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This paper deals with frequency analysis of a circular plate supported on a rigid concentric
ring with translational restrained boundary. Natural frequencies of such a circular plate are
computed for different sets of elastic translational restraints, and for various values of the radius
of the internal ring support. Results for different modes of plate vibrations are computed and
presented in a tabular form suitable for use in design. The effect of plate boundary conditions
such as translational restraints and the radius of concentric ring support on natural frequencies
of the circular plate are studied. Exact frequency values presented in this paper are expected
to serve as benchmark solutions for assessing the accuracy of other numerical methods being
used in the literature.
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1. Introduction

Vibration analysis of plates of all shapes and sizes is a challenging sub-
ject of research and many classical problems were studied using both exact [1]
and approximate methods such as finite element method [2], boundary element
method [3] and differential quadrature method. A thorough review of those
studies is not undertaken in this paper. However, it is worth to emphasize that
with the continuous efforts of researchers such as Katsikadelis [4–8] and others
such as Gospodinov and Liutskanov [9] and Guminiak [10] fruitful advances
have been made in effectively applying the boundary element method to plate
vibration problems.
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Continuous circular plates have applications in various fields of engineering.
Studies on the frequency analysis of circular plates with various edge condi-
tions and internal strengthening have been extensively reviewed in the litera-
ture [11–21]. Bodine [22] studied axisymmetric free vibrations of the circular
plate with classical boundary conditions, and Laura et al. [23] presented more
accurate results for the case of axi-symmetric mode of vibration. However, the
fundamental frequency under investigation does not need to be axisymmetric
all the time. Bodine [24] studied the case of a circular plate supported on
concentric ring-type support, and observed a change of the fundamental mode
from symmetric to asymmetric in certain cases where the radius of the sup-
port approaches smaller values.Wang [19, 20] carried out frequency analysis of
a free edge circular plate supported on a ring and showed that the fundamen-
tal frequency corresponds to an asymmetric mode as the concentric ring radius
becomes lower.
It is now a widely accepted fact that the condition of plates on a periphery

often tends to be a part of the classical boundary conditions and may corre-
spond more closely to some form of elastic restraints, i.e., rotational and trans-
lational restraints. Free vibration analysis of circular plates with such boundary
conditions was already discussed in [1–16, 21]. However, to the authors’ best
knowledge there is no other research available that would address the case of
a circular plate supported by a rigid ring-type structure having translational re-
straints along the boundary of the plate. The main aim of this paper, therefore,
is to study the effect of the radius of the rigid ring support of a thin circu-
lar plate being translationally restrained along the outer edge using the exact
method of solving the problem. The natural frequencies of the circular plate
for varying values of radius of rigid ring support and non-dimensional transla-
tional restraint parameters are computed and presented in the form suitable for
use in the design of such circular plates, which has wider applications in the
engineering industry.

2. Definition and formulation of the problem

The plate under consideration has the radius R, Poisson’s ratio v, density
ρ, thickness h, and elastic constant E. Figure 1 presents the plate, which has
an outer boundary translational restrained edge (at radius R) and rigid ring
support (at radius bR).

b ≤ r ≤ 1 (outer zone) is denoted by subscript I and 0 ≤ r ≤ b (inner zone)
is denoted by subscript II respectively. All the lengths are normalized by R, i.e.,
the radius of the outer zone is 1 and that of the inner zone is b. In circular plate
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Fig. 1. Internal concentric rigid ring-supported circular plate
with a translational restrained edge.

supported (CPT) [1], a fourth-order differential equation describes free flexural
vibrations of the circular uniform plate as follows:

(2.1) D · ∇4w + ρ · h · ∂
2w

∂t2
= 0,

whereD represents the flexural rigidity. The general form of lateral displacement
of vibration of the plate can be expressed as w = u(r) cos(nθ)eiωt, where (r, θ)
are polar coordinates, w is transverse displacement, n is the number of modal
diameters, ω is the frequency, t is time, and k = R(ρω2/D)1/4 is the square root
of non-dimensional frequency [3]. Here, function u(r) is a linear combination of
Bessel functions Jn(kr), Yn(kr), In(kr), and Kn(kr), where Jn(kr) is the Bessel
function of the first kind, Yn(kr) is the Bessel function of the second kind, In(kr)
is the modified Bessel function of the first kind and Kn(kr) is the modified Bessel
function of the second kind. General solutions for two zones can be expressed as

uI,rr(r) = C1Jn(kr) + C2Yn(kr) + C3In(kr) + C4Kn(kr),(2.2)

uII,rr(r) = C5Jn(kr) + C6In(kr).(2.3)

Boundary conditions at the edge of the plate can be formulated as follows:

Mr(r, θ) = 0,(2.4)

