements has a form:

(4.1)




GBB GBS 0

∆ −I 0

GκB GκS I


 ·





B

ϕs

w





=





λ ·GBκ · κ

0

λ ·Gκκ · κ




.
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In the set of the Eq. (4.1) the first and second Eqs. (4.1)1 and (4.1)2 are obtained
from the first and second equations of (3.1) and the third Eq. (4.1)3 is gotten by
construction the boundary integral equations for calculating the plate deflection
in internal collocation points. Elimination of the boundary variables B and ϕS
from Eq. (4.1) gives the elements of the wanted displacement vector:

(4.2) w = λ ·
[
Gκκ− (GκB −GκS ·∆) · [GBB +GBS]

−1 ·GBκ

]
· κ.

5. Numerical examples

The initial stability problem of a square and rectangular plates, simply-
supported on each edge and a square plate simply- supported on two opposite
edges with two remaining free edges is considered. For each of them the critical
value of the normal loading is investigated. Each of plate edge is divided by the
boundary elements of the constant type with the same length. The set of the
internal collocation points is regular. The plate properties are: Young modulus
E = 205 GPa, Poisson ratio v = 0.3. The following notations are assumed:
BEM I – singular formulation of governing boundary-domain integral Eqs. (2.18)

and (2.19) with second equation obtained by single differentiation of
Eq. (2.18), the vector of curvatures is established by double differenti-
ation of the first governing boundary-domain integral Eq. (2.18);

BEM II – non-singular formulation of governing boundary-domain integral
Eqs. (2.18) and (2.19), with second Eq. (2.19) obtained by differentiation
of Eq. (2.18), the vector of curvatures is established by double differen-
tiation of the first governing boundary-domain integral Eq. (2.18). The
collocation point of single boundary element is located outside, near the
plate edge. For one collocation point: ε1 = δ̃1/d = 0.001 [23] where δ̃1 is
distance of collocation point from the plate edge and d is the boundary
element length;

BEM III – non-singular formulation of governing boundary-domain integral
Eqs. (2.18) and (2.19), with second Eq. (2.19) obtained for the set of
additional collocation points with the same fundamental solution w∗,
the vector of curvatures is established by constructing difference quo-
tient (3.2) and fundamental solution w∗. Localization of two collocation
points for single boundary element is determined by: ε1 = 0.001 and
ε2 = δ̃2/d = 0.01. For three collocation point belonging for each internal
sub-domain element: ε∆ = ∆x/a = 0.001.

FEM – regular finite element mesh 0.5 m × 0.5 m and element type of S4R
(four node with three degree of freedom per node) of ABAQUS program
with reduced integration were assumed into comparative analysis.
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The critical force Ncr is expressed using non-dimensional term:

(5.1) Ñcr =
Ncr
D

· lx · ly.

5.1. A simply-supported rectangular plate under uniformly
constant normal loading

Static and loading scheme is shown in the Fig. 5.

Fig. 5. A simply-supported rectangular plate under uniformly constant normal loading.

Two plates are considered: a) square and b) rectangular. In case a) the
plate boundary was discretized using 256 number of boundary elements. The
number of internal sub-surfaces used to describe the plate curvature is equal: 256.
The plate geometry is defined as: lx = ly = l = 2.0 m. In case b) the plate
boundary was discretized using 128 number of boundary elements. The number
of internal sub-surfaces used to describe the plate curvature is equal: 512. The
plate geometry is defined as: lx = 0.5 · ly = 2.0 m. In both cases the following the
plate thickness is equal h = 0.05 m. Each plate edge is divided into number of
64 in case a) and 32 in case b) boundary elements of the same length. The set of
internal square sub-domains is reagular. The results of calculation are presented
in Tables 1–3. The influence of localization of internal collocation points on
critical force values for square plate a) using BEM III approach is presented in
Table 2.

Table 1. Critical force values: lx/ly = 1.0.

Ñcr
Analytical

solution [40, 41]
BEM I
solution

BEM II
solution

BEM III
solution

1 39.4784 39.6198 39.6228 39.6350

2 61.6850 62.1887 62.1916 62.1996

3 109.6623 111.3933 111.3962 111.4057
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Table 2. Critical force values: lx/ly = 0.5.

Ñcr
Analytical

solution [40, 41]
BEM I
solution

BEM II
solution

BEM III
solution

1 30.8425 30.9227 30.9230 30.9253

Table 3. Critical force values: lx/ly = 1.0. Solution BEM III for different value of ε∆ = ∆x/a.

Ñcr
ε∆ = ∆x/a

0.0001 0.001 0.01 0.1 0.2

1 39.6350 39.6350 39.6351 39.6362 39.6398

2 62.1993 62.1996 62.1996 62.2073 62.2311

3 111.4057 111.4057 111.4057 111.4385 111.5362

Fig. 6. The first buckling mode, lx/ly = 1.0.

Fig. 7. The first buckling mode, lx/ly = 0.5.

