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In this part of the paper, applying expressions derived in Part I, the exemplary calculations
of some selected states of loss of stability during cold bending of thin-walled metal tubes at
bending machines are presented. The conditions of the dispersed and localised loss of stability
together with formation of the plane state of deformation (PSD) under the plane stress state
(PSS) and the cracking criterion based on the technological indexA5 as the criteria of instability
were assumed. The majority of calculations were performed for a generalised model of strain
and simplification of the 3rd type. It appears that they are two extreme cases: one provides
the greatest strains and greatest bending angles and the other provides the lowest strains and
lowest bending angles [1]. For simplifications of types 1 and 2, values of the bending angles are
included between these extreme values. The calculations were performed for the top points of
the elbow where strains are the greatest and the wall thickness is the smallest. The calculation
results were presented as suitable graphs being useful nomograms.

Key words: allowable strains and stresses, bending angles, neutral layer, wall thickness of
elbows.

1. Introduction

The second part of work makes a further development of the first part. First
computational values of equivalent strains depending on the rate of the harden-
ing coefficient n and depending on the rate of the normal anisotropy coefficient r
are presented. The calculations were performed for the case of formation of the
plane state of the deformation (PSD) in the conditions of the plane state of
stress (PSS). The formation of PSD in PSS conditions results from initiating
of located loss of the stability (e.g., in the form of the appearance of the local
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groove). Material of the pipe was assumed as rigid-plastic with the isotropic
hardening.
The increase of r causes that thinning of the wall of the bent pipe is smaller,

which means resistance to thinning; so materials with higher values of r coef-
ficient exhibit slightly better properties for bending. The increase of hardening
coefficient n improves significantly bending properties of material, since this
exponent is numerically equal to the value of uniform elongation in a test of
uniaxial stretching and is partly related to the texture and the grain size of
steel of a given sort.
The next part of the paper presents exemplary calculations of some selected

states of loss of stability during cold bending of thin-walled metal tubes at
bending machines. The conditions of the dissipated and localised loss of stabil-
ity together with formation of the plane state of deformation PSD under the
plane stress state PSS, and the cracking criterion based on the technological
index A5 (five fold sample) were assumed as the criteria of instability. The ma-
jority of calculations have been carried out for a generalised model of strain
and simplification of the 3rd type [1, 2]. It appears that they are two extreme
cases (the generalised one providing the greatest strains and bending angles,
and the strongest one providing the lowest strains and bending angles). For
simplifications of types 1 and 2, values of permissible strains and bending angles
are included between those extreme values. The calculations were realised for
the top points of the elbow, where strains are the greatest, and the wall thick-
ness is the smallest. The calculation results were presented as suitable graphs
being useful nomograms, too. The paper continues the author’s considerations
presented in [1].

2. Critical strains and stresses

Let us consider a case of formation of plane stress state under plane state of
deformation, see Eq. (3.16), Part I. Then

(2.1) ϕ(i)e = nz − ϕ0,

where we can formally write that ϕ(i)e ≡ ϕ′′′

(i)e and ϕ(i)e is the value of the substi-
tute strain corresponding to the loss of stability, z is the subtangent including
influence of the stress σp on the stability loss moment under PSS and in the
moment of formation of the plane state of deformations PSD [1, 3–6], so that

(2.2) z =
1 + r√
1 + 2r

.

This case of stability loss refers to thin-walled tubes because of the assumed
conditions resulting from the plane stress state.
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According to the assumed considerations related to tube bending process we
can assume that an allowable (admissible) value of the substitute strain ϕ(i)all,
corresponding to an unlocalised stability loss for the case of tube bending at the
bending machines, should be included into the following range:

(2.3)1 ϕ(i)a ≤ ϕ(i)all < ϕ(i)b1

or

(2.3)2 ϕ(i)a ≤ ϕ(i)all < ϕ′′′

(i)b2

and for the case of a localised stability loss:

(2.3)3 ϕ′′′

(i)b2 ≤ ϕ(i)all ≤ ϕ(i)b1

or

(2.3)4 ϕ(i)e ≤ ϕ(i)all ≤ ϕ(i)b1.

