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AN ANALYSIS OF VARIOUS DESCRIPTIONS OF STATE OF STRAIN IN
THE LINEAR KIRCHHOFF-LOVE TYPE SHELL THEORY

T. LEWINSKI (WARSZAWA)

In the first part of the paper several methods of describing the state of strain in the thin shell
with Kirchhoff-Love constraints are discussed. Among others Kilchevsky’s idea of the description
of the state of strain in an arbitrary point of the shell is presented by means of the strain tensor
parallely shifted to the base on the middle surface. Attention has been called to the physical mean-
ing of Kilchevsky’s tensor. Two forms of solving the parallel shift problem, i.e. “operator” equa-
tions and generalized Taylor series, are described and analysed. The second part of the work deals
with the geometric and physical consequences of the first approximation assumption 4/R<1. Some
versions of the equations describing the state of strain, in particular the tensors of flexible deforma-
tion, have been discussed.

INTRODUCTION

The linear first approximation theory of thin shells has been the subject of con-
sideration since the pioneer treatise of A. E. Love (1892) was published. The fun-
damental purpose of this investigation was the formulation of a theory interiorly
coherent and possibly consistent with the general principles of classical field theories
in the mechanics of deformable solids. As a consequence of the discussion on the
choice of the best version of the theory of thin shells, a great number of concepts
have been developed, often slightly different one from other (see e.g. [9, 10]). Strain
and stress measures of a shell have been defined in various ways, still remaining
compatible with the first approximation assumptions. Many works include, in
particular, an analysis of the equations describing deformations, see e.g. [1, 2, 4,
1.9, 18]

In the present paper an attempt is made to compare some of the known and
most important descriptions of a state of strain in a shell with Kirchhoff-Love
constraints. The purpose of the work is to discuss relationships between the quan-
tities defined by various investigators as strain measures and to call attention to
the geometric interpretation of approximations used by these writers.

This work will often utilizes the parallel shift idea. It is thought appropriate,
despite the simple structure of Euclidean space, to prove that operators of the shift
(shifters) which are known from the literature (see [12, 15, 18]) are resolvents of the
differential equations of parallel transfer. The method of generalized Taylor series
employed by N. A. KiLcHevsKy [3, 4] and W. T. KoITer [9] refers to the parallel
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shift techniques. This work will prove validity of the latter method and point to
its geometric substance.

As a result of parallel displacement of the tensor of the state of strain in the
neighbourhood of any point S (u', u?, u®) of the shell to the base in the point
P (u', u?, 0) on the middle surface, the tensor 7,; is obtained, which describes exten-
sions and a change of the angle between material fibres of the shell parallel to lines
u', u*> on the middle surface and to the normal u3, respectively. Introducing the
latter tensor to geometric considerations makes it possible to analyse the state
of strain independent of changes in the normal coordinate system across the thick-
ness of the shell. Comments known about this problem (see e.g. [4]) are modest,
despite its basic charakter and essential importance in formulating equation which
describe deformations of the shell.

In the present paper a further attempt has also been undertaken to analyse the
influence of the first approximation assumption A/R<1 (h—the thickness of the
shell, R —the smallest radius of curvature of the middle surface of the shell) on the
form of equations defining strain measures. The works of V. Z. Vlasov, V. V. No-
vozhilov, W. T. Koiter, A. E. Green and W. Zerna are examples of results obtained
by utilizing the above assumption. The physical consequences of the assumption
h/R <1 which appear in the form of the tensor of changes of curvature have been
emphasised. .

1. NOTATION, GEOMETRIC RELATIONS

The convected notation is used throughout the text. The configuration of the
shell is referred to the normal coordinate system * (k=1, 2, 3). Quantities referred
to arbitrary points of the shell are distinguished by capital letters from quantities

Fic. 1.



