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This paper presents a comparative study of various matrix methods for obtaining the dis-
persion curves of ultrasonic guided waves in anisotropic media for both planar and cylindrical
geometries. First, the mathematical formulation of the problem is introduced. Then, matrix
methods are employed to generate the characteristic dispersion functions, with a particular
focus on multilayer structures. To simplify the problem and enhance convergence, the formula-
tion of Lamb modes is separated from that of shear modes. Dispersion curves are then plotted
for single and multilayer planar and cylindrical geometries of propagating modes, with each
case identifying the different modes obtained and explaining their symmetry characteristics.
The dispersion curves are generated using a MATLAB program and compared with two soft-
ware tools: Disperse Calculator for plates and GUIGUW for cylindrical structures. A perfect
match is observed.
A discussion is then presented to highlight the advantages and limitations of the matrix

methods, offering reliable insights into which matrix method is most suitable for each type of
waveguide and enabling the plotting of convergent curves with minimal computation time.
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1. Introduction

In recent decades, composite materials have been extensively used in var-
ious industries, particularly in the automotive and aerospace sectors. These
materials combine the beneficial properties of two or more substances, result-
ing in enhanced mechanical and thermal characteristics. For instance, graphite-
epoxy composites [1, 2] are widely used in the space industry due to their high
structural rigidity, reduced thermal distortion, and low weight. However, these
composites are prone to damage and degradation of interlayer adhesion due to
cyclic loading during operation and exposure to environmental factors. Further-
more, poor adhesion between the fiber and matrix can result in the formation
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of defects, which are, in some cases, challenging to detect. Non-destructive test-
ing (NDT) using ultrasonic guided waves (UGW) offers an effective means of
identifying such defects. UGW generates vibrations throughout the material
being inspected, and when these waves encounter defects, they are reflected
and detected by sensors. By analyzing the sensor signals, information regard-
ing the position, depth, and size of the defect can be determined. However,
effective use of UGW in an inspection system requires an understanding of
dispersion curves, which describe the frequencies and velocities of waves propa-
gating through the material. Significant research has been devoted to calculating
and plotting these dispersion curves of UGW in composite structures. Numer-
ous methods and techniques have been developed for this purpose. The transfer
matrix method (TMM) [3], for instance, was introduced to plot Lamb wave dis-
persion curves for multilayer anisotropic materials, with Nayfeh [4] extending
this approach to address shear horizontal (SH) waves. Despite its straightfor-
ward formulation, TMM has limitations, particularly at high frequencies and
for thick layers, leading to instabilities in the results.
Datta [5] noted that under these conditions, the transfer matrix presents

singular values due to its exponential dependence. To address these challenges,
the stiffness matrix method (SMM) [5, 6] was developed. This approach refor-
mulates the problem by consolidating the stresses of a layer into a single vector,
resulting in a stiffness matrix that overcomes the singularities observed with
TMM. However, as the number of layers increases, both methods become in-
sufficient. The global matrix method (GMM) was subsequently introduced to
improve the accuracy of dispersion curve calculations. Recognizing the poten-
tial of GMM, Pavlakovic et al. [7] developed the industrial software Disperse,
which has become a leading tool in ultrasonic NDT and is widely endorsed
by researchers. Nevertheless, Disperse encounters limitations when dealing with
laminates exceeding several hundred layers.
Kamal et al. [6] and Monnier [8] proposed the equivalent matrix method,

which involves calculating an equivalent behavior matrix for the entire lami-
nate. While this method achieves accuracy at low frequencies for the first sym-
metric (S0) and asymmetric (A0) modes in periodic stacks (0◦ and 90◦), its appli-
cability is limited to these conditions. Other methods, such as the semi-analytical
finite elements (SAFE) method [9, 10], the spectral method [11–13], and the
Legendre polynomial-based method [14], have also been introduced. These nu-
merical approaches offer significant advantages in terms of computational effi-
ciency and simplicity of implementation. In addition to Disperse, recent years
have seen the emergence of free software and applications for calculating the
dispersion properties of UGW in various waveguides. Notable examples include
the graphical user interface for guided ultrasonic waves (GUIGUW) [15], which
uses the SAFE method, and the dispersion calculator (DC) software developed
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by Huber [16], based on SMM. These tools are capable of modeling UGW
propagation in layered composites comprising several hundred plies.
The objective of this work is to model the behavior of ultrasonic guided

