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Using analytic solutions for one-dimensional plane boundary value problems related to the
launching of solids by detonation products (DPs) of high explosives, algebraic formulae which
define the displacement and velocity of a metal plate launched by expanding DPs from an open-
faced sandwich (OFS) are derived. In addition, the variations of the mechanical parameters
of displacement, velocity and density versus the Lagrangian coordinate of expanding DPs
gases during the launching of the metal plate from the OFS are defined. Variations of these
mechanical parameters are also described by algebraic formulae.
From analysis of the obtained results, it follows that Gurney’s assumptions of the linear

velocity profile of constant – density DPs gases significantly deviates from conventional theory
of gas dynamics. Gurney’s assumptions introduce a serious error of estimated metal plate
velocity (about several dozen percent).
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1. Introduction

The problem of launching different solids by the detonation products (DPs)
of high explosives (HE) has been investigated by many researchers. A review
of the literature connected with this problem is given in the fourth chapter of
Walters and Zukas’ monograph [1].
One of the methods of estimation of the initial velocity of fragments from

ammunition casing is the R.W. Gurney method [2–7].
One of the configuration considered by Gurney is the so-called open-faced

sandwich (OFS) (Fig. 1). It consists of a slab of explosive confined by a metal
plate on one side only. The other side of the slab is a free surface. This configu-
ration is often used in experiments to obtain constitutive properties of materials
or when it is necessary to impact a large target surface. It is also used as a phy-
sical model of shaped charges. The interaction of the DPs and the liner of the
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Fig. 1. Open-faced sandwich [1].

shaped charge influences the initial velocity of the liner elements and, therefore
the characteristics of jet [1, 8–10].
Using conservation laws of momentum and energy, Gurney defined the initial

velocity of the metal plate launching from an OFS by means of simple algebraic
formula:
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where C and M represent masses of unit area of explosive and metal, respec-
tively, and quantity

√
2E is the Gurney characteristic velocity for a given ex-

plosive.
It follows from Eq. (1.1) that final plate velocity depends only on the M/C

ratio and the Gurney characteristic velocity
√
2E, which characterizes consid-

ered explosive. This formula does not define the distribution of velocity in space
and time.
In order to obtain the simple algebraic formula, Gurney assumed far-reaching

simplifications, namely:
• the distribution of the particle velocity of the expanding DPs is a linear
function of the Lagrangian coordinate and retains this form at any given
time (Fig. 2);

• the gas products of detonation are assumed to expand uniformly with
constant density, which is equal to the initial density of the explosive, ρe.
In order to verify these assumptions, the following one-dimensional boundary

value problem needs to be solved: the launching rigid piston with mass, M , by
HE charge in infinite non-deformable pipe with a unit cross-section area. The
charge is confined by the piston on one side only. The second charge side is the



THE INITIAL VELOCITY OF A METAL PLATE. . . 289

Fig. 2. The linear profile of DPs velocity versus Lagrangian
coordinate, r, for an OFS.

free surface. The length and mass of the charge are represented by l and C,
respectively. At the moment t = 0, the HE charge is instantaneously detonated
(the hypothesis of instantaneous detonation is used) [10–13]. The compressed
gaseous DPs expand and launch the rigid piston. The thermodynamic properties
of the DPs are described by the ideal gas model. The friction forces between the
pipe and the piston and the DPs are neglected.
The above problem was solved analytically in the closed form. With the aid

of the algebraic formulae derived in this paper, it will be possible to estimate
how much the Gurney model differs from the exact solution.

2. Mathematical formulation of the problem

The one-dimensional plane motion of the DPs in the above-presented sand-
wich is described by the following set of equations:

ρ0 = ρ(1 + u,r ),(2.1)

u,tt = − 1

ρ0
p,r ,(2.2)

where the symbols u, p and ρ refer to: the displacement, pressure and density
of the DPs, respectively; r is the Lagrangian coordinate and t is time. The
subscript 0 marks the initial values of the suitable parameters of the DPs.
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Equations (2.1) and (2.2) are completed with an isentropic equation of the
DPs in the following form:

(2.3)
p

p0
=

(
ρ

ρ0

)γ

,

where γ is the isentropic exponent.
Equations (2.1) and (2.2) can be reduced to the nonlinear differential hyper-

bolic equation of the second order:

(2.4) u,tt= a2(u,r )u,rr ,

or replaced by two ordinary differential equations:

(2.5) dv = ±a(ε)dε.

