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Abstract

Examining torsion in functionally graded materials (FGMs) is crucial because their
properties vary spatially. FGMs with continuously graded architectures provide a robust
basis for investigating mechanical behavior. Current understanding of torsional response
draws on analytical, numerical, and experimental approaches. This review synthesizes
how material gradation influences stress distribution, stiffness, and failure modes, and
compares advances in FGM torsion across diverse models and geometries. The theoreti-
cal background is framed by classical torsion theories, including Saint-Venant, Prandtl’s
membrane analogy, and Vlasov formulations. We further discuss modeling with isopara-
metric finite elements and summarize established homogenization schemes for FGMs. A
tabulated overview of torsion-related results is also provided. The novelty of this review
lies in its exclusive focus on torsion in FGMs, the systematic tabulation of prior contribu-
tions, and a coherent exposition of homogenization models and torsion theories tailored
to FGM structures. To our knowledge, this is among the first reviews to focus specifically
on torsion of FGM structures, distinguishing it from prior overviews that address torsion
only briefly. Methodologically, we conduct a structured scoping review that screens peer-
reviewed sources, classifies studies by geometry, torsion theory, homogenization scheme,
and numerical strategy, and synthesizes observed trends. Finally, we present concise
conclusions and future research directions. This review covers analytical, numerical, and
experimental studies of torsion in FGMs, identified via a structured Google Scholar search
and prioritized by citation impact and relevance.

Keywords: torsion; FGM structures; torsional stiffness; overview.

1 Introduction

The concept of functionally graded materials (FGMs) was developed in Japan in the mid-
1980s [1]. The established idea of materials providing a high through-thickness thermal barrier
was crucial for space shuttle construction; Japanese engineers and scientists proposed function-
ally graded variations in thermal coefficients [2]. Since then, the FGM concept has advanced
steadily. The literature on bending, tension, and compression is relatively extensive, whereas
torsion remains comparatively underexplored. The spatial variation of graded structure in such
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Fig. 1. Example of FGM structure.

materials underpins their usefulness in many automotive, aerospace, and biomedical applica-
tions. See Fig. 1, which presents an example of property gradation in the x- and y- directions.

One of the most important aspects is the behavior of such materials under torsional loads.
A thorough exploration of the FGM torsion problem may yield substantial improvements and
enable greater use of FGM layers in the design of parts that transmit significant twisting
moments. These may include structural elements such as support beams with various cross-
sectional areas, machine shafts, or even aircraft wings. Furthermore, the development of precise
numerical torsion models could reduce design costs and time, thereby encouraging broader
adoption of FGM structures in place of conventional materials. Therefore, a substantial task is
to consider existing torsion theories and reflect on their potential improvements.
Valuable issues related to torsion in FGM structures have been presented in many articles.

An analysis of the available literature shows that most torsion cases are approximated as
linear elastic composites, often treated as isotropic models. Many of these works are based on
anisotropic elasticity models developed by Lekhnitskii [3]. Horgan and Chan [4] investigated
the influence of material inhomogeneity on the torsional behavior of linear elastic isotropic
rods. They extended the works of Rooney et al. [5] and Lekhnitskii [3] by formulating the shear
modulus as a function of the cross-sectional position. Batra [6] solved the torsion problem
for an FGM cylinder in compressible and incompressible linear elastic materials with spatially
varying moduli only in the axial direction. Arghavan and Hematiyan [7] formulated numerical
models of FGM hollow tubes with arbitrary non-circular shapes. In another study, Horgan [8]
extended the notation introduced by Chen and Wai [9], deriving unified formulas for the absence
of warping effects in rods with elliptical cross sections. Barretta and Luciano [10] demonstrated
a novel analogy between the Kirchhoff plate problem and the Saint-Venant torsion problem.
In recent years, numerous papers have examined the influence of torsion on FGM nanotubes

and nanobars. Li and Hu [11] analyzed the behavior of 2D FGM microtubes under torsion
using the modified couple-stress theory. Barretta et al. [12] investigated the torsion of FGM
nanobeams based on Eringen’s nonlocal elasticity. Moreover, many recent studies employ the
Saint-Venant torsion theory, as evidenced by works of Omid and Lashkarbolok [13] and Kutlu et
al. [14]. The number of studies on beams with circular and square cross sections is substantial,
whereas cases involving shafts with triangular, regular polygonal, and other non-circular cross
sections are less frequent. The results of Akinlabi et al. [15] on torsion in triangular cross
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sections indicate clear room for expansion of this topic.
Furthermore, many investigations rely on finite element methods. Ganczarski, Szubar-

towski, and Kumor [16] offered a different perspective by solving torsion for Al–Ti FGM non-
circular shafts using the finite difference method. This work highlights significant potential
for future research employing methods other than the finite element method. In addition to
aerospace and automotive applications, the torsion and shear-stress behavior of FGM struc-
tures is also relevant to the medical and energy sectors. Consequently, research in this area can
support the design of innovative components across these industries.
Considering the current advances in the torsional behavior of FG materials, we would like

to highlight several of the most important findings from studies conducted in recent years. The
work of Hao at al.[100] analyzes bursting oscillations arising from bending–torsion coupling in
cantilevered FGM conical sandwich panels driven by a static preload and slow in-plane harmonic
forcing, and demonstrates with a nonautonomous, temperature-graded model that the onset
is governed by symmetry-breaking pitchfork bifurcations. In turn, subsequent studies address
the torsional behavior of nanotubes, nanorods, and microtubes. Using modified couple stress
theory with radial, axial gradation, the [101] derives, numerically solves, and validates torsion
equations for bi-directional FG microtubes, quantifying how phase profile and geometry control
twist and shear under distributed torque.
In turn, Civalek at al.[102] present an exact nonlocal-elasticity solution for the torsional