AN ANALYSIS OF VARIOUS DESCRIPTION OF STATE OF STRAIN.. - 637

connected with the base r; (i=1, 2, 3) in the point P (u!, u?, 0) on the middle surface.
Therefore, the base in the point S (4!, u?, u®) is denoted by R,. Objects which cha-
racterize an actual configuration are distinguished by (") from objects ”( )”
related to the initial, undeformed configuration. In the paper we denote by: 47 —
shifters [12, 15]; gup, bup, Cop—components of the first, second and third fundamen-
tal form of a middle surface; e,;—Ricci tensor related to the base r,, a=1,2,
I, I, —Christoffel symbols of the sec ond kind related to the bases r, and R,,
respectively; () |l () |k () Tk —covarian{ derivatives related to the bases r, (x=1, 2)
r, and R, k=1, 2,3, V (@, v, u®), w (4!, u*)—displacement vectors of the points
S (', w?, u®) and P (u', u?, 0), (Fig. 1); ()*—physical components of vectors and
tensors. The infinitesimal rotation vector of the neighbourhood of the point P (1, 2,
0) is denoted by S

1
e (Rot V (', u?, u®))ys=0-
We shall use the following known [7, 12] geometric relations which hold true
g

in a normal coordinate system :
(11) Ra=A: ras R3=l'3, A:=6':_u3 b:’ g13=05 g33=1;

Ga[i'__A: Ag 8o Ga3'=03 Gi3=1, ®, ﬁa co=1, 25

V=4 R LA R g™, . A" N5=05, g=detgy,;
(1.3) A=Y =(0; +udd))/A, di=b% —b’ 6%, A=det 47;

B 8 B 8=9 — 9 9% B

Pl —wd (A= e, [3s0, k=123,

(1.2)

(14) 3 o o —1\a }o
faB=Aa by, f35=—(A )55 o Beo =1 2:
(1.5) Byy=Aj3 b,y
Mainardi-Codazzi equations assume the form
(1.6) bllpy=0, «, B, y=1,2,

where [ ] denotes skew symmetry.

2. STATE OF STRAIN IN AN ARBITRARY POINT OF THE SHELL

As the starting point for the analysis of the problem, we shall assume the deri-
vations of strain measures of the shell given below.

2.1. Derivation of A. E. Love

The first derivation of equations determining the state of strain for an arbitrary
shell in lines of curvature coordinates was given by A. E. Love (1888, see [1] as well).
We proceed to describe the derivation of A. E. Love in a tensor notation for an
“arbitrary curvilinear coordinate system on the middle surface of the shell (see e.g.
[15] or [16] Section 4).
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The Green—Saint Venant strain tensor is defined by the known formula (see e.g.

7D

T
2.1) yij=5(Gij—Gij)s i,j=1,2,3.

The Kirchhoff-Love kinematic assumptions lead to the following relations for
the actual configuration of the middle surface and parallel surfaces (u3=const),
respectively:

(2'2) 5 §a3=05 g33=19 Gaﬁ=1;g Zggady GS3=1'
The formula (2.1) with the aid of Eqgs. (1.1) and (1.2) takes the form
(23) = ;’aﬂ +12 pag+ (W) phag, 7k3=0, o f=1,2 k=1,2,3,

where
1 1

(24) }aﬂ = _2' (gaﬁ 3] gaﬁ) s Pap= baﬁ = baﬁ s Hap= E (5«1[% & c:/t) .

Formulae (2.3) have a two-point character, what discloses appearently by the
functions f, (', u*, u®) when the physical components are computed:

2.5) Vag = )™ [7ap +18° pig +WP)? ),
where
fo @' 12, 43)=V Grofgus-

Formulae (2.5), after linearization in respect to displacements, are consistent
with the equations of A. E. Love given in the lines of curvature coordinates. In
point 3.2 of the present work we shall discuss a linearizaiton of the formula (2.5),
given in the monograph [1], with respect to the variable u3.