5.2. A simply-supported rectangular plate under uniformly
linear normal loading

Static and loading scheme is shown in the Fig. 8.
Two plates are considered: a) square and b) rectangular. In case a) the plate

boundary was discretized using 256 number of boundary elements (64 elements
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Fig. 8. A simply-supported rectangular plate under uniformly linear normal loading.

on each edge). The number of internal sub-surfaces used to describe the plate
curvature is equal: 256. The plate geometry is defined as: lx = ly = l = 2.0 m.
In case b) the plate boundary was discretized using 128 number of boundary
elements (32 elements on each edge). The number of internal sub-surfaces used
to describe the plate curvature is equal: 384. The plate geometry is defined as:
lx = 1.5 · ly = 3.0 m. In both cases the plate properties were assumed identi-
cally as in Example 5.1. The results of calculation are presented in Tables 4–6.

Table 4. Critical force values lx/ly = 1.0.

Ñcr
Analytical
solution [41]

BEM I
solution

BEM II
solution

BEM III
solution

1 76.9829 77.3858 77.3918 77.4153

2 – 115.7346 115.7401 115.7566

3 – 194.3706 194.3797 194.4041

Table 5. Critical force values: lx/ly = 1.0. Solution BEM III for different value of ε∆ = ∆x/a.

Ñcr
ε∆ = ∆x/a

0.0001 0.001 0.01 0.1 0.2

1 77.4153 77.4153 77.4153 77.4175 77.4245

2 115.7566 115.7566 115.7566 115.7707 115.8148

3 194.4038 194.4041 194.4043 194.4599 194.6296

Table 6. Critical force values lx/ly = 1.5.

Ñcr
Analytical
solution [41]

BEM I
solution

BEM II
solution

BEM III
solution

1 124.3570 124.5210 124.5241 124.5283
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The influence of localization of internal collocation points on critical force values
for square plate a) using BEM III approach is presented in Table 5.

Fig. 9. The first buckling mode, lx/ly = 1.0.

Fig. 10. The first buckling mode, lx/ly = 1.5.

5.3. A simply-supported rectangular plate under uniformly
linear normal loadings

Static and loading scheme is shown in the Fig. 11.

Fig. 11. A simply-supported rectangular plate under uniformly linear normal loadings.
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Two plates are considered: a) square and b) rectangular. In both cases the
plate geometry, properties and discretization were assumed identically as in Ex-
ample 5.2. The results of calculation are presented in Tables 7–9. Number of real
critical force value is given in the first column. Number of computational value
is indicated beside by roman numerals. The influence of localization of inter-
nal collocation points on critical force values for square plate a) using BEM III
approach is presented in Table 8.

Table 7. Critical force values, lx/ly = 1.0.

Ñcr
Analytical
solution [41]

BEM I
solution

BEM II
solution

BEM III
solution

1 (I) 252.6619 254.8014 254.8211 254.8753

2 (III) – 269.1932 269.2128 269.2808

3 (V) – 340.3840 340.4153 340.4976

Table 8. Critical force values: lx/ly = 1.0. Solution BEM III for different value of ε∆ = ∆x/a.

Ñcr
ε∆ = ∆x/a

0.0001 0.001 0.01 0.1 0.2

1 (I) 254.8753 254.8753 254.8753 254.9058 254.9984

2 (III) 269.2813 269.2808 269.2808 269.2872 269.3072

3 (V) 340.4969 340.4976 340.4983 340.5935 340.8843

Table 9. Critical force values, lx/ly = 1.5.

Ñcr
Analytical
solution [41]

BEM I
solution

BEM II
solution

BEM III
solution

1 (I) 356.7861 359.7330 359.7432 359.7538

Fig. 12. The first buckling mode, lx/ly = 1.0.
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Fig. 13. The first buckling mode, lx/ly = 1.5.

5.4. A rectangular plate simply-supported on two opposite edges with two
remaining edges free under uniformly constant normal loading

Static and loading scheme is shown in the Fig. 14.

Fig. 14. A rectangular plate simply-supported on two opposite edges with two remaining free
edges under uniformly constant normal loading.

Two plates are considered: a) square and b) rectangular. In both cases the
plate geometry, properties and discretization were assumed identically as in Ex-
ample 5.2. The results of calculation are presented in Tables 10–12. The influence

Table 10. Critical force values, lx/ly = 1.0.

Ñcr
FEM
solution

BEM II
solution

BEM III
solution

1 9.4603 9.8082 9.5546

2 26.5097 25.7486 25.4393

3 39.4389 38.2109 38.1065
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Table 11. Critical force values: lx/ly = 1.0. Solution BEM III for different value of ε∆ = ∆x/a.

Ñcr
ε∆ = ∆x/a

0.0001 0.001 0.01 0.1 0.2

1 9.5546 9.5546 9.5527 9.5527 9.5477

2 25.4394 25.4393 25.4266 25.4266 25.3927

3 38.1064 38.1065 38.1014 38.1015 38.0892

Table 12. Critical force values, lx/ly = 1.5.

Ñcr
FEM
solution

BEM II
solution

BEM III
solution

1 6.1887 6.4995 6.4041

of localization of internal collocation points on critical force values for square
plate a) using BEM III approach is presented in Table 11.