Taking into account Eqs. (3.1), Part I, and (2.1), (2.2), (2.3)2 for thin-walled
tubes, we obtain

(2.4) n− ϕ0 ≤ ϕ(i)all ≤
1 + r√
1 + 2r

n− ϕ0.

For isotropic materials we have r = 1, so

(2.5) n− ϕ0 ≤ ϕ(i)all ≤
2√
3
n− ϕ0.

Using equations obtained in works [1, 2, 7] for allowable values of bend-
ing angles αb, depending on admissible values of deformations intensity in the
stretched layers ϕ(i), we receive

(2.6) cos
(
k
αb all

2

)
=

2R + d1 − 2R exp
√

1.5ϕ2
(i) − (ϕ2

2 + ϕ2
3)

d1

=
2R+ d1 − 2R expϕ1

d1
,

(2.7) cos

(
k
α′′′

b all

2

)
=

2R + d′′′1 − 2R exp
√

1.5(ϕ′′′

(i))
2 − (ϕ′′′

3 )
2

dext

=
2R + d′′′1 − 2R expϕ′′′

1

dext
,
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where
αb all are allowable values of the bending angle counted appropriately from equa-

tions obtained for the general model of deformations cf. [1, 2, 7], when
the value of intensity of deformation ϕ(i) reaches permissible value ϕ(i)all

(Eqs. (3.1) and (3.2), Part I),
α′′′

b all are allowable values of the bending angle counted from the deformation
model of 3rd-type, when intensity value of the deformation ϕ′′′

(i) reaches the
allowable value ϕ′′′

(i)all, obtained from Eqs. (3.3)2 and (3.16), see Part I,

d1 and d′′′1 are current diameters in points of top stretched layers of the elbow
for appropriate generalised model of deformation and simplification of 3rd
order [7, 8].
In the considered case of estimation of admissible strains, stresses, bending

angles, or the wall thickness during cold bending of metallic tube at the bending
machines (with no effect of displacement of the neutral axis of plastic bending,
i.e., for y0 ≈ 0), inequalities (2.3)2, (2.4), and (2.5) have been applied. The
equations presented in papers [1, 7–9] resulting from the generalised model of
deformations and simplifications of type 3 can be used for analysis of the strain
quantity. Those relationships allow to describe initiation of the plane state of
deformation in the plane stress state. It has been shown that the method re-
sulting from the simplification of the 3rd type determines the most safe values
for admissible strains, stresses, bending angles, or wall thickness. It means that
for a given admissible value of the strain intensity ϕ(i)all in the bending zone,
admissible values of the bending angle are lower than those resulting from the
generalised model of deformations and simplification of type 2 and 3. Thus,
in considerations on the problem, a description resulting from simplification of
type 3 will be used as the most safe and corresponding to the formation of PSD
in PSS conditions.
Analysis of the problem for uniaxial tension of the outer layers of the bent

tube is widely known in the literature and here it is limited to a solution of one
simple example. Substituting (2.2) to (2.1), we obtain

(2.8) ϕ′′′

(i)cr =
1 + r√
1 + 2r

· n− ϕ0.

In the case of initiation of PSD during PSS, condition (2.8) is equal to
condition (3.3)2, see Part I.
From Eq. (2.8) we can calculate the value of ϕ′′′

(i)cr and then from Eq. (2.7)
we can determine the critical value of the bending angle α′′′

b cr, which corresponds
to the beginning of the stability loss (local initiation of PSD during PSS). It is
widely known that the top (centre) of the layers subjected to tension is the most
deformed in the bending zone (α = β = 0◦, see Fig. 2. Part I), so the beginning
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of the loss of stability should be expected there. Thus, the derived relationships
applied to the top point of the layers subjected to tension for λ1 = 1 can
be applied in the following way: the values of ϕ′′′

(i)cr are determined from the
expression (2.8) for a given material and next for the given parameters of the
bending process; the values of angle α′′′

cr are determined from Eq. (2.7).
Then Eqs. (2.1), see Part I, are transformed for simplification of the 3rd order

[1, 2, 7, 8], the condition of plastic incompressibility and the expression for the
strain intensity are used for derivation of suitable logarithmic components of
plastic strains ϕ′′′