free vibration of restrained FGM nanotubes—modeling end restraints with torsional springs,
deriving a characteristic matrix for natural frequencies, validating against prior results, and
quantifying the effects of the FG index and length scale. Shakhlaviet et al. [103] study von
Kármán nonlinear torsional vibrations of FGM carbon nanotubes via nonlocal elasticity, deriv-
ing Hamiltonian equations, computing clamped–clamped free natural frequencies with multiple
scales, and quantifying FG index, size, amplitude, and mode effects for design. Another work
by Beni [104] examines the size-dependent, coupled electromechanical torsional behavior of
porous, functionally graded flexoelectric micro, nanotubes. Barati and Norouzi [105] presents
a nonlocal model for the static torsion of bi-directional FG microtubes under a longitudinal
magnetic field—deriving the governing equation via minimum potential energy, validating GDQ
against a Galerkin solution, and showing that torsional angle depends on the nonlocal param-
eter. Finally, Zarezadeh et al. [106] develop a nonlocal elasticity model for an FG nanorod on
a torsional foundation under an axial magnetic field deriving the Navier equations and Hamil-
ton’s principle, solving them with GDQM, and showing that size effects through the nonlocal
length scale soften the response and reduce the natural frequencies.
Taking the above into consideration, issues related to the torsion problem, existing torsion

theories, and methods of torsion modeling will be discussed and compared, and a critical
perspective on the topic will be presented.

2. FGM Torsion Problem

Torsional behavior of FGM structures is crucial for understanding and for designing proper
and effective elements. The use of FG materials can provide comprehensiveness and a more
favorable stress gradient, which may result in better-designed components. Torsion of highly
anisotropic or orthotropic materials differs markedly from that of isotropic structures. Non-
homogeneity, and thus variation of properties in all directions, makes the modeling process
significantly more difficult. Another important problem is the definition of the graded compo-
sition. The most popular homogenization methods are based on linear approximations of the
modulus of elasticity and the Poisson ratio. For torsion of FG materials, it is possible to obtain
the Kirchhoff modulus through homogenization, as shown by Reuss, Voigt, Hashin–Strikman,
and Mori–Tanaka in their works. Isotropic torsion is much easier to analyze. The distribution
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of shear stresses is relatively straightforward for shafts with isotropic and homogeneous mi-
crostructure. For a circular shaft, shear stresses are distributed linearly across the cross section
and are an increasing function of the radius. This is not obvious for twisting shafts with a
graded structure, since differences in elastic moduli, and consequently various Kirchhoff mod-
uli, lead to a significantly different distribution of shear stresses across the section, see Fig. 2.

Fig. 2. Shear stress distribution in isotropic round shaft and FGM shaft with metal core and ceramic
inner surface, after Duan et al. [17].

The next issue of concern is the angle of twist. For an isotropic shaft with uniform torsional
stiffness, the angle of twist is identical at every point on the surface of a circular bar. By
contrast, for a functionally graded structure—even under linear homogenization the torsional
stiffness of each layer differs, which in turn affects the total angle of twist of a shaft subjected
to a torque M , see Fig. 3.

Fig. 3. Angle of twist in isotropic shaft.

Therefore, when a round shaft is considered, the distribution of shear stresses and the angle
of twist present a substantial challenge. An even greater problem arises for noncircular cross
sections such as rectangular, elliptical, polygonal, or asymmetrical shapes, where, even with
isotropic and homogeneous materials, obtaining accurate calculations and distributions of shear
stresses and angles of twist requires multiple approximations and experimental methods. The
first assumptions regarding torsion are based on Prandtl’s membrane analogy. The membrane
analogy is used to visualize the Prandtl stress function for any contour of a twisted shaft’s
cross section. The values of the Prandtl function at specific points within a cross section that
follows a defined contour are related to the distance from this cross section to a membrane
surface. This membrane is stretched across the contour and subjected to a uniform pressure
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acting perpendicular to the cross section. The Prandtl membrane analogy plays a significant
role in describing the torsion of FGM structures. The torsion equation is derived from the
stress in a thin membrane due to the applied pressure p, which is always perpendicular to the
membrane surface, see Fig. 4.

Fig. 4. Prandtl’s membrane analogy for elliptic isotropic cross section, after Gil-Martin et al. [18].

The analysis of an isotropic material is based on a Poisson type partial differential equation
that describes the torsional behavior of a shaft, thereby relating it to the membrane stress T .
The following formula applies:

∇2ω = − p

T
(1)

where p is the distributed pressure across the membrane, the analog of the torsional moment,
and T is the equivalent torsional stiffness.
In the case of FG materials, the mathematical formulation is more complicated, since the

material properties such as Young’s modulus E, Poisson’s ratio, and consequently the Kirchhoff
modulus G must depend on the functions p(y, z) and T (y, z), which describe the change in
material properties along the directions of gradation, according to the following formula:

∇2ω = − p(y, z)

T (y, z)
(2)

where p(y, z) and T (y, z) are the functions describing local material properties.
The application of the above formulation allows the changes in mechanical properties to

depend on the directions of length (x) and width (y). This approach is crucial for tailoring
material behavior under mechanical stresses to specific directional requirements, thereby en-
hancing the design and functionality of advanced material systems such as functionally graded
materials, as shown in Fig. 5.

Fig. 5. Material gradation in circular cross section.
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Numerous analogies for various functionally graded materials can be found, among oth-
ers, in the work of Barretta and Luciano [10], who established a new analogy between the
orthotropic FGM Saint-Venant beam and the Kirchhoff plate. These studies demonstrated
the aforementioned relationship and expanded upon earlier assumptions by Timoshenko [19],
Irschik [20, 21, 22, 23, 24, 25], Romano et al. [26], and Barretta and Marotti de Sciarra [27].
During the simulation of torsion processes in graded materials, a number of approximation is-
sues arise. To address these, numerous theories are employed, typically assuming heterogeneity
in one direction of the coordinate system. These will be presented in the following sections.

3. Analytical Torsion Modeling Methods

Modeling of functionally graded materials primarily involves applying variable material prop-
erties along a single direction. To describe behavior under a twisting moment, existing torsion
models are predominantly used with extensions that account for the property gradient in one
direction and the dependence of changes in specific properties such as Young’s modulus, the
Kirchhoff modulus, Poisson’s ratio, and density on variations along the chosen direction. The
most widely used developments in torsion modeling include the classical Saint-Venant torsion
model, Prandtl’s membrane analogy, and the Vlasov model. These models are described below
in the context of their application to functionally graded materials.