These equations are satisfied along the following characteristics, respectively:

(2.6) dr = ±a(ε)dt,

where v = u,t is the flow velocity of the DPs and ε = u,r = (ρ0/ρ) – 1 is the
relative measure of the DPs expansion (analogues to a strain in solids).
The quantity a(u,r ) = a(ε) is the velocity of the propagation of disturbances,

expressed in the Lagrangian coordinate (r).
For the polytropic curve (2.3), the quantity a(u,r ) is described by the fol-

lowing series of relationships:

(2.7) a(u,r ) = c0(1 + u,r )
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where c0 is the initial local speed of sound in the DPs, i.e.,

c0 =

(
γ
p0
ρ0

)1/2

.

After substitution of Eq. (2.7) into Eq. (2.5) and integration, we obtain:

(2.8) u,t= v = − 2c0
γ − 1

(1 + u,r )
−

γ−1
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if dr = a(u,r )dt,

and
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if dr = −a(u,r )dt,
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where J+ and J− are quantities preserving constant value along the suitable
characteristics. They are calculated from the boundary conditions of the prob-
lem.
The boundary conditions in the investigated problem have the following

form:

p(0, t) ≡ 0,(2.10)

p(l, t) ≡ M
dv

dt
.(2.11)

The above-mentioned boundary conditions are completed by suitable rela-
tionships on the characteristics.
Bearing in mind the values of the isentropic exponent γ for the majority of

the condensed explosives (see Table 1), the formulated problem has been solved
analytically in the closed form for γ = 3.

Table 1. Isentropic effective exponents of the DPs of some condensed
explosives [11].

No Explosive γ No Explosive γ No Explosive γ

1 BTF 2.933 11 LX-04-1 3.068 21 RX-08-DR 2.998

2 Comp. B Grade A 2.965 12 LX-07 3.034 22 RX-04-DS 2.921

3 Cyclotol 2.938 13 LX-09 3.016 23 RX-06-AF 2.927

4 Dipam 2.837 14 LX-10 2.998 24 RX-08-AC 2.967

5 EL-506 A 2.951 15 LX-11 3.112 25 RX-08-BV 2.961

6 EL-506 C 3.038 16 LX-14 3.017 26 RX-08-DW 3.041

7 HNS 2.874 17 Octol 2.991 27 XTX-8003 3.025

8 HMX 3.223 18 PBX 9010 3.189 28 Tetryl 3.018

9 HMX-TNT Inert 3.015 19 PBX 9011 3.049 29 TNT 2.959

10 HMX Inert 2.962 20 PBX 9404-3 3.064 30 C4 3.033

3. Solutions of the problem in regions 0, I, II and III

This problem has been solved using the method of characteristics.
Part of the wave picture of the solution of the problem is presented as a net-

work of the limiting characteristics in Fig. 3. The backward rarefaction waves
propagate in the space between the rigid piston and the free surface, filled with
the DPs. These waves are reflected from the piston and free surface and inter-
act with each other. As a result of this refraction set of the rarefaction waves,
separable regions are created in the plane (r, t), where the suitable initial and
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boundary value problems to be solved are the Cauchy initial value problem in
region 0, the Picard boundary value problem in regions I and II, the Darboux
value problem in region III.

Fig. 3. Part of the network of limiting characteristics
in the space between piston and free surface.

Let us introduce the following dimensionless quantities:

(3.1)
ξ =

r

l
, ζ =

x

l
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l
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l
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,
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2
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where

(3.2) c0 =
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=

√
γ

2
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γ

2 (γ + 1)
D =

√
3

8
D.

Symbols x, l, C,D and γ refer to: the Eulerian coordinate, the length of explosive
charge and its mass per unit area, the detonation velocity and the isentropic
effective exponent of the DPs, respectively. Symbol ρe stands for the density of
the explosive, pCJ is the pressure in the Chapman-Jouguet point.
The above-mentioned boundary value problems have been considered in

[15, 16]. The formulae describing the parameters of the hydrodynamic state of
the DPs in the suitable regions considered in these papers have been stated. The
variables and parameters assigned to each region will be denoted by a subscript
corresponding to the number of the given region.
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The analysis of the problem has been limited to the following functions:
displacement velocity and density of the DPs in the selected regions.