1 , ϕ
′′′

3 , and thickness g
′′′

1 . The value of the equivalent (reduced)
critical plastic stress σps, corresponding to the strain (2.8), is determined from
the constitutive Eq. (2.3), see Part I, after substituting the strain value ϕ(i) =
ϕ′′′

(i)cr. Suitable stress components can be determined (see Fig. 1) for the point s
on the H-M-H ellipse of plasticity. According to theory of the associated laws of
plastic flow, that point determines initiation of PSD in PSS condition. The basic
set of quasi-linear partial differential equations of statics for the characteristics
under H-M-H yield condition of plasticity is parabolic type in that point [1, 7,
10–13]. Thus,

(2.9) σ′′′

1s =
1 + r√
1 + 2r

σ′′′

p , σ′′′

2s =
r√

1 + 2r
σ′′′

p .

From considerations concerning the stress state during the process of tube
bending it appears that in the top points of the cross section of the layers sub-
jected to tension (the points of intense contact of the bent tube with the mandrel
in the bending zone) there is a stress state included between the axis σ1 and
the point s on the ellipse of plasticity (see Fig. 1). For this range of the stress

Fig. 1. Stress condition arising at the H-M-H yield ellipsis
at the onset of instability.



336 Z. ŚLODERBACH

states, the set of differential partial equations of statics for the stress field char-
acteristics is of the hyperbolic type [1, 7, 10–13]. Occurrence of the stability loss
in dispersed and localised forms (especially as localised strains in the form of
slip lines) during tube bending for pipeline elbows causes a high acceleration of
degradation processes of creep, and next, failure during their operation. It re-
sults from the fact that in the points of the elbow where the localised strain
states occur during the manufacturing stage, the strain localisation processes
are intensified during operation. Faster continuation and development of strain
localisation cause crack of the elbow and failure.
When the stress states are above the point s (biaxial tension states, see

Fig. 1), then increments of the circumferential strain in the elongated layers will
be positive (dϕ2 > 0 or dε2 > 0), see [4], and the states of the localised stability
loss will be to the right from the point E, on the line EUC (see Fig. 3, Part I).
Such stress states and strain states occur during plastic expanding of tubes.
In next sections (Secs. 3 and 4) the calculations and analysis obtained results

were performed for a generalised model of strain and for simplification of the
3rd order [1, 7, 8]. They are two extreme cases (the most gentle one, where
the greatest strains and bending angles are admissible, and the most “sharp”
one, where the lowest strains and bending angles are possible, respectively), see
expressions (2.3)3, (2.6), and (2.7).

3. Results and discussion

In Figs. 2 and 3 the graphs representing computational values of substitute
deformations ϕ(i)c, see Eq. (3.16), Part I, depending on the rate of the hardening

Fig. 2. Admissible equivalent strains as a function of the normal anisotropy
index for selected values of the hardening exponent [1].
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Fig. 3. Admissible equivalent strain as a function of the normal anisotropy
index r for selected values of the hardening exponent [1].

coefficient n and depending on the rate of the normal anisotropy coefficient r are
presented. The calculations were performed for the case of formation of the plane
state of deformation in the conditions of the plane state of stress. Conditions
of the formation of PSD in PSS results from initiating of located loss of the
stability (e.g., in the form of the appearance of the local groove). Material of
the pipe was assumed as rigid-plastic with the isotropic hardening.
As it can be seen, the ϕ(i)c value significantly increases with the increase of

the hardening coefficient n and insignificantly increases with the increase of the
normal anisotropy coefficient r. From the technological point of view it means
that the increase of the hardening coefficient n has a positive effect on the
process of cold pipes bending when the value of admissible stresses is increased.
For a given process of pipe bending an allowable value of the angle of the bending
α′′′

b all is also increased.
The increase of r causes that thinning of the wall of the bent pipe is smaller,

which means resistance to thinning; so materials with higher values of r coeffi-
cient exhibit slightly better properties for bending.
The increase of the hardening coefficient n improves significantly bending