3.1. Saint-Venant theorem

The beginnings of mathematical modeling of structures made from gradient materials are
based on issues raised by Saint-Venant. The Saint-Venant principle, although originally devel-
oped for homogeneous and isotropic materials, can also be applied to the analysis of function-
ally graded materials. These materials are characterized by a gradual change in composition or
structure, which leads to a change in their mechanical and thermal properties along a specified
direction. The Saint-Venant formulation follows several assumptions. The shaft cross section
rotates approximately as a rigid entity around a twist axis. This implies that during torsion
the cross section retains its shape with minimal distortion, and every point on it moves in a
circular trajectory around the twist axis. The shaft features a prismatic cross section, meaning
it is consistent and uniform along its entire length. This uniformity simplifies analysis since the
same geometric and material properties apply to every cross section. There is a warping of the
cross section that remains constant across all sections along the shaft length. Warping refers
to the out-of-plane displacement of points on the cross section, accounting for the fact that in
real materials the cross section is not perfectly rigid. These restrictions impose several limita-
tions on the torsion model itself, especially when considering nonhomogeneous materials such
as FGMs. Overcoming some of these limitations allows for a more comprehensive simulation
of shaft torsion.
In functionally graded materials the Saint-Venant principle is particularly useful because it

allows simplification of stress analysis in regions far from the point of load application. Despite
the variable characteristics of the material, this principle assumes that local effects of loads, such
as stress concentration or detailed stress distribution around the points of force application,
diminish quickly as one moves away from the source of the load. Most examples are based on
torsion studied by Saint-Venant. The characterization of torsional behavior is challenging for
FGM structures. The original theory of torsion is based on isotropic shafts with a constant angle
of twist. When it is applied to FGM structures, it is crucial to account properly for the changing
material properties across the volume. FGMs are designed so that their mechanical, thermal,
or electrical properties change gradually in response to specific application requirements. The
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Poisson-type equation is presented as follows [28, 29].

∇2Φ +

(
gradG

G

)
· ∇Φ = −2Gθ . (3)

The Poisson type torsion equation is a partial differential equation that, for describing
changes in the Kirchhoff modulus G, must depend on variations in one direction. ∇2Φ de-
notes the Laplacian of the Prandtl function in the shaft cross section. (∇G/G) ·∇Φ represents
the spatial variability of the Kirchhoff modulus G across the volume. −2Gθ captures the effect
of the Kirchhoff modulus and the boundary-condition terms. The Saint-Venant torsion formu-
lation relies on the dependence of the torsion function on properties that vary in one or more
directions. Because Saint-Venant theory is limited for FGM materials, it is necessary to im-
prove and extend it to describe their torsional behavior more comprehensively and accurately.
An important aspect is the proper treatment of material properties that vary with coordinate
direction (usually a single direction), together with a fuller account of material inhomogeneity,
which requires consideration of the equilibrium equations and boundary conditions. Another
promising direction is the development of validation experiments to confirm and calibrate the
theory.

3.2. Prandtl’s membrane analogy

Prandtl’s torsion model addresses the torsion of prismatic shafts and primarily characterizes
the distribution of shear stresses in prismatic shafts subjected to a twisting moment. Initially,
the membrane analogy was applied only to isotropic and homogeneous materials, but over time
it has been extended to nonhomogeneous materials such as FGMs. Prandtl’s membrane analogy
relates the torsion of a prismatic rod to a thin elastic membrane that is hypothetically stretched
and conformed to the given cross section subjected to torsion. In the case of FGMs, applying
this theory requires accounting for material dependence along the directions of gradation, x
and y. For isotropic and homogeneous shafts, the Poisson type equation is given by [30, 31].

∇2Φ = −2Gθ (4)

where Φ is the Prandtl function, G is the shear modulus (constant for homogeneous materials),
and θ is the angle of twist per unit length.
In the case of FGM materials, to obtain the correct Prandtl function it is necessary to treat

the Kirchhoff modulus as dependent on the spatially varying material properties, G(x, y). This
requires modifying the classical Prandtl equation by allowing G to depend on the x and y
directions. After this modification, the Poisson-type equation for functionally graded materials
is as follows:

∇ · [G(x, y)∇Φ] = −2G(x, y)θ . (5)

After modifying the differential equation and making it dependent on the derivatives of the
material properties in the x and y directions, the equation is as follows [31]

∂

∂x

[
G(x, y)

∂Φ

∂x

]
+

∂

∂y

[
G(x, y)

∂Φ

∂y

]
= −2G(x, y)θ . (6)

The membrane analogy offers several advantages. It enables relatively straightforward de-
termination of shear stress distributions in cross sections of rods subjected to torsion and can
be visualized clearly. It is applicable to various cross-sectional shapes, which makes it highly
useful. For functionally graded materials, however, applying the membrane analogy introduces
computational complexity. The use of complex material models can make analytical solutions
difficult to obtain and, in some cases, unattainable.
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3.3. Vlasov’s torsion model

Another commonly used torsion model is Vlasov’s torsion model. It extends the Saint-Venant
model by incorporating the effects of warping restraint. In this model warping is not negligible,
which introduces additional dependencies required to obtain accurate results. The theory is
mainly applied to thin-walled beam elements, where the warping effect is particularly evident
and significant.
Vlasov’s torsion theory primarily accounts for warping effects in cross sections and the

interaction between cross-sectional torsion and bending deformation. Another key concept is
the shear center, defined as the point where shear stresses do not induce additional torsional
effects [32, 33]. The torsion equation for a thin-walled beam with cross-sectional warping
presented by Vlasov is given by [33, 34, 35].