2.2. Derivation of V. Z. Vlasov

The linear part of the Green-Saint Venant tensor (2.1) can be expressed in
terms of components of the displacement vector V with the aid of the known formula

(2.6) VT V(iTj) 5
equivalent to the following equations:

7ap=Aga ‘va|n), V33=Y3,3,

@.7)
Va3 = Vas3 iz 3- b: (7)6_ u? 7)093)

derived in the case of the curvature coordinate system by V. Z. VLAsov [2] and in
the general form given above—by P. M. NAGHDI [12]
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Equations (2.7) take the form (2.3) when the linear distribution for shifted dis-
placements

(28) vue=w (', u?) + f W', 0?), k=1,2,3
and the relations between the vectors w and

(29) ﬁa=_w3|a’ ﬂ3=0, d.=1,2
compatible with the Kirchhoff-Love hypothesis are assumed.

Two derivations leading to the formulae (2.3) have been presented above. The
derivation of Vlasov-Naghdi is more general than the previous one since the Kir-
chhoff-Love assumptions have been used at the end of the procedure. Equations
(2.7), due to their generality, can constitute the starting point for the theory including
the effect of transverse shear stresses oy (k=1, 2, 3).

2.3. Parallel transfer method

Equations (2.3) determine the strain components related to the base R, in an
arbitrary point S (u!, u?, u3) of the shell.

In order to analyse the state of strain along the line u3, one should refer the
strain tensor to the certain base constant for all these points, for example to the
base r, in the point P (u', u?, 0)

(2.10) Y (', v, W¥)=5,r'er’,
where a tensor product of vectors has been denoted by the symbol ”®”.

The parallel transfer of the tensor y from the point P.(u, 42, 0) to S (u?, u?, u3)
along the line »* is described by the following set of differential equations:

.11) dyy—= (L yo + 15 p) d=0, i, j,r,s=1,2,3

with the initial conditions
(2.12) Yiy (W', u?, 0)=7,; (u', u?, u}).

A solution of the problem (2.11) and (2.12) will be introduced briefly.

Some special properties of a normal coordinate system along the line 4®> make
it possible to obtain an exact and simultaneously simple solution of the problem
stated above. Considering that du'=du?*=0 along the line 4 and utilizing the
formulae (1.4) of Christoffel symbols of the second kind in a normal coordinate
system, the set of equations (2.11) can be written as follows:

dyaﬁ + -1aba + A—16ba =0
u3 (A )a 3 ydﬁ ( )a B Yéa ’
(2.13)
dyaa —-1\6 jo = dyss -
duS + (A )a' ba Y63 = 0 ’ du3 =0.

Rozprawy Inzynierskie — 9
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The homogeneous equations (2.13) are satisfied by the functions

713=A: (ul’ ul, u3) A; (ula u2’ uS) a5 (ul» uZ)’
(2.19)
Va3 =A: (ul’ u29 u3) Ty (ul, uZ) ’ Y3z=T (u15 uZ) _
Considering the initial conditions (2.12) one obtains the solution

yaﬂ=A: (ula uza "g) Ag (ul’ u27 u(a)) ?06 (ula uza ug) ’
(2.15) 2 -
y13=A: (ul’ uzs ug) -Ya's (uls uza u(a)) s '}’33=?33 (u19 u2, ug)'
the uniqueness of which can be proved on the basis of suitable theorems on differ-
ential equations. . The inverse formulae of (2.15) we are interested in take the form

(2.16) Tap=(4"1); (A* ; Voo  Taz=(A"1); Va3, Y33=733-

The shifters A} defined with the aid of Eq. (1.1); are resolvents of the parallel
transfer equations. This fact was proved by N. A. KILCHEVSKY [4] in the case when
the lines u', u? coincide with the lines of curvature.

We shall illustrate the physical meaning of the tensor 7;; and Egs. (2.16). To
this end we shall introduce a new coordinate system #* in the point S (u*, u?, u*)
so that the base vectors R, are parallel to the base vectors r; of the point P (u, u?, 0)
on the middle surface of the shell.

=0 A2, =i, R,=0ur, " RyuET,
where J;' —two-point Kronecker symbol.