properties of material, since this exponent is numerically equal to the value of
uniform elongation in a test of uniaxial stretching and is partly related to the
texture and grain size of steel of a given sort [1, 3–5, 14, 15]. It follows that
the increase of a uniform elongation of material improves the conditions of cold
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bending of pipes, so it promotes the increase of acceptable strains and bending
angles.
Figure 4 presents a change of the wall thickness g′′′1 of the elbow (knee) of the

pipeline in its top (central) point of the elongated layers of the bending zones
depending on the value of the bending angle kαb, for the assumed technological-
material coefficient of correction of the strain distribution λ1 = 1, Part I, and
[1, 2, 7–9, 16]. The graphs were obtained for different bending radii R, included
into the interval R ∈ 〈(1 ÷ 5) × dext〉 and without including displacement of
the neutral axis of plastic bending (y0 = 0). For calculations, a standard tube
∅44.5× 4.5 mm, used for many calculations and tests was earlier applied [1, 2,
7–9, 16–19]. From the obtained graphs it appears that wall thickness decreases
as the bending angle kαb increases and the bending radius R decreases.

Fig. 4. Wall thickness at the apex point as a function of bending angle for selected values
of the bending radius [1].

Figure 5 shows a change of the plastic strain intensity ϕ′′′

(i) calculated in
the central (top) point of elongated layers of the bending zone, depending
on the bending angle kαb. The calculations were done for different bending
radii R included, as previously, in the interval R ∈ 〈(1 ÷ 5) × dext〉 for a tube
∅44.5× 4.5 mm, see [1, 2, 7–9, 16–19]. From Fig. 5 it appears that a value ϕ′′′

(i)
increases together with an increase of the bending angle kαb and decreases as the
bending radius R decreases. Thus, our previous expectations seem to be right.
When the bending radius R tends to infinity (straight tube), then ϕ′′′

(i) tends to
zero and as a consequence g1 tends to g0, so there is no physical bending. Then
αb = 0◦, because k > 0.
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Fig. 5. Equivalent strain value at the bend apex point as a function of bending angle
for selected values of the bending radius [1].

Figure 6 presents the results of calculations of logarithmic strain components
ϕ1, ϕ2, ϕ3 and the strain intensity ϕi ≡ ϕ(i), depending on the bending angle

Fig. 6. Strain and strain intensity components as functions of the bending angle,
where αg ≡ αb.
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(kαb) for the top point of the elbow (α = β = 0◦). Let us put the experimental
strains (for example, determined under uniaxial tension) on the Y -axis. Then we
are able to determine the value of the admissible bending angle after exceeding
of which technological values of permissible strains, for example Au or A5, or
the strains corresponding to the localised form of loss stability were exceeded.
Here Au and A5 mean the following: Au is the value of the uniform strain and
A5 is the strain at the failure of the specimen (five-fold sample) during a test of
uniaxial tension.
From the experimental data presented in [17] we have Au ≈ 0.173 for steel

St.35.8 according to DIN 17175. According to the graphs shown in Figs. 5 and 6,
it corresponds to the bending angle kαb ≈ 145◦. It means that after exceeding
the bending angle 145◦, for example for kαb = 180◦ in the external elongated
layers limited by the angle β(0◦ ≤ β ≤ 45◦) (see Fig. 2, Part I, and [7, 17,
19, 25]) there are the strains exceeding the value of the uniform strain Au. After
exceeding the value of Au, a phenomenon of the dispersed stability loss can
occur and next localisation of plastic strains can be observed, like in tests of
uniaxial and biaxial tension [3, 4, 6, 10, 12, 14, 15, 18, 20].
The wall thickness g1 in the top central points of the elbow in the elongated

layers, corresponding to the bending angle kαb ≈ 145◦ can be graphically de-
termined from Fig. 7 or analytically defined from Eqs. (1), see Part I, using the
condition of plastic incompressibility of the material (ϕ1 + ϕ2 + ϕ3 = 0). The
calculated and read out from Fig. 7 or Fig. 8 wall thickness is g1 ∼= 3.88 mm.

Fig. 7. Variation of the wall thickness at the apex point of the elongated area, where αg ≡ αb.
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Fig. 8. Variation of the wall thickness value at the bend apex versus bending angle
according to four computing methods, where αg ≡ αb.