∂

∂x

(
G(x)Jt

∂θ

∂x

)
+ E(x)Iw

∂3θ

∂x3
= 0 (7)

where G(x) is the shear modulus dependent on the direction of property changes, Jt is the
polar moment of inertia of the cross section, E(x) is Young’s modulus dependent on the direction
of material property changes, Iw is the warping constant (warping moment of inertia) for the
characteristic cross section, and θ is the angle of twist of the given cross section. Many studies
address the torsion problem for functionally graded thin-walled beams. A few representative
works are outlined below.
Addessi et al. [35] presented a comparison of the impact of warping effects on various thin-

walled cross sections according to the Vlasov and Benscoter theories. They developed numerical
models and compared the resulting predictions. Additional contributions include three works
by Mur’in et al. [36, 37, 38], which present a series of extensions on the application of thin-
walled theory to FGM beams, the role of warping during torsion, and the influence of graded
property variation on the distribution of mode shapes, bimoment, and shear stresses in thin
beam cross sections.

4. Modeling methods

Due to the complexity of calculations and the sophisticated material models required to
represent variable material properties, functionally graded materials (FGM) are of great interest
in the contemporary scientific community. The potential for continuous improvements and
the development of stiffer, stronger materials that can be applied across diverse industrial
environments motivates researchers to conduct new experiments and studies on modeling the
mechanics of various FGM structures.
The most commonly used methods for modeling structures with graded properties are the

finite element method (FEM) and the finite difference method (FDM). With advanced numer-
ical models, researchers can represent the behavior of FGM beams under loads, isolate the
effects of cross-sectional warping, and analyze shear stress distributions during torsion, shear
deformations, and mode shapes with reasonable accuracy. Every numerical model involves some
degree of approximation and assumptions, so it is never fully consistent with reality. FGMs,
and the simulation of property variation in at least one direction, require homogenization and
property approximation using established cross-sectional homogenization formulas. The accu-
racy of models and simulations may be questioned because many publications do not include
validation or calibration of the models. Below, issues related to these problems and the current
state of knowledge in the scientific community are presented.
The internal structure of each FGM can be designed in different ways. Owing to variation

in properties and their spatial distribution within a given structure, one can distinguish mate-
rials with different gradient architectures. Achieving a specific gradient form depends on the
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manufacturing method used for the FGM. The following types of gradients are distinguished:
discontinuous with interface-a, continuous with interface-b, composition gradient-c, orientation
gradient-d, and fraction gradient-e, as shown in Fig. 6.

Fig. 6. FGM with various form of gradient, after El-Galy et al. and Zhang et al. [53, 54].

FGMs can be categorized into discontinuous and continuous types, as illustrated schemati-
cally in Figs. 6a and 6b. In discontinuous FGMs, the compositions and microstructures change
in a stepwise manner, typically with an interface. In continuous FGMs, the compositions and
microstructures vary gradually and continuously with position. Figure 6 schematically de-
picts various types of FGMs. Additionally, graded structures may occur throughout the entire
material or within specific localized regions [54].

4.1. FEM modeling

Modeling of FGMs can be performed using two different approaches to finite element for-
mulation. The first is the classical method, which models finite elements that are homogeneous
and isoparametric, following the principles used in commercial software such as Ansys. This
approach is based on the formulation of isoparametric finite elements, which are defined by a
prescribed shape function and then used to approximate both the element geometry and the
unknown field. In this method, the displacement vector and the coordinate vector are expressed
as functions [39, 40, 42].

ue
i =

n∑
i=1

N iu
e, x =

n∑
i=1

N ixi (8)

where Ni is equal a shape function, ui is a nodal displacement, m is a quantity of nodal points
of element. Below are examples of shape functions for a triangular element

N1 = 1− ξ − η N2 = ξ N3 = η (9)

where ξ and η are the natural coordinates within the triangular element.
The constitutive relation between stress tensor σe and strain is equal to [40, 42]

σe = Deεe (10)

where De is a constitutive matrix and εe is a strain gained from displacement. Thus, εe can
be formulated as [40]

εe = Beue (11)
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where Be is a strain-displacement matrix of shape function, ue is a nodal displacement vector.
The main static equation based on the principle of virtual work is equal to [40, 42]

F e = keue (12)

where F e is a force vector described with integration formula [40, 42]

ke =

∫
Ωe

(Be)TDeBedΩe (13)

superscript T describes a transpose and Ωe domain of element (e). This type of classical
formulation provides constant material properties, thus stiffness matrix has constant properties.
Divided into segments, elements with different material properties maintain continuity between
finite elements, which ensures the consistency of properties at the Gauss integration points [39].
The next method of numerical representation is the method based on the works of Kim and

Paulino [41] and called isoparametric graded finite elements. This method involves interpolating
material properties at each integration point from the material properties at each node using
isoparametric shape functions, which have identical properties in the given coordinate system
(x, y)

x =
n∑

i=1

Nixi, y =
n∑

i=1

Niyi (14)

and for the displacements

u =
n∑

i=1

Niui, v =
n∑

i=1

Nivi (15)

When using the above properties, the Young’s modulus E = E(x) and Poisson’s ratio ν = ν(x)
functions can be interpolated using the isoparametric concept

E =
n∑

i=1

NiEi, ν =
n∑

i=1

Niνi (16)

what is shown by Kim and Paulino in Fig. 7 below.

Fig. 7. Isoparametric formulation for isotropic and orthotropic FGMs, after Kim and Paulino [41].