Vr(r, θ) = −KT1wI(r, θ).(2.5)
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Here, bending and shear force can be expressed as

Mr(r, θ) =−D

R

[
∂2wI(r, θ)

∂r2
+ ν

(
1

r

∂wI(r, θ)

∂r
+

1

r2
∂2wI(r, θ)

∂θ2

)]
,(2.6)

Vr(r, θ) =− D

R3

[
∂

∂r
∇2wI(r, θ)+(1−ν)

1

r

∂

∂θ

(
1

r

∂2wI(r, θ)

∂r∂θ
− 1

r2
∂wI(r, θ)

∂θ

)]
.(2.7)

From Eqs. (2.4), (2.5), (2.6) and, (2.7) we obtain the following:

[
∂2wI(r, θ)

∂r2
+ ν

(
1

r

∂wI(r, θ)

∂r
+

1

r2
∂2wI(r, θ)

∂θ2

)]
=0,(2.8)

[
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∇2wI(r, θ)+(1−ν)

1
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∂

∂θ

(
1
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∂2wI(r, θ)

∂r∂θ
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∂wI(r, θ)

∂θ

)]
=T11wI(r, θ).(2.9)

Equations (2.8) and (2.9) can be written as

u′′I (r) + ν
[
u′I(r)− n2uI(r)

]
= 0,(2.10)

u′′′I (r) + u′′I (r)−
[
1 + n2(2− ν)

]
u′I(r) + n2(3− ν)uI(r) = −T11uI(r).(2.11)

The boundary at the edge (at r = 1) is as follows:

u′′I (1) + ν
[
u′I(1)− n2uI(1)

]
= 0,(2.12)

u′′′I (1) + u′′I (1)−
[
1 + n2(2− ν)

]
u′I(1) + n2(3− ν)uI(1) = −T11uI(1),(2.13)

where T11 = KT1R
3

D is normalized constant KT1 of the translational spring at
the outer edge.
The continuity requirement at the ring support can be expressed as

uI(b) = 0,(2.14)

uII(b) = 0,(2.15)

u′I(b) = u′II(b),(2.16)

u′′I (b) = u′′II(b).(2.17)

Next, non-trivial solutions to Eqs. (2.12)–(2.17) are sought. From Eqs. (2.1),
(2.2), (2.12)–(2.17) we obtain the following:
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(2.18)
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C4 = 0,

Jn(kb)C1 + Yn(kb)C2 + In(kb)C3 +Kn(kb)C4 = 0,(2.20)

Jn(kb)C5 + In(kb)C6 = 0,(2.21)
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(2.23)
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where
P1 = Jn−1(k)− Jn+1(k); P2 = Jn−2(k) + Jn+2(k);

P3 = Jn−3(k)− Jn+3(k); Q1 = Yn−1(k)− Yn+1(k);

Q2 = Yn−2(k) + Yn+2(k); Q3 = Yn−3(k)− Yn+3(k);

R1 = In−1(k) + In+1(k); R2 = In−2(k) + In+2(k);

R3 = In−3(k) + In+3(k); S1 = Kn−1(k) +Kn+1(k);

S2 = Kn−2(k) +Kn+2(k); S3 = Kn−3(k) +Kn+3(k);

P ′

1 = Jn−1(kb)− Jn+1(kb); P ′

2 = Jn−2(kb) + Jn+2(kb);

Q′

1 = Yn−1(kb)− Yn+1(kb); Q′

2 = Yn−2(kb) + Yn+2(kb);

R′

1 = In−1(kb) + In+1(kb); R′

2 = In−2(kb) + In+2(kb);

S′

1 = Kn−1(kb) +Kn+1(kb); S′

2 = Kn−2(kb) +Kn+2(kb).

3. Results and discussions

Poisson’s ratio used in our study is 0.3. Given the set of n, v, T11 and b, the
above mentioned equations are solved to obtain an exact characteristic frequency
equation by suitably eliminating the coefficients C1, C2, C3, C4, C5 and C6. The
frequency parameter k can be determined from characteristic equation.
The fundamental frequency for n = 0 (axisymmetric) and n = 1 (asymmet-

ric) modes for different sets of translational restraints (T11 = 5, 20, 50, 100,
500, 1000 and 1016) are computed. Plate vibrations for the first three modes are
obtained and presented in Figs. 2–9. Figure 2 represents, the curve that is com-
posed of two segments for a given T11 = 2.5 due to vibration mode switching.
For lower values of b, fundamental frequency is corresponding to asymmetric
n = 1 mode. This mode is represented by the dotted line shown in Fig. 2, where
fundamental frequency decreases as b decreases. For higher values of b, funda-
mental frequency is corresponding to n = 0 mode. This mode is represented by
the continuous line shown in Fig. 2, where fundamental frequency increases as
b decreases up to a peak point that corresponds to the maximum frequency and
thereafter decreases as b decreases, as shown in Fig. 2.
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Fig. 2. Frequency of a circular plate and
concentric rigid support radius b

for T11 = 2.5.