Figure 8 presents the calculation results for changes of the wall thickness
(g1r, g′1r, g

′′

1r, g
′′′

1r) depending on the value of the bending angle kαb. The sub-
script r means calculations in measures of real strains (logarithmic strains).
The thickness is calculated in the top point of the elbow (α = β = 0◦) of the
elongated layers (λ1 = 1) for the bent tube ∅44.5× 4.5 mm and the bending
radius R = 80 mm, such that R ∼= 1.8 · dext. The tube was made of steel St 35.8
according to DIN 17175 [17].
Figure 9 shows the obtained results of calculations of logarithmic measures

of strain components and strains intensity (ϕ(i), ϕ′

(i), ϕ
′′′

(i)) depending on the
bending angle (kαb) calculated according to the equations for the general model
and the simplified models of the 1st and 3rd order, described in [2, 7, 8]. The
calculations were realised for the top point of the bent elbow in the bending zone,
being also the central point of the elbow (α = β = 0◦) in the elongated layers.
Only two extreme simplifications (1st and 3rd order) are considered, because
additional graphs for simplification of the 2nd order could make the figures low-
readable. Let us put admissible values of the experimental substitute strain on
the Y -axis, like in Fig. 5. Now we are able to determine an approximate value of
the admissible critical bending angle αbcr – at first, the coefficient k should be
determined. Exceeding that coefficient causes exceeding the admissible strains
A5 or Au under uniaxial tension for tube steels. Figure 6 shows ϕ(i) equal to
0.173; that value was determined for steel St 35.8 [17] during a test of simple
tension (according to the standard DIN 17175). Values of the bending angle read
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Fig. 9. Strain components and strain intensity versus the bending angle according to three
computing methods (αg ≡ αb).

out on the X-axis for suitable strain intensities (ϕi ≡ ϕ(i), ϕ′

i ≡ ϕ′

(i), and ϕ
′′′

i ≡
ϕ′′′

(i)), see Fig. 9, determined for three calculation methods (the exact method
and two simplified methods 1st and 3rd type) oscillate around the following
values of the bending angles αb cr ≈ 140◦ for k = 1, αb cr ≈ 57◦ for k = 2.5, and
αb cr ≈ 47◦ for k = 3, see [1, 2, 7].
From Fig. 8 it also results that application of simplified measures of the 1st,

2nd, and 3rd order, respectively, causes determination of a greater decrease of
the material thickness in the bending zone and greater strain and strain intensity
components as compared to the results obtained for the generalised model of
deformation. Thus, the simplified descriptions will determine lower (more safe)
values and safer limitations for the allowable bending angle αb all. When the
angle αb all is exceeded, we can observe effects connected with localisation of
plastic strains or another form of stability loss and cracking. The simplified
measures of deformations derived in [2, 8] can be also used, e.g., for practical
reasons, when the bending process causes a greater decrease of the wall thickness
in the elongated layers, greater components of the strains, and substitute strain
in the bending zone. Because of a simplified form of the expressions they can be
calculated with the use of calculator under real conditions (production, repair
in situ, at the object and other).
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4. Simple examples of calculations of critical states

Let us assume that the material of the bent tube has the dimensions: ∅44.5
× 4.5 mm, bending radius R = 80 mm (R ∼= 1.8 · dext), and is described by the
following material parameters: n ≈ 0.2; r ≈ 1.5; ϕ0 ≈ 0.016; D ≈ 550 MPa, and
Rm ≈ 420 MPa. These values can be related to the boiler steel K10 or St 35.8
according to DIN 17175.
All the examples are calculated according to the scheme shown in Fig. 10.

Fig. 10. Flow chart showing the computation stages.