waves in laminated composites using the analytical matrix methods of SMM
and TMM. To achieve this, the formulations for Lamb waves and transverse
shear waves were separated, enabling improved accuracy and reduced insta-
bility. The proposed approach was applied to monolayer, bilayer, and trilayer
structures with antisymmetric stacking. For each case, the different modes ob-
tained and their symmetry characteristics were identified and analyzed. The
results were compared with those produced by two software tools: the disper-
sion calculator, which employs the SMM method [16], and GUIGUW, which
uses the SAFE method. A perfect agreement was observed between the results
of the two matrix methods and the software outputs. Building on these re-
sults, a comparative study was conducted to evaluate the performance of the
matrix methods in terms of computation time and convergence across low and
high-frequency ranges. The SMM method demonstrated its ability to generate
dispersion curves across the entire frequency range, unlike TMM, which faces ill-
conditioning issues at high frequencies. Furthermore, SMM was found to model
the dispersive behavior of UGW more efficiently than TMM, offering faster
computation times. These findings provide reliable insights into the suitability
of each matrix method for different types of waveguides. They also demonstrate
which method is more effective for plotting convergent dispersion curves with
minimal computation time.

2. Theoretical formulation

We consider the UGW propagation in a laminated composite with N stress-
free layers, each having a thickness h in the x3 direction. The structure is as-
sumed to be unlimited in both the x1 and x2 directions (Fig. 1). We use two
coordinate systems: (x1, x2, x3) is a reference Cartesian coordinate system and
(x′1, x

′
2, x

′
3) is a global Cartesian coordinate system linked to the position of the

fibers, where ϕ is the angle describing the rotation between the two coordinate
systems.
The displacement components can be written in the reference Cartesian co-

ordinate system as [3–5]:
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where u(l)j (j = 1, 2, 3) are the components of the displacements of layer l along
the xj directions, q is a summation index, k is the wave number along the
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Fig. 1. N -layer planar laminate composite.

propagation direction x1, c is the phase velocity and the index l represents
the layer number, varying from I to N , and i is the imaginary entity (i2 = −1),
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where Kij are the coefficients described in [3], and they depend on the elasticity

constants, density and phase velocity, U (l)
1q are the displacement amplitudes.

Using Hooke’s law and the strain-displacement relationship, the stresses as-
sociated with these displacements can be expressed as follows:
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where D(l)
iq represent the stress amplitudes, which can be written as follows:

(2.4)
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where Cij are the elasticity constants that depend on the angle ϕ.
In order to obtain the dispersion equations for multilayer waveguides, we

need to use matrix methods to describe the continuity of displacements and
stresses between layers. In the following sections, we will describe the develop-
ment of the transfer matrix method and the stiffness matrix method.

3. Transfer matrix method (TMM)

TMM involves expressing the displacements and stresses at the laminate’s
upper interface in terms of those of the lower interface, while respecting the
continuity of displacements and stresses between layers. To achieve this, the dis-
placements (Eq. (2.1)) and stresses (Eq. (2.3)) are grouped into a single vector,
called the state vector H(l). This vector depends on the displacement amplitudes
U

(l)
1q and is defined as:
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By expressing the state vectors on both sides of the same layer, we obtain
a relationship that combines the components of displacements and stresses on
both sides of the same layer. The resulting matrix is called the transfer ma-
trix A(l). To calculate this laminate transfer matrix, all we need to do is to
multiply the transfer matrices for each layer A = A(I)A(II)... A(N):

(3.2)
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With the expressions of the matrix [X]
(l)
(6,6) and the transfer matrix [A]

(l)
(6,6)

written as:
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(3.3)
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the boundary conditions of a stress-free laminate result in the cancellation of
stresses at the top and bottom interfaces, providing the following:

(3.4)
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4. Stiffness matrix method (SMM)

In contrast to the TMM, the SMM method involves grouping the stresses
at the upper and lower interfaces of a layer into a single vector and expressing
them in terms of their associated displacements. The result is a layer stiffness
matrix, as described by equation:
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where [S]l(6,6) is the stiffness matrix of the layer described in [5], and it depends
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The expression for the stiffness matrix [S](l)(6,6) is in the form of:
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Next, the laminate’s global stiffness matrix is obtained using an interlayer
recursive algorithm based on the equality of interlayer stresses. The result is
a system that links the stresses on the top and bottom faces of the laminate.
Assuming zero stresses at interfaces 1 and n+ 1 (see Fig. 1), the characteristic
dispersion equation of the laminate is obtained by considering the cancellation
of the determinant of the global stiffness matrix.