Region 0
Region 0 is bounded by the axis 0r and the characteristics K0L0 and K0P0,

which overlap the trajectories of the fronts of the rarefaction waves propagating
from the free surface and from the movable piston, respectively (Fig. 3). The
variables ξ, ζ and η along the characteristics delimitating the given regions
are denoted by a subscript which corresponds to the number of the region, for
instance, symbol ξ01 marks the variation of variable ξ along the characteristic
K0L0 (Fig. 3), delimitating regions 0 and I, and so on.
The characteristics K0L0 and K0P0 are defined by the formulae:

(3.3)
ξ01 = ζ01 = η01 – along the characteristic K0L0,

ξ02 = ζ02 = 1− η02 – along the characteristic K0P0.

The values of the variables ξ0 and η0 are contained within the intervals:

η01 ≤ ξ0 ≤ 1− η02, 0 ≤ η0 ≤ 0.5.

The DPs are motionless in region 0. Their state parameters are defined by the
hypothesis of instantaneous detonation [14, 15]. These parameters are described
by the following formulae:

(3.4)

u0 = 0, v0 = 0, ρ0 = ρe = const,

c0 =

√
3

8
D = const, p0 =

ρeD
2

8
= const.

The parameters of the state of the DPs in the remaining regions will be
compared with the quantities c0, ρ0, p0 (see dimensionless variables (3.1)).

Region I
Region I is bounded by the axis 0t and the characteristics K0L0 and K0L1

(Fig. 3). In this region, the Picard boundary value problem has been solved for
Eq. (2.4) with homogenous conditions on the characteristic K0L0 and with the
boundary condition (2.10). The formulae describing the relative parameters of
the DPs in region I have the following form:

u1(ξ1, η1) = 2
√

ξ1η1 − (ξ1 + η1),(3.5)

v1(ξ1, η1) = −1 +

√
ξ1
η1

,(3.6)
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(3.7) ρ1(ξ1, η1) =

√
ξ1
η1

= v1(ξ1, η1) + 1.

The relationship between the Eulerian variable, ζ1, and the Lagrangian vari-
able, ξ1, has the following form in region I:

(3.8) ξ1 =
(ζ1 + η1)

2

4η1
or ζ1 = 2

√
ξ1η1 − η1.

After substitution of relationship (3.8) into formulae (3.5)–(3.7) we obtain:

u1(ζ1, η1) =
1

2

[
2ζ1 −

(ζ1 + η1)
2

2η1

]
,(3.9)

v1(ζ1, η1) =
ζ1 + η1
2η1

− 1 =
ζ1 − η1
2η1

,(3.10)

ρ1(ζ1, η1) =
ζ1 + η1
2η1

= v1(ζ1, η1) + 1.(3.11)

Note that the velocity and density are the linear functions of the Eulerian
coordinate ζ1, but contrarily, these parameters are nonlinear functions of the
Lagrangian coordinate, ξ1.
The characteristics K0L0 and K0L1 (Fig. 3) are defined by the following

relationships:
• in the Lagrangian variables (ξ, η)

(3.12)
ξ01 = η01 – along the characteristic K0L0,

ξ13 =
1

4η13
– along the characteristic K0L1;

• in the Eulerian variables (ζ, η)

(3.13)
ζ01 = η01 – along the characteristic K0L0,

ζ13 = 1− η13 – along the characteristic K0L1.

The values of the variables ξ1 and η1 are contained within the intervals:

(3.14)
0 ≤ ξ1 ≤ η01, if 0 ≤ η01 ≤ 0.5,

and 0 ≤ ξ1 ≤
1

4η13
, if 0.5 ≤ η13 < ∞.

Region II
Region II is bounded by the line ξ = 1 and the characteristics K0P0 and

K0P1 (Fig. 3). Similarly to region I, we obtain:
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(3.15)
u2(ξ2, η2) = −

√
(2η2 + 3M)

[
2(1− ξ2) + 3M

]
− ξ2 + η2 + 3M + 1,

ζ2(ξ2, η2) = u2(ξ2, η2) + ξ2,

v2(ξ2, η2) = 1−
√

2(1− ξ2) + 3M

2η2 + 3M
,(3.16)

ρ2(ξ2, η2) =

√
2(1 − ξ2) + 3M

2η2 + 3M
= 1− v2 (ξ2, η2).(3.17)

The relationship between the Eulerian variable ζ2 and the Lagrangian vari-
able ξ2 in region II has the form:

(3.18)
2(1 − ξ2) + 2M =

(η2 − ζ2 + 3M + 1)2

2η2 + 3M

or ζ2 = η2 + 3M + 1−
√
(2η2 + 3M )

[
2(1− ξ2 +M)

]
.