Example 1. When the strain state expressed by Eq. (3.1), see Part I is
obtained, then we obtain that ϕ(i)a = 0.184. The allowable value of the bending
angle corresponding to the above value, read out from Fig. 6 is kαb

∼= 145◦. Thus,
αb all

∼= 145◦ for (k = 1), αb all
∼= 72.5◦ for (k = 2), αb all

∼= 58◦ for (k = 2.5), and
αb all

∼= 48.3◦ for (k = 3). The calculated values of wall thickness g1 and g2 for
(λ1 = λ2 = 1) are (g1 ∼= 3.88 mm, see Fig. 7) and g2 ∼= 5.66 mm [1, 7]. During
a test of simple tension, Franz [17] obtained the strain value equal to (Au =
0.180). The value ϕ1 all calculated from [Eq. (2.1), Part I] equals ϕ1 all

∼= 0.173



344 Z. ŚLODERBACH

and it is the same as that given in [17] for the case of uniform strains. From
the calculations and Figs. 5, 9 it appears that kα′′′

b ≈ 135◦. Thus for (k = 1),
kα′

b ≈ 142◦, kα′′

b ≈ 138◦ and kα′′′

b ≈ 135◦, therefore (kαb > kα′

b > kα′′

b > kα′′′

b ).
A value of the yield stress calculated according to Eq. (2.3), Part I, reaches the
value σpall

∼= 398.6 MPa.
An approximate position of the neutral layer of plastic bending (see Fig. 11)

corresponding to the considered case can be determined from Eq. (4.1), see [2,
7, 9]. Expression (4.1) is a generalisation of the expression presented in [21] for
zones of active bending. Thus

(4.1) y0 ∼= λ0
0.42

r̃

(
rint +

g0
2

)[
cos(kα) − cos(k

αb

2
)
]
and y0max = λ0

0.42

r̃
rm,

where λ0 is the technological-material correction coefficient of displacement of
the neutral layer of plastic bending [2, 7, 9, 16, 21], y0 = y0max when α = 0◦,
and kαb = 180◦.

Fig. 11. Schematic picture of cross-section of the elbow and its characteristic
parameters.

According to tests, it is possible to assume that λ0 ∈ 〈0; 1〉, r̃ is the relative
bending radius (R = r̃ × dext). Thus

(4.2) r̃ =
R

dext
, rm = rint +

g0
2
, R0 = R− y0 and

y0
rext

∼= sinβ0.

The maximum displacement of the neutral axis for free bending can be de-
termined with use of Eq. (4.1) for α = 0◦ and kαb = 180◦ and λ0 = 1. Assuming
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that in the considered case of not-free bending λ0 ≈ 0.5, after calculations we
obtain y0 ≈ 1.63 mm and y0max ≈ 2.33 mm.
The radius R0 defines a new (instantaneous for a given bending angle) po-

sition of the neutral layer of plastic bending for α = 0◦, then R0 = R0(α, αb).
Thus, R0 = R− y0 ∼= 78.37 mm.
When α = 0◦, kαb = 180◦, and λ0 = 0.5 in the case of not free bending, then

y0 = y0max. Thus
y0
dext

∼= 0.037 or
y0
dext

∼= 3.7%.

When y0 = y0max, then
y0max

dext
∼= 0.052 or

y0max

dext
∼= 5.2%.

Such a low value of y0 does not strongly influence the plastic strain distri-
bution. Moreover, the value of y0, assumed in this paper (λ0 ≈ 0.5) for not-free
bending and removed clearances between devices of the bending machine and
bent tube, especially in the layers subjected to compression, can be even lower
because of kinematically permissible displacement of the material particles up-
ward along the perimeter [2, 17, 21]. In the considered case of bending, it is
displacement downward in direction of the centre of the template rotation.

Example 2. When the strain state expressed by Eqs. (3.3)1 and (3.3)2,
Part I, is obtained, then we have ϕ(i)b1 ≈ 0.257 and ϕ′′′

(i)b2
∼= 0.234.

When the calculated allowable bending angle corresponding to a defined
value of ϕ(i)b1 is equal to kαball ≈ 180◦, see Fig. 6, it means that for the gener-
alised scheme of strain that form of stability loss can occur at the end of bending.
Thus, from numerical calculations according to Eqs. (2.1) and (2.2), Part I, for
kαb = 180◦ or from Figs. 7 and 8 we obtain g1min

∼= 3.68 mm.
The numerically calculated g2max for the layers subjected to compression for

λ2 = 1 is g2max
∼= 6.0 mm, and for λ2 = 0.5, g2 ∼= 5.0 mm. From Fig. 8 we

obtain kα′′′

b ≈ 158◦. Thus, it appears that kαb > kα′′′

b . It means that for the
strain scheme of the 3rd type such a stability loss occurs, and this estimation
in this sense is safer in comparison with the generalised model of strain. The
calculated value ϕ′′′