The tensor y,, and the physical components—ya,';,, related to the base R;.
are equal to 7,, and Ja5» Tespectively. The physical components ya,':,, express stretch
and change of the angle between the material fibres of the shell parallel to the lines
u', u* on the middle surface. The physical components y,; of the tensor y,, related
to the base R, determine. extensions and change of the angle between the material
fibres of the shell lying along the lines u', u? on the parallel surface u*>=const. In
view of the mutual twist of the bases R, and r; (thus R, and R;, as well), the com-
ponents y:;i and ya,*B, describe the strain in the same point S (u!, u?, u®) with respect
to the different directions determined by the bases. If the directions assigned by the
base vectors R, and R,. coincide, what holds true in the particular case of curvature
coordinates, it is not difficult to prove that

2.17) Yan="aw (e =Tap)-
The equality (2.17) is not satisfied, however, when the middle surface of the
shell is referred to the orthogonal noncurvature coordinate system.

2.4. Generalized Taylor series method (by N. A. Kilchevsky)

One of the general methods to reduce a three-dimensional boundary value
problem to the two-dimensional one is based on the expansion of unknown functions
which determine the motion of the body into the power series in u*. This idea was
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made us of by A. Cauchy and S. Poisson in their first studies on the theory of plates.
N. A. KILCHEVSKY applied this method to the theory of shells [3].

The discussed method permits to determine the state of strain in an arbitrary
point of the shell S (u', u?, u®) by means of a certain sequence of functions related
to the middle surface. To this end we expand the tensor y (u!, u?, 4%) into the power
series in u>.

@ 1 ak Y
(2.18) y (1, w?; ud)= Z yr (W)T) l‘3=0(u3)".

Using the differentiation rule of tensors and then referring the objects of the latter
equation to the base on the middle surface, we have

(2-]9) lVU Z k! (y”[ilamess)us 0* (us)k] r'er/'=0.

Making use of the linear independence of the tensor products r;@r; we obtain
the expansion in a generalized Taylor series:

Gt 1
(2:20) = 3 77 Pu T s she-o)

The quantities 7;; related to the base in the point P (u!, 4%, 0) (see Eq. (2.10))
determine the state of strain in the point S (4!, 4, u*). The formula (2.20) is the
desired solution of the parallel tansfer along an arbitrary curve joining these two
points; it is thus more general than the operator” formulae (2.16) describing the
solutlon of the parallel shift problem along the straight line u3.

Makmg the tensor y;; dependent upon the displacements ¥; by means of Eq. (2 6)
and then taking into account the commutativeness of the covariant differentiation
operators, it is possible to observe on the grounds of the formula (2:20) that the
components y;; are determined by the sequence of functions of two variables

SO @RV, 155, Dsse, 121,28, k=, 2, ...

k times

referred to the point P (u', u?,0). The functions f* can be interpreted as degrees
of freedom of the point P.

Let us compare the generalized Taylor series with the “operator” formulae
(2.16) when the undeformed configuration of the shell is referred to a normal coor-
dinate system. The Taylor series determines coefficients at the succesive powers
of * in terms of the functions f¥ (u!, 4?). However, the “operator” equations to-
gether with the formulae (2.7) do not permit to determine these coefficients in a direct
way. Unknown are the functions v, (4!, 4%, ¥®). Assuming the form of the functions
S consistently with the kinematic Kirchhoff-Love constraints and using Eq. (2.3),
one can prove that the series (2.20) is an expansion into the power series in #® of,
the right hand side of Eq. (2.16).
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3. SIMPLIFICATIONS OF THE EQUATIONS DESCRIBING DEFORMATION IN THE FIRST
APPROXIMATION THEORY OF SHELLS

3.1. State of strain of a shell due to N. A. Kilchevsky. Reference to the results
of V. Z. Vlasov :

The concept of a N. A. Kilchevsky of describing the state of strain across the
shell is based on the generalized Taylor series idea (2.20). Retaining the three first
terms in this series we have