After substitution of relationship (3.18) into formulae (3.15)–(3.17), we ob-
tain:

u2(ζ2, η2) = ζ2 +
(η2 − ζ2 + 3M + 1)2

2(2η2 + 3M)
− 3

2
M − 1,(3.19)

v2(ζ2, η2) = 1 +
ζ2 − η2 − 3M − 1

2η2 + 3M
=

ζ2 + η2 − 1

2η2 + 3M
,(3.20)

ρ2(ζ2, η2) =
η2 − ζ2 + 3M + 1

2η2 + 3M
= 1− v2(ζ2, η2).(3.21)

The characteristics K0P0 and K0P1 are described by the following formulae:
• in the Lagrangian coordinates (ξ, η):

(3.22)

ξ02 = 1− η02,

ξ23 =
1

2

[
2 + 3M − (1 + 3M )2

2η23 + 3M

]
;

• in the Eulerian coordinates (ζ, η):

(3.23)
ζ02 = 1− η02,

ζ23 = η23.
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The values of the variables ξ2 and η2 are contained within the intervals:

(3.24)

1− η02 ≤ ξ2 ≤ 1, if 0 ≤ η02 ≤ 0.5,

1

2

[
2 + 3M − (1 + 3M )2

2η23 + 3M

]
≤ ξ2 ≤ 1, if 0.5 ≤ η23 ≤ 1 +

1

6M
.

Region III
From the solution of the Darboux boundary value problem in region III [16],

we obtain:

u3(ζ3, η3) = ζ3(η3)− ξ3,(3.25)

v3(ζ3, η3) =
4η3 + 3M

2η3(2η3 + 3M )
ζ3 −

3M + 2

2(2η3 + 3M )
,(3.26)

ρ3(ζ3, η3) =
3M

2η3(2η3 + 3M )
ζ3 +

3M + 2

2(2η3 + 3M )
.(3.27)

The equation of the trajectory of the particles of the DPs presented by the
Lagrangian coordinate ξ13(η13) in region III has the form:

(3.28) ζ (η3) =
1

3M

[
−
(
2 + 3M

)
η3 +

(
2η13 + 3M

)
√

η3
(
2η3 + 3M

)

η13
(
2η13 + 3M

)
]
,

where

(3.29) η13 =
1

4ξ13
.

The value of parameter η13 and the value of the suitable Lagrangian coordi-
nate ξ13 are contained within the intervals:

(3.30) 0.5 ≤ η13 < ∞, 0 ≤ ξ13 ≤ 0.5.

Analogous relationships have been obtained for the second part of region III,
namely:

(3.31) ζ3(η3) =
1

3M

[
−(2 + 3M)η3 + 2η23(3M + 1)

√
η3(2η3 + 3M )

η23(2η23 + 3M)

]
,

where

η23 =
1 + 6Mξ23

2(2 + 3M − 2ξ23)
,(3.32)

0.5 ≤ η23 ≤ 1 +
1

6M
, 0.5 ≤ ξ23 ≤ 1.(3.33)
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In this way, we obtain the algebraic relationships which characterize the
exact parameters of the expanding DPs in the initial period of launching the
metal plate in the OFS. By means of these expressions, it is possible to estimate
the degree of accuracy of the results obtained from the Gurney formula (1.1).

4. Quantitative analysis of the parameters of the OFS during
the launching of the metal plate

In order to quantitatively analyze the parameters of the considered sandwich,
we assumed explosive HMX. This explosive is characterized by the following
parameters:

pCJ = 42 GPa, ρ0 = ρe = 1891 kg/m3, p0 = 0.5pCJ = 21 GPa,

D = 9110 m/s,
√
2E = 2970 m/s,

√
6E = 5144 m/s, c0 = 5774 m/s, γ ≈ 3.

On the basis of the algebraic formulae which define the parameters of the
expanding DPs in regions I, II and III (Fig. 3), we performed calculations and
the obtained results are presented as graphs in the following figures.
Figure 4 shows the algebraic variations of the relative velocity v of the DPs

in the Lagrangian coordinate for the selected values of parameters η and M . As
the comparative background, the linear Gurney approximations of this velocity
are also presented in this figure. It can be noticed that the accuracy of this
approximation depends on time η and mass M . The difference between the
algebraic curve and the approximation line reaches several dozen percent.

Fig. 4. Variations of the relative velocity, v, of the DPs versus
Lagrangian coordinate, ξ, for selected values of η andM (on the

background linear Gurney approximation).



298 E. WŁODARCZYK, B. FIKUS

Figure 5 shows graphs of the density in the expanding DPs during the launch-
ing of the metal plate of the considered sandwich for selected values of η and
M . As can be seen, the Gurney approximation of this function (ρ = 1) at all
launching times largely differs from the exact algebraic results.