1 all ≈ 0.203 was obtained, see Fig. 9.
The following values of the plasticising stress and the principal stress com-

ponents were obtained from Eqs. (2.3) and (3.11), Part I: σp ∼= 424.2 MPa and
σ′′′

p s
∼= 417 MPa, and σ1 ≈ 524.4 MPa, σ2 ≈ 251.8 MPa, and σ′′′

1
∼= 521 MPa,

σ′′′

2
∼= 313 MPa.
When the bending state for the strain value equal to ϕ(i)b1 ≈ 0.257, resulting

from a general scheme of strain is reached, then y0 = y0max ≈ 2.33 mm and
R0 = R0min. Like in Example 1, the following values were obtained: y0max/dext ≈
0.052 and y0max/dext ≈ 5.2% and R0min ≈ 77.67 mm.
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Example 3. When the condition (2.8) or (3.3)2, Part I, is reached, then in
the given bending process a state connected with occurrence of PSD during PSS
can appear in the top points of the elongated layers of the bending zone. The
quantities characterising that process reach their allowable values after exceeding
of which localisation of plastic deformation can occur in PSS condition and, as
a consequence, a local furrow can be observed.
When

(4.3) ϕ′′′

(i)b = ϕ′′′

(i)all, then α′′′

b = α′′′

ball,

then, according to Eq. (2.8) or Eqs. (3.3)2 or (3.16) and (3.17), Part I, we
obtain ϕ′′′

(i)all = 0.234. Thus, it appears that the condition (2.8) is the same as
the condition (3.3)2 in Part I. The values g′′′1 and α′′′

b obtained from Figs. 8
and 9 reach the following values: α′′′

b all
∼= 158◦ for k = 1, α′′′

b all
∼= 79◦, for k = 2,

α′′′

b all
∼= 63◦, for k = 2.5, and α′′′

b all
∼= 53◦, for k = 3, and g′′′1 all

∼= 3.66 mm. Also
from Fig. 8 we obtain the value of ϕ′′′

1 all
∼= 0.203.

The plasticising stress calculated according to Eq. (2.3) reaches the value
σ′′′

ps
∼= 417MPa and the components of the plane stress state calculated according

to Eqs. (2.9) are σ′′′

1s
∼= 521 MPa and σ′′′

2s
∼= 313 MPa. For a body of normal

anisotropy (r 6= 1 we have, that

(4.4) σ′′′

1s 6= 2σ′′′

2s when r 6= 1.

Now an approximate position of the neutral layer for the considered state
determined from Eq. (4.1) is y′′′0 ≈ 1.89 mm. Since y′′′0 ∼= R−R′′′

0 , so the radius
R′′′

0 defining a new position of the neutral layer for the angle α = 0◦ is determined
from the following expression:

(4.5) R′′′

0 = R− y′′′0 .

Thus, R′′′

0
∼= 78.11 mm and

y′′′0
dext

∼= 0.042 or
y′′′0
dext

∼= 4.2%.

When kαb = 180◦, then y′′′0 = y′′′0max and then

y′′′0max

dext
∼= 0.052 or

y′′′0max

dext
∼= 5.2%.

Example 4. The technological coefficient A5 from the tables for tube steel
K10 is A5

∼= 0.250. The logarithmic longitudinal strain corresponding to this
critical value and calculated from the relation ϕ1 cr = ϕ′′′

1 cr = ln(1 + A5) is
ϕ1 cr = ϕ′′′

1 cr ≈ 0.223.
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The critical bending angles corresponding to that state determined from
Figs. 6 and 9 reach the values kαb ≈ 176◦ and kα′′′

b cr ≈ 168◦. It means that
the cracking (fracture) moment calculated according to that criterion (for strain
scheme of 3rd type) will occur later than the moments of occurrence of the
dissipated and localised stability loss calculated according to relationships (3.1)
and (3.3)2, Part I, or (2.8) in Part II, for boiler steel K10 [1, 2, 7] or St 35.8
according to DIN 17175 [17] and normal anisotropy coefficient r = 1.5. This
is due to the quantities (ϕ1 all from Example 1, have the value almost equal to
ϕ1 cr) and (ϕ′′′