(31) 7aﬂ= ;aﬁ +1.l3 ﬁaﬁ +(u3)2 ﬁaﬁ ’
where
5 5 1
(3.2 Pap= ()’aﬁT 3us=0> Hap= ) (7ap T 33)us=0-

To obtain the formula given above, the Kirchhoff-Love assumptions (2.3), have
been used. ;

Differentiating covariantly the tensor y,, according to the Eq. (3.2), and taking
into account Eq. (2.3), the formulae for the Christoffel symbols of the second kind
(1.4) and the known relation (see W. T. KoITerR [16] p. 16 Eq. (4.6))

(33) ﬁuﬁ=pap +2b(z ;"aﬁ) ’

one obtains an important(') relationship between the tensors f,g, p,; and }u‘,, as
follows:

(34 Hag=b(, Pgy +1c(y 93— b3 b3] Yoo

We shall introduce the known (see e.g. [12] or [6], equations (4.4.6), (4.4.13),
(4.4.16)) unsymmetric strain tensors which will be necessary in further considerations:

(3'5) 'Iaﬂ= wa‘ﬂ > ’caﬁ=ﬁa”p 2
The tensor k,,; assumes the form
(3.6) Kap=—Wlag— b} 11y~ bpllaWy—Cap W, W=Wws.

" The latter equation follows from substituting f, in Eq. (3.5), by means of the
formula (2.9).
The infinitesimal rotation vector € is determined by the expression (see e.g.
[5], Eq. (6.40.6))

(3.7) 9=e’ﬁ ﬁa rp — 451’3 )
w here

1
(3.8) . = "5 eap ”ﬂﬂ

(*) The relationship (3.4) allows to estimate directly the quantities Hap Without using compati-
bility equations (see [9], p. 19)
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is a measure of the rotation of a neighbourhood of the point P (u!, 4%, 0) on the
middle surface around the normal.
The tensor p,g (3.2); can be expressed as follows (see [9] p.3.2)

(3.9) Pup=Kapy— iy €,y D+b7, 7,
or, utilizing Eq. (3.6) in the form
(3.10) Pag=—Wllap—bjllg w,—2b[, €,5, P —Cop w.

The first term in this equation has a plate character and is independent of the
tangent displacements w; and w, and the exterior geometry of the middle surface.
The second term describes an influence of tangent displacements of the middle sur-
face on the change of curvature of this surface. In the case when the curvature
tensor b,; is constant (covariantly), what is satisfied, say for a spherical shell, this
term vanishes identically. The third term in Eq. (3.10) determines an effect of the
rigid rotation of the neighbourhood of the point on the middle sufrace around
the normal on a change of a curvature. The last term expresses a change of curvature
in the case of the uniform displacement w of the middle surface (compare the ex-
planations by W. FLUGGE [8] p.226, about the deformation of a cylindrical shell).
The independence of the tensor p,; of deformations of the middle surface is worth
mentioning. In the case of a spherical shell, the tensor p,; turns to be independent
of the displacements w;, w, (the second and third terms in Eq. (3.10) vanish).

Equations (3.1), (3.10) and (3.4) can be treated as a generalization on an arbi-
trary parametrization of the middle surface formulae given by V. Z. VLAsov ([2]
pp- 221-223) in the lines of curvature, obtained on the basis of Eq. (2.5). The latter
fact follows directly from the equality (2.17). Therefore, V. Z. Vlasov’s measures
of strain ([2] pp 221, 222, Eq. (7.11)) —k,, 7/2 and ¢,, y/2 are equal to the physical
components of the tensors p,; and ji,; respectively.

3.2. Assumptions of first-order similitude of geometries of the middle and parallel
surfaces

In this section and the next one the consequences of certain assumptions will
be discussed, which. simplify the relationships between the tensors determining geo-
metries of the middle surface and parallel surfaces (u®=const), respectively. The
approximations applied will be independeat of a state of strain and displacement
as they will be concerned with the geometry of the underformed configuration.