The above consideration presents the isoparametric formulation for an isotropic material.
For an orthotropic material, it involves formulating four elastic parameters: Young’s moduli
E11 = E11(x), E12 = E12(x), shear modulus G12 = G12(x), and Poisson’s ratio ν12 = ν12(x). It
has been presented in Fig. 7. The final formulation is equal [41, 43]

E11 =
m∑
i=1

Ni(E11)i, E22 =
m∑
i=1

Ni(E22)i

G12 =
m∑
i=1

Ni(G12)i, ν12 =
n∑

i=1

Ni(ν12)i .
(17)
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Another considered model is one that varies depending on the volume fraction V and the
material phase p. For this type of model, the isoparametric formulation is carried out in the
classical manner according to a given function with exponent V p

i for it all values V
p are the

values in nodal points [41, 43]

V p =
m∑
i=1

NiV
p
i . (18)

4.2. Homogenization rules

Due to the variable internal structure in terms of mechanical properties such as Young’s mod-
ulus, Poisson’s ratio, and the Kirchhoff modulus in torsion, each object must be approximated
according to the spatially varying properties. This is necessary to obtain accurate analyses
and results. Material approximations or FGM models that represent property variation are
described in various ways. To model material behavior under torsion correctly, it is essential
to idealize mathematically the internal substructures of the materials and, consequently, the
variation in the volume fractions of their constituents within each unit length or volume of
the FGM. The material model may be represented as a particulate model with defined mixing
phases, or as a multilayer model in which each layer follows a gradient approximation of prop-
erties. The first model presented is the Voigt material model [47], which describes changes in
material properties in terms of changes in volume fraction. The expression for Young’s modulus
is given by the following equation [47]:

E
V
= E1V1 + E2V2 (19)

where V1 and V2 are the volume fractions of the two materials. Thus, the sum of the fractions
must satisfy

Vf = 1− V1 . (20)

According to Voigt, the fraction Vf can be written as

Vf =
(
0.5 +

z

h

)k

(21)

where k is a positive power-law coefficient and z/h is a dimensionless coordinate ratio. The
resulting relation for Young’s modulus is

E
V
(z) = E2 + (E1 − E2)

[
1−

(
0.5 +

z

h

)k
]

. (22)

Accordingly, the dependence of the Kirchhoff modulus on the phases is [47]

G
V
(Vf) = G1Vf +G2(1− Vf) (23)

where G1 and G2 are the Kirchhoff moduli of the two constituent materials.
The next model is the Reuss model [44, 45, 46], which assumes a uniform stress distribution

throughout the material. The Young’s modulus E = E(Vf) is given by

E
R
(Vf) =

E1E2

E1Vf + E2(1− Vf)
(24)

where E1 and E2 are the Young’s moduli of the two materials, and Vf is the same volume-fraction
function as in the Voigt model. The corresponding Kirchhoff modulus is [46]

G
R
(Vf) =

G1G2

G1Vf +G2(1− Vf)
. (25)
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The next model considered is the Mori–Tanaka material model. In this approach, the ho-
mogenized composite consists of two phases: inclusions that are uniformly distributed and
assumed spherical, and a matrix that is randomly distributed. The influence of Poisson’s ratio
on overall behavior is typically considered negligible and taken as constant. The Kirchhoff
modulus according to Mori–Tanaka is [48, 49]

G
MT

(Vf) = G1 +
Vf(G2 −G1)G1

(1− Vf)(G2 −G1)β1 +G1

(26)

where

β1 =
6(K1 + 2G1)

5(3K1 + 4G1)
(27)

and K is the bulk modulus.
Hashin and Shtrikman proposed narrower bounds using the principle of minimum poten-

tial energy and polarization concepts, thereby defining rigorous upper and lower bounds for
homogenized properties. The upper bound of the Kirchhoff modulus is [50, 51]

G
HS+

(Vf) = G2 +
(G1 −G2)Vf

1 + ζ(1− Vf)(G1/G2 − 1)
(28)

where
ζ =

1 + ν

3(1− ν)
. (29)

The lower bound is [50, 51]

G
HS−

(Vf) = G1 +
(G2 −G1)(1− Vf)

1 + ζVf(G2/G1 − 1)
. (30)

Each of these theories specifies the Kirchhoff modulus as a function of the volume fraction.
As shown in Fig. 8, the Voigt and Reuss models yield substantially wider bounds than the
Hashin–Shtrikman bounds, which provide tighter constraints. These bounds depend solely on
the volume fractions of the phases and are therefore scale-independent.

Fig. 8. Shear modulus between two phases as a function of volume fraction, after Saharan et al. [52].
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Another material model is the Exponential Material Model. In this formulation, properties
vary according to an exponential function, producing smooth transitions through the FGM
thickness. This approximation can be applied to properties such as Young’s modulus, the
Kirchhoff modulus, or thermal conductivity. If the property variation through the thickness is
exponential, the Kirchhoff modulus can be approximated as [53]

G
EMM

(z) = G2 exp(βz) (31)

where β = 1
h
ln
(

G1

G2

)
, G1 and G2 are the Kirchhoff moduli of the two materials, h is the

thickness, and z is the coordinate varying from 0 to h.
The Power-Law Material Model is also widely used for FGMs. The volume-fraction variation

of an FGM layer can be represented as

Vf = f(z) =

(
z + h/2

h

)n

. (32)

Here, f(z) denotes the volume fraction of one constituent; accordingly, the other constituent
has fraction 1− Vf . Once the local volume fraction is known, pointwise properties follow from
the rule of mixtures. In particular, the Kirchhoff modulus G(z) within the layer is [53]

G
PLMM

(z) = G1Vf +G2(1− Vf) (33)

where G1 and G2 are the Kirchhoff moduli of the two materials.
Another important model is the Linear Variation Model. Here, Poisson’s ratio ν(x) is taken

as constant, while Young’s modulus and the Kirchhoff modulus vary linearly with the gradation.
The elastic modulus E(x) and the Kirchhoff modulus G(x) are expressed as [41]

E
LVM

(x) = E + γx G
LVM

(x) = G+ γx (34)

where x is the graded coordinate and γ is a parameter of nonhomogeneity defined by [41]

γ =
G(W )−G(0)

W
γ =

E(W )− E(0)

W
(35)

with W denoting the width of the graded region.
The final model is the Sigmoid Material Model. It uses two functions to represent the change

in properties with gradation, effectively partitioning the beam into two regions and describing
the behavior in each. For one coordinate direction, changes are defined on the domains −h/2
to 0 and 0 to h/2, where h is the graded height. The expressions for Young’s modulus are

E
SMM

(z) = E2 + (E1 − E2)

[
1− 1

2

(
z

h
+

1

2

)k
]

(36)

for −h/2 ≤ z ≤ 0, and

E
SMM

(z) = E1 +
E1 − E2

2

(
z

h
+

1

2

)k

(37)

for 0 ≤ z ≤ h/2.
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Fig. 9. Stress-distribution differences among exact, graded, and homogeneous elements, after Kim and
Paulino [41].