1 all from Examples 2 and 3, have lower values than ϕ′′′

1 cr). Thus,
when (ϕ1 all ≈ ϕ1 cr) and (ϕ′′′

1 all < ϕ′′′

1 cr), then (αb all ≈ αb cr) and (α′′′

b all < α′′′

b cr).
The critical value of the strain intensity from Fig. 8, corresponding to the value
A5 is ϕ′′′

(i)cr ≈ 0.258. The critical value of the strain intensity determined from
Figs. 6 or 9 for that state is ϕ(i)cr ≈ 0.252.

5. Final remarks and conclusions

1. The condition of possible initiation of the stability loss in the localised
form (initiation of the biaxial (plane) strain state) in the plane stress state
condition, determines greater admissible strain intensities than those for
the case of stability loss in the dispersed form (maximum of the drawing
force) and lower ones for the localised stability loss d(σp · g) = 0, during
biaxial tension Eqs. (3.2)1 and (3.3)1, Part I. In the case of dispersed
stability loss during uniaxial uniform tension (see [2–5, 14, 18, 20]), an
admissible value of strain intensity is comparable with the value of the
coefficient of metal plastic hardening.
A new element of this paper is the extension of the criterion of strain
localisation (formulated byMarciniak [4]) for sheets, for the case of tube
bending. In the case of a generalised scheme of strain and simplification of
the 1st order, such an extended criterion (with and without including the
effect of influence of the neutral axis displacement of plastic bending y0)
depends on the geometrical dimensions of the bent tube (approximately
on its wall thickness s∗).

2. In the case of the strain model resulting from the simplifications of the
2nd and 3rd order we can state that in the external top point of the bent
elbow, where there is the plane stress state, the condition d(σp · g) = 0
corresponds to the parabolic point s at the H-M-H ellipse of plasticity,
where (dϕ2 = 0). Physically it means a local initiation of PSD.

3. The tube bending process described by a generalised strain scheme (in-
cluding influence of displacement of the neutral axis y0 of plastic bending
on the plastic strain state) presented in [2, 7, 9, 16] and suitable simplified
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methods considered in this papers, means that displacement of the neu-
tral layer of the plastic bending proceeds downwards (in the direction of
the layers subjected to compression, see Fig. 11) and it increases as the
bending angle increases. In the considered examples, the value of this dis-
placement for the top points of the elongated layers (see Examples 1, 3)
is ∼(1÷2 mm). This value is proportionally comparable (near twice as
big) to the value of the decrease of the wall thickness for these points of
elongated layers, see Figs. 7 and 8.

4. We can formulate practical recommendations resulting from the calcu-
lations that the elbows of the pipelines in pressure devices working at
elevated and high temperatures should be made for bending angles which
do not exceed the obtained values defined in Examples 1–4. Exceeding the
allowable values of the bending angles (also admissible strains) could cause
reduction of the time of their operation (life time), especially for elbows
working at elevated and high temperatures. Occurrence of localised strains
during tube bending for elbows of the pipelines causes accelerated degra-
dation processes of creep (because in such places those processes could
concentrate) and lead to occurrence of cracks and dangerous failures, see
[1, 2, 7, 13, 22–28]. Let us note that the analytical expressions for princi-
pal components of the strain state derived in [2, 7–9, 16, 19] can help in
a future analysis and evaluation of tube usability for bending with the use
of the methods of defining the curves of limit strains, like in the case of
evaluation of sheet drawability [3–6, 14, 18, 20, 29–31].

5. During hot tube bending or with preheating, it is necessary to consider
another form of the constitutive equation (not Eq. (2.3), Part I), in which
material parameters will be dependent on temperature [29]. For example
for the majority of metallic materials the coefficient of metal plastic hard-
ening n decreases as the temperature increases [4, 5, 12, 29]. The terms
of loss of stability should be also considered. On the other hand, softer
and more plastic material could be characterised by greater values of per-
missible and critical strains. At suitably high temperatures it is assumed
that the strength limit is almost the same as the yield point (no hardening
effect) [12, 19].
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