5. Numerical results and discussion

In this section, we will plot the dispersion curves of a graphite-epoxy unidi-
rectional fiber laminate composite with a thickness of h = 4 mm and a density
of ρ = 1.61 g/cm3. The values of the elastic constants of this material are given
in Table 1 and are expressed in GPa.

Table 1. Elasticity constants of the graphite-epoxy composite plate [5].

C11 C22 C33 C12 C13 C23 C44 C55 C66

162 17 17 11.8 11.8 8.2 4.4 8 8
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To plot the dispersion of this material, we developed a MATLAB program
that plots these curves in the (frequency, wavenumber) plane. The frequency
range used is f = 10 : 50 : 6 · 106 Hz and the wavenumber range is k = 10−5 :
100 : 12 000 m−1. We used the bisection method as the algorithm for finding the
zeros of the characteristic function [19, 20]. We compare our results with those
obtained using the DC software [16].
The algorithm used is shown in Fig. 2.

Save (𝑘, 𝑓)

𝑘 ≤ 𝑘max

Plot

Dispersion curves 
in the (𝑓, 𝑘) plan
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Fig. 2. Bisection method algorithm.

5.1. Case of a composite layer

In this section, we consider the case of a monolayer laminated composite
structure made of unidirectional graphite fiber. For angles ϕ = 0◦ and 90◦,
the horizontal transverse modes (SHn) are uncoupled from the Lamb modes,
allowing for separate treatment of the two wave types. In addition, for each
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wave type, we have symmetric (Sn et SHSn) and antisymmetric (An et SHAn)
modes. We have developed an efficient procedure [11, 12] for classifying the
results obtained by exploiting the symmetry and antisymmetry properties of
Lamb and SH modes.
Figure 3 shows the dispersion curves of the Lamb and SH modes of the

graphite-epoxy composite in the (fVp) plane for fiber orientations of 0◦ and 90◦.
The curves obtained using the SMM and TMM methods are compared with
those obtained using the DC software. The superposition of the curves demon-
strates the accuracy of the solutions obtained at low frequencies (0 < f ≤ 600 kHz).
At high frequencies (f > 600 kHz), the TMM method fails to plot dispersion
curves, due to instabilities in the method. This instability is due to the singular
values of the transfer matrix. Indeed, the components of matrix [A] are expressed
as a function of e−ikαq x3 . For large values of frequency and wavenumber, the ex-
ponential terms tend towards zero, making the transfer matrix highly singular.
Because of this singularity, our MATLAB program for finding solutions to the
dispersion equations enters an infinite loop and fails to provide reliable solutions.

a) b)

Fig. 3. Dispersion curves of a monolayer graphite-epoxy composite plate for: a) fiber orienta-
tions 0◦ and b) 90◦. Solid lines – DC software; points – TMM; stars – SMM.

The SMM, which is considered to be numerically stable, made it possible to
obtain dispersion curves for higher frequencies. This is why SMM [5, 6, 17, 18]
is so useful for obtaining dispersion curves for monolayer composites.
Table 2 plots the squared errors Er1 (between DC software and TMM

method frequencies) and Er2 (between DC software and SMM method frequen-
cies) at a frequency of f = 110 kHz for the two treated monolayer plates. We
considered the first three modes (S0, A0 and SHS 0). An error of the order of
10−7 was obtained for both methods, demonstrating the accuracy of the results
obtained.
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Table 2. Phase velocity [m/ms] of the methods used for monolayer plates at frequency

of f = 110 kHz. Er1 =
√

(VDC − VTMM )2 et Er2 =
√

(VDC − VSMM )2.