4.3. Accuracy of results

Modeling FGM properties typically uses either homogeneous or heterogeneous finite ele-
ments. Kim and Paulino [41] were the first to model FGMs with heterogeneous elements,
moving beyond classical homogeneous elements for which only midpoint responses match the
FGM solution.
Partitioning the domain into equal segments and assigning homogeneous elements does not

accurately represent heterogeneous behavior, as shown by Hernik [39]. Using heterogeneous
elements that account for spatial variation in Young’s modulus and Kirchhoff modulus at each
point along the graded layer leads to markedly improved simulation outcomes in FGM regions.
The figure below shows x-direction displacements and differences between homogeneous and
heterogeneous finite elements.

Fig. 10. Differences in x-direction displacement for homogeneous versus heterogeneous finite elements,
after Hernik [39].

According to Kim and Paulino [41], employing heterogeneous elements yields more accurate
stresses and deformations in tensile tests. Mesh refinement reduces discrepancies between
homogeneous and heterogeneous formulations for all considered cases [41].

PRE-P
ROOF P

UBLIC
ATIO

N

PR
E

-PR
O

O
F PU

B
L

IC
A

T
IO

N
 E

N
G

IN
E

E
R

IN
G

 T
R

A
N

SA
C

T
IO

N
S 



5. Comparison of achievements

5.1. Achievements

The torsional mechanics of structures made from functionally graded materials presents a
range of challenges across various formulations, including homogenization of the material model,
mixing rules for individual graded phases, and approaches to homogenizing the gradation di-
rection itself. Many studies model gradation along the longitudinal direction for beams or rods,
while others focus on homogenization of the cross section. Over time, approaches to analyzing
FGMs have evolved. Numerous limitations have been identified when using homogeneous ele-
ments in the finite element method, including inaccuracies in representing gradient variations.
The comparison presented in the table below summarizes advances in the torsion of FGMs
developed over the past several decades, with the aim of compiling these results in a concise
form for comparison.

5.2. Comparison and view

The torsional response of structures and bars made from functionally graded materials has
been extensively studied, with the literature emphasizing their importance for understanding
material behavior under complex loading conditions. Foundational work by Rooney and Fer-
rari [5] made a significant contribution through the analysis of functionally graded shafts with
rectangular cross sections. They examined torsion and bending of bars with variable shear
modulus, determined stiffness bounds, and presented solutions for specific cases such as lami-
nates and cylindrical bars. The results were used to evaluate graded material properties. Their
subsequent paper [56] focused on the torsion of bars with inhomogeneous shear modulus and
arbitrary geometry, where the modulus varies across the section as a function of coordinates
with the additional assumption of constancy at the boundary. Solutions were also presented
for the torsion of a circular cylindrical bar with angular symmetry.
Further studies by Horgan and Chan [4] extended the analysis to isotropic, linearly elastic

bars with functional gradients, providing deeper insight into stress and strain fields. Their
additional works [8, 57] addressed rotating bodies and yielded exact solutions for power-law
variation of Young’s modulus, showing that stress distributions differ from homogeneous cases
and that maximum stresses are not always located at the center. Ting, Chen, and Li [58]
investigated the design of neutral cylinders under torsion, considering cylinders with multiple
coatings or graded shear modulus in the cross section. A multilayer cylinder with piecewise-
varying shear modulus was generalized to a graded cylinder with continuous radial variation
of the shear modulus. The warping field of the neutral graded cylinder is governed by a
second-order differential equation, with solutions obtained using the Frobenius method. Singh,
Rokne, and Dhaliwal [59] studied torsional vibrations of functionally graded finite cylinders and
demonstrated resonance behavior influenced by material gradation, improving understanding
of vibrational responses in graded structures.
Batra [6] provided exact solutions for torsional behavior in functionally graded cylinders,

refining theoretical models, while Sofiyev and Schnack [60] examined the stability of functionally
graded cylindrical shells under dynamic torsional loads and highlighted the effects of transient
stresses. Li, Weng, and Duan [61] analyzed a cylindrical crack in a functionally graded interlayer
between two coaxial elastic cylinders under torsional impact. The shear modulus and density of
the FGM layer vary continuously. The problem was solved numerically and the dynamic stress
intensity factor was computed, showing that increasing the FGM gradient can significantly
reduce this factor.
Continued contributions by Horgan [4, 8, 57] on anisotropic, linearly elastic bars with func-

tional gradients, together with the study by Gholami Bazehhour and Rezaeepazhand [64] on
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Table 1. Comparison of key findings in torsion of FG materials over decades.

Nr Scientists Landmark Achievement

1 Rooney & Ferrari [55] Investigation on the torsion of a FGM shaft with a rectangular
cross-section.

2 Rooney & Ferrari [56] Torsional behavior analysis in various classes of functionally
graded shafts.

3 Rooney & Ferrari [5]
Combining torsion and flexure in inhomogeneous elements,
exploring the relationship between material properties and
structural response.

4 Horgan & Chan [4] Analysing of isotropic linearly elastic bars with a functional
gradient, showing stress distribution across this bars.

5 Horgan & Chan [57] Presenting stress response in rotating isotropic FGM disks,
considering the affect of the gradient.

6 Ting et al. [58]

Demonstrates that neutrality occurs when the geometric
mean of the cylinder’s shear moduli equals the shear mod-
ulus of the shaft and outlines criteria for preserving rigidity
with embedded cylinders.

7 Singh et al. [59]
Torsional vibrations of graded cylinders were analyzed, con-
sidering shear moduli and densities as functions of radius and
axis.

8 Batra [6] Examines the torsion of cylindrical bars with material moduli
varying along the axis.

9 Sofiyev & Schnack [60] Study on the stability of functionally graded cylindrical shells
under dynamic torsional loading as a linear function of time.

10 Li et al. [61] Examines a cylindrical crack in a graded layer between coaxial
cylinders subjected to dynamic torsional loading.