Fig. 3. Fundamental frequency of a circular
plate and concentric rigid support radius b

for T11 = 5.

Fig. 4. Fundamental frequency of a circular
plate and concentric rigid support radius b

for T11 = 20.

Fig. 5. Fundamental frequency of a circular
plate and concentric rigid support radius b

for T11 = 50.

Fig. 6. Fundamental frequency of a circular
plate and concentric rigid support radius b

for T11 = 100.

Fig. 7. Fundamental frequency of a circular
plate and concentric rigid support radius b

for T11 = 500.
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Fig. 8. Fundamental frequency of a circular
plate and concentric rigid support radius b

for T11 = 103.

Fig. 9. Fundamental frequency of a circular
plate and concentric rigid support radius b

for T11 = 1016.

Figure 2 represents mode switching (cross-over radius) from asymmetric to
axi-symmetric mode, in this case b = 0.195325. Fundamental frequency is gov-
erned by n = 1 mode when b ≤ 0.195325, which is shown by the dotted line
in Fig. 2. When b increases beyond 0.195325, the n = 0 mode gives correct
fundamental frequency as shown by the continuous lines in Fig. 2. Optimal
locations (concentric ring support and subsequent fundamental frequency) are
b = 0.70238 and k = 3.07535 respectively, which are equal to nodal radius of
axisymmetric mode and frequency.
Similarly, it can be observed in Figs. 3–9, for the given set of translational

restraints (T11 = 5, 20, 50, 100, 500, 1000 and 1016), that the curve is composed
of two segments due to vibration mode switch. For lower values of b, fundamen-
tal frequency is corresponding to asymmetric mode. This mode is represented
by the dotted line shown in Figs. 3–9, where fundamental frequency decreases
as b decreases. For higher values of b, fundamental frequency is corresponding
to axisymmetric mode. This mode is represented by the continuous line shown
in Figs. 3–9, where fundamental frequency increases as b decreases up to a peak
point which corresponds to the maximum frequency and thereafter decreases
as b decreases, as shown in Figs. 3–9. The cross-over radius bcor and the cor-
responding frequency parameters kcor are computed and presented in Table 1.

Table 1. The cross-over radius bcor and the corresponding frequency
parameters kcor.

T11 2.5 5 20 50 100 500 1000 1016

bcor 0.19532 0.17964 0.08801 0.04724 0.02616 0.01072 0.008642 0.00712

kcor 2.33696 2.51871 3.05530 3.45200 3.64852 3.81890 3.840800 3.86051
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In addition, optimal locations (concentric ring support bopt and subsequent fun-
damental frequency kopt) are obtained and presented in Table 2.

Table 2. Optimal locations (ring support bopt and subsequent frequency kopt).

T11 2.5 5 20 50 100 500 1000 1016

bopt 0.70238 0.59948 0.60000 0.50000 0.5000 0.50000 0.40000 0.40000

kopt 3.07535 3.17442 3.67786 4.22808 4.7004 5.18757 5.27143 5.36056

The switching of mode changes (decreases) from 0.19532 to 0.00712 as T11

varies from 2.5 to 1016. The optimal location varies (decreases) from 0.70238
for T11 = 2.5 to 0.4 for T11 = 1016. The fundamental frequency increases from
3.07535 to 5.36056 at the respective optimal locations. Frequency values for
n = 0 mode agree with that of Laura et al. [2]. Table 3 presents the exact
fundamental frequency for a circular plate with a free boundary (by setting
T11 → 0 in the present problem), in agreement with that found by Wang [15].

Table 3. Comparison of fundamental frequencies for v = 0.3 with the
ones obtained by Wang [15], for free edge.

Ring support radius, b Wang [15] Present

0.00 0.000 0.00000

0.02 1.501 1.50077

0.05 1.634 1.63422

0.10 1.789 1.78911

0.15 1.922 1.92226

0.20 2.051 2.05103

4. Conclusions

Fundamental frequency of a concentric ring-supported circular plate with
a translational restrained boundary was studied in this work. In addition, fre-
quencies were presented for different translational restraints T11 at the bound-
ary, which simulate a free boundary when T11 → 0. A fundamental frequency
mode switching (from n = 1 to n = 0) was observed at a specific radius of the
ring. This mode switch was computed. The optimal solutions (optimum inter-
nal ring support and the corresponding fundamental frequency) were computed.
The obtained results are a closed form solution. Hence, the results can serve as
a benchmark solution. These results can be useful in the design of support struc-
tures.
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