Waveguides Modes Er1 Er2

Composite plate 0◦
S0 9.757 10−7 7.623 10−7

A0 9.517 10−7 1.869 10−7

SHS0 2.229 10−7 2.001 10−8

Composite plate 90◦
S0 2.819 10−7 5.211 10−7

A0 8.778 10−7 1.178 10−7

SHS0 3.669 10−7 2.229 10−8

5.2. Composite planar laminates

In this subsection, we will study the following laminates: a 4 mm-thick bi-
layer laminate composite with the fiber orientations [0◦ 90◦] for each layer, and
two 3 mm-thick three-layer laminate composite plates, with fiber orientations
[0◦ 90◦ 90◦] and [0◦ 0◦ 90◦] for each layer, respectively. The stacks of the three-
layer structures are arranged antisymmetrically with respect to the middle layer.
TMM and SMM methods will be used to plot dispersion curves for these three
cases. The results will be compared with those from the DC software for vali-
dation.
Figure 4 shows the dispersion curves of the three laminated composites.

Considering the antisymmetrical arrangement of the layers in three previous
cases with respect to the median axis, the modes present in these structures
do not resemble those mentioned earlier. Instead, we find modes (Mn), which
we call pseudo-Lamb modes, and modes (Mn), which we call pseudo-transverse
modes. Both matrix methods were able to model UGW dispersion for the two
and three-layer composite laminates. Since the laminate representations are ob-
tained by combinations of angle ϕ = 0◦ and 90◦, the wave formulations can be
separated [3, 4]. Indeed, in this case, the displacements that define the propaga-
tion of Lamb pseudo-modes will be dependent on four constants (C11, C22, C33,
and C44) and those of transverse pseudo-modes on two constants (C55 and C66).
This dependence affects the size of the matrix and, consequently, the disper-
sion relationships. We then find more simplified formulations in both methods
(SMM and TMM). For TMM, instabilities are almost no longer present in the
Mn modes (solutions obtained throughout the frequency range), but they re-
main in the Mn modes (solution valid for 0 < f ≤ 700 kHz). Note that this
simplification cannot be implemented in cases where Lamb modes are coupled
with SH modes (such as for fiber orientations different from 0◦ and 90◦) [6, 17].
In the following, we will consider a cylindrical waveguide and carry out a com-

parative study between matrix methods for plotting the dispersion curves of this
type of structure.
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a) b)

c)

Fig. 4. Dispersion curves: a) a 4 mm two-layer plate [0◦ 90°], b) a 3 mm three-layer plate of the
epoxy graphite composite for representations [0◦ 90◦ 90◦], and c) [0◦ 0◦90◦].

Solid lines – DC software; points – TMM; stars – SMM.

5.3. Composite pipeline

We now consider UGW propagation in a homogeneous multilayer cylindrical
waveguide with N layers, as shown in Fig. 5.
The displacement field of a harmonic wave [21] is written in cylindrical co-

ordinates as follows:

(5.1)

ur = Um
1 (r) cos (mθ) ei(k

m
z z−wt),

uθ = Um
2 (r) sin (mθ) ei(k

m
z z−wt),

uz = Um
3 (r) cos (mθ) ei(k

m
z z−wt),

where Um
1 , U

m
2 , U

m
3 represent the radial components and m is a positive number

representing the order of the circumferential mode.
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Fig. 5. N -layer cylindrical waveguide; (x1, x2, x3) – Cartesian coordinate system,
(xr, xθ, x3) – cylindrical coordinate system.

Cylindrical structures are characterized by longitudinal L(0, n) modes, which
propagate along the waveguide and torsional T(0, n) modes, which propagate
around the circumference. Due to the curvature of the pipeline, the symmetrical
character of the modes is no longer present. Here, n represents the index of the
mode’s appearance.
We will study three cases: two monolayer graphite-epoxy composite pipelines

with fiber directions 0◦ and 90◦, and a bilayer pipeline with orientations [0◦ 90◦].
In the case of monolayer pipelines, the longitudinal and torsional modes are
uncoupled. However, in the case of bilayer pipelines, the two modes are coupled
together, symbolized as LT(0, n).
Figure 6 shows the dispersion curves of both monolayer and bilayer graphite-