11
Hematiyan &
Estakhrian [62]

An approximate analytical method for analyzing the torsion of
functionally graded open-section members with uniform thick-
ness.

12
Arghavan &
Hematiyan [63]

Study on the torsion of hollow tubes with a functional gra-
dient, identifying the impact of the gradient on stiffness and
torsional resistance.

13
Gholami &
Rezaeepazhand [64]

Analysis of the torsion of multilayered tubes with non-circular
cross-sections, focusing on the influence of material properties.

14 Vasiliev [65]
Analyzes the torsion of a circular punch on a half-space with
a graded coating, reducing the problem to integral equations
and deriving an explicit solution.

15 Wang et al. [66]
Solution for torsional vibrations in functionally graded finite
hollow cylinders, focusing on the analysis of transient behavior
and vibration characteristics..

16 Shen et al. [67]

A size-dependent gradient shaft model was developed to study
the effects of microstructure and material scale on torsional
wave propagation, free vibration, and static torsion, consid-
ering the radial variation of material properties.

17 Bayat & Toussi [68]

Study focuses on the elasto-plastic torsion of functionally
graded material shafts with a ceramic-metal structure, where
the plastic zone may develop on the surfaces or within the
thickness of the shaft, depending on material inhomogeneity
and thickness.
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18 Huaiwei et al. [69]
The elasto-plastic buckling of cylindrical functionally graded
material shells under axial and torsional loads was analyzed
using the TTO model and the Ritz method.

19
Tsiatas &
Babouskos [70]

Presents a new solution to the elasto-plastic torsion problem
of functionally graded material bars using an iterative numer-
ical method based on BEM and AEM.

20 Muŕin et al. [71]

Showes an elastostatic analysis of spatial beam structures
made of FGM, considering smoothly varying material proper-
ties along the longitudinal direction and symmetric variations
in the transverse and lateral directions.

21 Barretta et al. [12]
Formulates the elastostatic problem of functionally graded cir-
cular nanobeams under torsion, incorporating nonlocal elastic
behavior based on Eringen’s theory.

22 Liaghat et al. [72] Investigates material tailoring in functionally graded hollow
rods with arbitrary cross-sections under torsion.

23 Barretta et al. [73] Analyzes the torsion of linearly elastic, isotropic beams with
inhomogeneities in the cross-section and along the axis.

24 Bayat et al. [74]
Presents a torsion problem of hollow cylinders made of FGM,
considering arbitrary variations of Young’s modulus and Pois-
son’s ratio in the radial direction.

25 Rizov [75]
An analysis was conducted on a cylindrical surface crack in
circular shafts under torsional loading, considering the non-
linear behavior of the material.

26 Rahaeifard [76]

Examines the size-dependent behavior of functionally graded
microbars based on the modified couple stress theory, defin-
ing two length scale parameters to describe their mechanical
properties.

27
Aminbaghai et al.
[77]

Analyzes the impact of torsional warping and secondary de-
formations on the deformation and stress state of thin-walled
FGM beams with longitudinally varying properties.

28 Muŕin et al. [78] Warping torsion in functionally graded material beams with
spatially varying properties, analyzing torsional behavior.

29 Muŕin et al. [38]
Investigation of torsional warping eigenmodes in functionally
graded material beams with longitudinally varying properties,
determining modal characteristics.

30
Guendouz et al.
[79]

Torsional-bending in functionally graded material beams us-
ing 3D Saint-Venant refined beam theory.

31 Muŕin et al. [80]
Investigates the effect of longitudinal variation in material
properties on the deformation and stresses in thin-walled
FGM beams with non-uniform torsion.

32 Guendouz et al. [81]
The static bending-torsion behavior of functionally graded
cantilever beams is analyzed using an advanced 1D/3D beam
theory.
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33 Muŕin et al. [36] Extends the 3D FGM Timoshenko finite element to include
the warping torsion effect for non-uniform torsion.

34 Barati et al. [105] Solution for static torsion in a microtube composed of bi-
directional functionally graded materials (BDFGMs).

35 Naghibi et al. [83]
Determining the defects in hollow cylinders coated with func-
tionally graded materials under torsion, identifying the im-
pact on stress results.

36 Singh et al. [84]

Analyzes the shear stresses developed in functionally graded
material bars under pure torsional loading, considering differ-
ent cross-sectional shapes (circular, square, triangular) and
varying thicknesses.

37 Zhang et al. [85]
Studies the buckling of functionally graded material cylindri-
cal shells under torsional impact load using the symplectic
method, considering torsional stress waves.

38 Noroozi et al. [86]
Investigates multiple cylindrical interface cracks between a
homogeneous circular cylinder and its FGM coating under
torsional impact loading.

39 Li & Hu [87]
Torsional statics of two-dimensionally functionally graded mi-
crotubes, focusing on stress distribution and material proper-
ties.

40
Karaca & Alyavuz
[88]

Examines the torsional behavior of beams with one- and two-
directional gradation under large displacements and angular
deformations, considering power law and sinusoidal functions.

41 Barretta et al. [89]
Focuses on the nonlocal strain gradient theory of elasticity,
combining Eringen’s nonlocal integral convolution and Lam’s
strain gradient model through a variational approach.

42
Soltani & Asgarian
[90]

Conducts a lateral buckling analysis of simply supported web-
and/or flange-tapered I-beams made of axially functionally
graded materials under uniformly distributed loads.

43 Muŕin et al. [91]
Extends previous research by investigating the effect of spa-
tially varying material properties on the torsional eigenvibra-
tions of FGM beams.

44
Hajhashemkhani &
Hematiyan [92]

Analysis of problem of inflation, extension, and torsion in
hyperelastic rods and tubes, focusing on rubber-like materials
and soft biological tissues.

45 Muŕin et al. [93]

Investigates the impact of torsional warping on the
elastostatic behavior of thin-walled twisted functionally
graded material beams, considering longitudinal mate-
rial property variations described by a polynomial.