Fig. 15. The first buckling mode, lx/ly = 1.0.

Fig. 16. The first buckling mode, lx/ly = 1.5.
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5.5. A rectangular plate simply-supported on two opposite edges with two
remaining free edges under uniformly linear normal loading

Static and loading scheme is shown in the Fig. 17.

Fig. 17. A rectangular plate simply-supported on two opposite edges with two remaining free
edges under uniformly linear normal loading.

Two plates are considered: a) square and b) rectangular. In both cases the
plate geometry, properties and discretization were assumed identically as in
Example 5.2. The results of calculation are presented in Tables 13–15. The
influence of localization of internal collocation points on critical force values for
square plate a) using BEM III approach is presented in Table 14.

Table 13. Critical force values, lx/ly = 1.0.

Ñcr
FEM
solution

BEM II
solution

BEM III
solution

1 16.7221 16.3165 16.3162

2 56.6365 54.5680 54.2951

3 83.2673 81.7806 81.0573

Table 14. Critical force values: lx/ly = 1.0. Solution BEM III for different value of ε∆ = ∆x/a.

Ñcr
ε∆ = ∆x/a

0.0001 0.001 0.01 0.1 0.2

1 16.3162 16.3162 16.3162 16.3112 16.2983

2 54.2953 54.2951 54.2951 54.2766 54.2288

3 81.0572 81.0573 81.0569 81.0345 80.9748
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Table 15. Critical force values, lx/ly = 1.5.

Ñcr
FEM
solution

BEM II
solution

BEM III
solution

1 11.4891 11.9982 11.8209

Fig. 18. The first buckling mode, lx/ly = 1.0.

Fig. 19. The first buckling mode, lx/ly = 1.5.

5.6. A rectangular plate simply-supported on two opposite edges with two
remaining free edges under uniformly linear normal loadings

Static and loading scheme is shown in the Fig. 20.

Fig. 20. A rectangular plate simply-supported on two opposite edges with two remaining free
edges under uniformly linear normal loadings.
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Two plates are considered: a) square and b) rectangular. In both cases the
plate geometry, properties and discretization were assumed identically as in Ex-
ample 5.2. The results of calculation are presented in Tables 16–18. Number
of real critical force value is given in the first column. Number of computa-
tional value is indicated beside by roman numerals. The influence of localization
of internal collocation points on critical force values for square plate a) using
BEM III approach is presented in Table 17.

Table 16. Critical force values, lx/ly = 1.0.

Ñcr
FEM
solution

BEM II
solution

BEM III
solution

1 (I) 25.9506 25.9804 25.4095

2 (III) 71.5806 68.6190 68.1714

3 (V) 150.0035 134.4278 133.1770

Table 17. Critical force values: lx/ly = 1.0. Solution BEM III for different value of ε∆ = ∆x/a.

Ñcr
ε∆ = ∆x/a

0.0001 0.001 0.01 0.1 0.2

1 (I) 25.4094 25.4095 25.4093 25.3956 25.3586

2 (III) 68.1714 68.1714 68.1709 68.1346 68.0386

3 (V) 133.1770 133.1770 133.1759 133.1156 132.9640

Table 18. Critical force values, lx/ly = 1.5.

Ñcr
FEM
solution

BEM II
solution

BEM III
solution

1 (I) 23.5430 23.9012 23.5336

Fig. 21. The first buckling mode, lx/ly = 1.0.
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Fig. 22. The first buckling mode, lx/ly = 1.5.

6. Conclusions

An initial stability of thin plates using the boundary element method is
presented. This problem was solved with the modified approach, in which the
boundary conditions are defined so that there is no need to introduce equivalent
boundary quantities dictated by the boundary value problem for the biharmonic
differential equation. The collocation version of boundary element method with
singular and non-singular calculations of integrals were employed and the con-
stant type of the boundary element is introduced. The Bèzine technique was used
to establish the vector of curvatures inside a plate domain which was divided into
rectangular sub-surfaces. A plate can be subjected in plane by loading which dis-
tribution can be arbitrary, constant along selected edge of the single sub-domain
element. The high number of boundary elements and internal sub-surfaces is not
required to obtain sufficient accuracy. The loaded plate edge must be supported.
This condition is required in proposed formulation of buckling analysis.
In case of normal conservative loading along the plate free edge, the boundary

integral equation must be expanded by additional part:
∫

Γ

−Nx ·
∂wb

∂x
· w∗(y,x) · dΓ (y).

Then, construction of set of algebraic equation in matrix notation and for-
mulation of the standard eigenvalue problem are much more complicated. To
solve this problem, the first and second derivatives of deflection inside the plate
area (∂2w/∂x2) and at the boundary (∂wb/∂x) can be establish and calcu-
lated for example approximately by constructing a differential expression us-
ing deflections of suitable neighbouring internal collocation points belonging to
different internal sub-domains and collocation points located at the plate free
edge.
The boundary element results obtained for presented conception of thin plate

bending issue demonstrate the sufficient effectiveness and efficiency of the pro-
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posed approach which can be useful in engineering analysis of the buckling
problem.
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