epoxy composite pipelines. Figure 6a shows the curves for layer with a fiber
orientation of 0◦ and Fig. 6b those for a fiber orientation of 90◦. We chose
to compare our results with the GUIGUW interface software, specializing in
modeling UGW propagation in cylindrical structures [15]. In both cases, we
obtained curves in perfect agreement with the GUIGUW software. The error is
estimated to be 10−7 between the solutions obtained by matrix methods and
those from the software. The modes present in both pipelines are the longitudinal
L(0, n) and torsional T(0, n) modes. Figure 6c shows the dispersion curves for
the bilayer pipeline [0◦ 90◦]. In this type of structure, the modes are coupled,
symbolized as LT(0, n). The results obtained are in perfect agreement with those
of the GUIGUW software, with an error of the order of 10−7.
The TMM method encounters the same problem as the frequency increases,

the program enters infinite loops caused by matrix ill-conditioning. SMM, on the
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a) b)

c)

Fig. 6. Dispersion curves: a) a 0◦, b) 90◦ fiber direction composite pipeline, and c) a bilayer
pipeline [0◦ 90◦]. Solid lines – GUIGIW software; points – TMM; stars – SMM.

other hand, does not encounter this problem and allows the dispersion curves
to be plotted throughout the chosen frequency range.

6. Discussion

We now wish to compare the matrix methods discussed in this paper. The
criterion chosen for comparison is calculation time. Table 3 shows the computa-
tion times of the TMM and SMM methods for the different waveguides treated.
From the results in Table 3, we can see that the TMM and SMM methods

were able to determine the dispersion curves of the various waveguides across the
chosen range of wavenumbers, considering only low frequencies (f < 500 kHz) to
avoid the TMM entering infinite loops. We note that the computation times for
plotting SH modes (as well as torsional modes for pipelines) are quite low compa-
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Table 3. Computation times for the matrix methods used across a range of wavenumbers
k = 10−5 : 100 : 12 000 m−1.

Waveguide Modes TMM SMM

Monolayer plate 0◦
Lamb modes 3265 1050

SH modes 1802 1762

Bilayer laminate [0◦ 90◦]
Lamb modes 6193 4003

SH modes 2061 2042

Three-layer flat laminate [0◦ 90◦ 90◦]
Lamb modes 11 523 7448

SH modes 5012 4821

Three-layer flat laminate [0◦ 90◦]
Lamb modes 12 321 8617

SH modes 5047 4997

Monolayer pipeline 0◦
Longitudinal modes 9162 7395

Torsional modes 5293 3854

Bilayer pipeline [0◦ 90◦]
Longitudinal modes – 20 981

Torsional modes 13 892 10 253

red to those for Lamb modes (as well as longitudinal modes for pipelines). This
is normal, as the anisotropic formulation in planar waveguide of Lamb modes
requires two displacements (u1 and u3), whereas SH modes are only described
by the u2 displacement (the same for cylindrical formulation). We also observe
that as the number of layers increases, so does the computation time, which is
anticipated as the formulation becomes denser and more complex. The SMM
method plots dispersion curves faster than the TMM for the different types
of structure considered. The results in Table 3 were obtained on an Intel(R)
Core(TM) i5-6300U CPU @ 2.40 GHz 2.50 GHz with 8 GB RAM on the refer-
ence machine.

7. Conclusion

Matrix methods provide a highly efficient approach for plotting the disper-
sion curves of multilayer composites in both planar and cylindrical geometries.
In this study, we focused on the TMM, which exhibited instabilities at high
frequencies and large wavenumbers. To address these issues, we proposed a sim-
plified formulation for cases where the modes are uncoupled. This approach sig-
nificantly reduced the size of the matrix, thereby minimizing the occurrence of
singular values. We also investigated the SMM, which avoids the inherent weak-
nesses of TMM but remains influenced by the number of layers and the thickness
of the structure being analyzed. Similarly, a simplified formulation was applied to
uncoupled modes, which strengthened the stiffness matrix and reduced these de-
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pendencies. The reliability of the results was validated through comparisons with
DC software for planar geometries and GUIGUW software for cylindrical geome-
tries. Additionally, we studied the influence of fiber orientations on the types of
modes generated. These findings encourage further investigation into the effects
of ply orientation and layer thickness on matrix conditioning. Future work will
focus on developing techniques to mitigate ill-conditioning and achieve greater
convergence, thereby improving the robustness and applicability of these matrix
methods.
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