46 Nie et al. [94]

Presents analytical solutions for the torsion of bi-directional
functionally graded linearly elastic truncated conical cylin-
ders, considering six different functional forms of shear mod-
ulus variations in both radial and axial directions.

47 Baksa [95]
Study on analytical solution for Saint-Venant’s torsion of a
circular bar with a slit extending radially from the boundary
to the axis.

48 Rizov [96]
Analyzes cylindrical delamination in a multilayered function-
ally graded circular shaft under torsional loading, based on
the Ramberg-Osgood equation.
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multilayered tubes with non-circular cross sections, provided additional depth for complex ge-
ometries. Vasiliev [65] presented an analytical solution for the torsion of a circular punch on
a transversely isotropic elastic half space with a functionally graded coating. Wang, Liu, and
Ding [66] provided exact solutions for transient torsional responses of a finitely long function-
ally graded hollow cylinder under free–free, free–fixed, and fixed–fixed boundary conditions.
Shen, Chen, and Li [67] developed a size-dependent shaft model within nonlocal strain gradient
theory, accounting for radial power-law variation in a two-constituent FGM and investigating
small-scale effects on static and dynamic torsion, including material length scale and nonlocal
parameters.
Huaiwei, Zhang, and Han [69] proposed a method for elastoplastic buckling of cylindrical

shells made of FG materials under axial and torsional loads, with properties varying by a power
law. The Ritz method and stress-state analysis were used to determine the critical condition
and the location of the elastoplastic interface. Tsiatas and Babouskos [70] provided solutions
for the elastic-plastic torsion problem of functionally graded bars with arbitrary cross sections
and property variation across the section, introducing a simplified nonlinear procedure using
the Boundary Element Method and the Analog Equation Method. Elastostatic analyses by
Muŕın, Aminbaghai, and Hrabovský [71], as well as the study by Barretta, Feo, and Luciano
[73] on torsion in nonlocal viscoelastic nanobeams, highlighted novel modeling techniques for
FGMs. Liaghat, Hematiyan, and Khosravifard [72] examined material tailoring for functionally
graded rods under torsion, and Barretta and colleagues [73] presented closed-form solutions for
torsion of linearly elastic isotropic beams with axial and cross-sectional inhomogeneities. New
solutions were derived by analyzing axial distributions of longitudinal and shear moduli, and
the effects of warping and shear modulus variation on the torsional behavior of elliptic and
equilateral triangular beams were discussed.
Ongoing efforts by Bayat, Alizadeh, and Bayat [74] on generalized solutions for hollow

cylinders, Rizov’s [75] elastic-plastic fracture analysis, and Rahaeifard’s [76] studies on size-
dependent torsion illustrate substantial advances in predicting FGM behavior under diverse
conditions. Aminbaghai [77] analyzed the influence of torsional warping on the elastostatic
behavior of thin-walled twisted FGM beams with longitudinal material variation and secondary
deformations due to twist angle. Muŕın et al. [78] examined the effect of spatially varying
properties on the warping torsion of I-section FGM beams using the Reference Beam Method
and the FGM WT finite element. Extended stress equations accounting for secondary torsional
moment and warping were applied, reinforcing the importance of torsional analysis for the
development of these materials.
Future research directions include expanding understanding and application of FGMs under

torsional loads. Promising areas are the development of multifunctional FGMs that combine
torsional resistance with enhanced thermal or electrical performance, and the advancement of
modeling techniques to capture interactions among torsion, bending, and axial loads in com-
plex geometries. Experimental validation and improved materials characterization are essential
for representing gradients accurately in practice. Experimental torsion testing of FGM shafts
faces significant reliability challenges. Residual stresses arising from manufacturing (e.g., AM,
sintering, deposition) and non-ideal material interfaces across graded transitions can distort
the measured response. Maintaining perfect coaxiality and geometric tolerances is difficult,
even small deviations introduce parasitic bending, compromising data quality. In thin walled
specimens, warping effects are pronounced and often amplified by gradation further obscuring a
pure shear state. Finally, the absence of standardized torsion test protocols for FGMs hinders
cross-laboratory validation and benchmarking. Investigation of fatigue and long-term dura-
bility under cyclic torsional loading is also important, with direct implications for aerospace,
automotive, and civil engineering. While significant progress has been achieved, substantial op-
portunities remain to improve design and application of FGMs across engineering disciplines.
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6. Conclusion and future research

Torsion in functionally graded materials (FGMs) can be described reliably within classical
theories, provided they are generalized to account for the spatial variability of elastic parame-
ters. It is essential to introduce G(x, y), E(x, y), and ν(x, y) explicitly into the torsion equations
and to model gradation consistently. Below are concise conclusions and brief research pointers:

� Generalized Classical Theories in the Context of Torsion.

Saint-Venant, Prandtl, and Vlasov formulations remain applicable when the spatial vari-
ability of G, E, and ν is explicitly incorporated and appropriate boundary conditions are
enforced.

� Gradation modeling.

Voigt, Reuss, Hashin-Shtrikman, Mori-Tanaka schemes and power-law or exponential
profiles are useful; in practice, the tighter Hashin–Shtrikman bounds and Mori-Tanaka
estimates typically yield more stable predictions of torsional stiffness.

� Numerical methods.

Isoparametric graded finite elements (per Kim–Paulino) capture heterogeneity more faith-
fully than classical piecewise-homogeneous meshes and provide a robust basis for torsion
analyses of FGMs.

� Future research.

A promising direction is to implement torsion modeling in commercial solvers such as An-
sys, moving beyond the prevailing APDL like studies. Representing material gradation
with isoparametric graded finite elements offers a more rigorous, scalable path for com-
plex geometries. Next steps include coupling torsion models with additive manufacturing
process simulations to quantify porosity and residual-stress effects, and expanding exper-
imental validation, especially for FGM shafts and thin-walled members where warping
complicates pure shear. Future work should also assess fatigue and creep under torsion,
develop multifunctional FGMs [97] that add thermal, damping, or conductive capabilities,
and advance modeling [98, 99] that can capture coupled torsion–bending–axial behavior
with explicit material, geometric nonlinearities and anisotropy.
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