Fig. 5. Variation of the relative density, ρ, of the DPs versus
Lagrangian coordinate, ξ, for selected values of η and M .

Figure 6 represents the variations of the relative displacement and velocity
of the metal plate in terms of time in the initial period of its launching for se-

Fig. 6. Variation of the relative displacement and velocity of metal
plate versus relative time η, for selected values of M .
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lected values ofM . The horizontal lines mark the values of the relative velocities
estimated by means of the Gurney formula (1.1). The data depicted in Fig. 6
show that there are considerable differences between these velocities.

5. Final conclusions

• In this paper, the algebraic formulae to define the exact velocity of a metal
plate launched from an OFS have been derived. Furthermore, the distribu-
tions of the mechanical parameters of displacement, velocity and density
in the expanding DPs gases during the launching of the metal plate from
the OFS have been defined. Distributions of these mechanical properties
have also been described by algebraic formulae.

• It seems that distributions of the velocity and density in expanding DPs
during the metal plate launching are the linear functions of the Eulerian
coordinate, but contrarily, these parameters are represented by nonlinear
functions of the Lagrangian coordinate – inversely to Gurney’s assump-
tions.

• Gurney’s assumptions of the linear velocity profile and the constant density
of DPs during the entire period of the plate launching, significantly deviate
from conventional gas dynamics theory (see Fig. 4 and Fig. 5). These
assumptions introduce the largest error in configuration involving a free
explosive surface such as an OFS. The range of applicability of the Gurney
formula is restricted due to the above – mentioned simplifications in the
derivation.

• The algebraic formulae, listed in this paper, derived in Eulerian coordi-
nate on the basis of laws of conventional gas dynamics theory, seem to be
more precise than the Gurney formula and can be applied in engineering
calculations.

References

1. Walters W.P., Zukas J.A., Fundamentals of shaped charges, John Wiley and Sons,
New York – Chichester – Brisbane – Toronto – Singapore, 1989.

2. Gurney R.W., The initial velocities of fragments from bombs, shells and grenades, BRL
Report No 405, Aberdeen Providing Ground, pp. 1–11, 1943.

3. Gurney R.W., Fragmentation of bombs, shells and grenades, BRL Report 635, March
1947.

4. Henry J.G., The Gurney formula and related approximations for the high-explosive de-
ployment of fragments, Hughes Aircraft Company, Culver City, CA, Report No. PUB-189,
April (AD 813398), 1967.



300 E. WŁODARCZYK, B. FIKUS

5. Hirsch E., Improved Gurney formulas for exploding cylinders and spheres using hard core
approximation, Propellants, Explosives, Pyrotechnics, 11(3): 81–84, 1986.

6. Jones G.E., Kennedy J.E., Berthof L.D., Ballistics calculations of R.W. Gurney,
American Journal of Physics, 48(4): 264–269, 1980.

7. Kennedy J.E., Gurney energy of explosives: estimation of the velocity and impulse im-
parted to driven metal, Sandia National Laboratories, Report No. SC-RR-70-790, Decem-
ber 1970.

8. Włodarczyk E., On hydrodynamic stationary theory of jet formation, Journal of Tech-
nical Physics, 35(3): 241–252, 1994.

9. Włodarczyk E., The impact of direction and velocity of the detonation wave and the
liner apex angle on parameters of a shaped charge jet and slug as well as an explosively
formed penetrator, Journal of Technical Physics, 35(4): 393–413, 1994.

10. Włodarczyk E., Influence of casing and liner inertia of wedge cumulative war-head on
displacement velocity of their explosively driven elements, and on active mass of explosive,
Journal of Technical Physics, 43(1): 19–33, 2002.

11. Włodarczyk E., Fundamentals of explosion mechanics [in Polish], WN PWN, Warszawa,
1994.

12. Cook M.A., The science of high explosives, Reinhold Publ. Corp., London, 1958.

13. Ficket W., Davis W.C., Detonation, University of California Press, Berkeley, 1979.

14. Cheret R., Detonation of condensed explosives, Springer-Verlag, New York, 1993.

15. Włodarczyk E., The backward launching of solids by products of detonation, Journal of
Technical Physics, 41(2): 101–119, 2000.

16. Włodarczyk E., The closed form solution of the Darboux boundary value problem for
backward driving of solids by the high explosive, Journal of Technical Physics, 42(1): 5–21,
2001.

Received January 21, 2016; accepted version March 5, 2016.