The following approximations will be treated as a first-order similarity of geome-
tries of the middle and parallel surfaces respectively :

(3.11) : AT~ 3.
The latter equation involves such simplifications:
Razrau Gaﬁzgaﬂc Gaﬂzgaﬁ’ Baﬁzbapa

(3.12) _—
f:‘,%r:ﬂ—us b:”ﬂa F:azbaﬁ’ f“zbg.
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Equations (1.1)-(1.5) were utilized to obtain Eq. (3.12). In the case when the middle
surface is referred to curvature coordinates, the latter simplifications are equivalent
to neglecting terms of the type u® /R (R—the smallest radius of curvature) small
as compared with unity in the process of formulating the equations describing
deformations of the shell. Recalling Egs. (2.16) and (3.11), we have

(3.13) ViR Vi

Thus it is not purposeful to distinguish the tensors y;; and 7;;. One can prove that
the formula (2.3) is equivalent to the following relationships between 7,, and the
tensors (3.4) (see e.g. [12] or [6] (4.12), (4.15))

(3.19) Vap= Ay Nppy 1> AL K ppy.

Substituting Eq. (3.5) in Eq. (3.14) and considering Eq. (3.11) we obtain
(3.15) Yap R Vg +1° Py
- (3.16) Pag=—Wllag—Dlllg w.

Hence, considering Egs. (3.13) and (3.15) we observe that the distribution of
deformations across the thickness of the shell is represented by a linear expansion
in 4*. The symmetry of the tensor pl, follows from the Mainardi-Codazzi equation
(1.6) and from the commutativeness of covariant differentiation (symmetry of p,,
followed from its definition (3.2).

Addition of terms of the type 15, ,,, to the tensor p}, is negligible in view
of the approximations (3.11)

(B17) 9= ?)’aﬂ +u? (Piy +b; 3'vﬂ)=(5”iu3 b)) ;’vﬂ +u3p§3z 3@ +u? P:a= Vop -

Analogously, a negligible effect is produced by adding to the tensor p;ﬂ terms
of the type by, e,s @

(3.13) 7113‘_‘ 3’«[3 +u? (piﬂ +bza €yp) D)~ A, Nypt+
+u? (p:p +bz: €yp) L4 +b(va ci’vﬂ))= a’ap +u? Pa[zﬂ X Vap >

where Egs. (3.11) and (3.17) have been used. In the same way one can prove that
the terms ¢,; w can be omitted.

3.2.1. Comparison of the formulae (3.15), (3.16) with the results of A. E. Love

The approximé.tion (3.11) was first employed in the work of A.E. Love [1]
and then repeated by many investigators (see e.g. V. V. NovozHiLov [6] p. 31 (4.30,
4.31). The formulae of A. E. Love have the form

Vaa= Yaa +U> Kz (2 DOt summed),
(3.19) ; .
P12= Y12 TUW Py2,
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where k,, and p,, have been defined above by Egs. (3.6) and (2.4), respectively.
Making use of Egs. (3.3), (3.6), (3.10) and (3.16) it is easy to prove that

Pr—Kay=b. Ve +b] €1y D+Cpuw (2ot summed),
(3.20) § : ‘
P12—P12=2b(; 2 +2b(; ey2y P +Cia W.
With the aid of the previous results (3.17), (3.18), one observes that the terms of the
right hand sides of (3.20) can be omitted. Assuming the formulae (3.19) instead of
Eq. (3.15), the tensorial invariance of (3.15), (3.16) is lost. We mention here, how-
ever, that the tensors p;ﬂ and k,; do not vanish identically under rigid motion
of the shell. This property characterizes instead, the tensors Yap> Pap a0 Pop.

3.3. The assumption of second-order similitude of geometries of the middle surface
and parallel surfaces (u®=const)

Let us suppose that the relations (3.11), (3.12) hold true. Additionally we assume
that

(3.21) Pra T —d B~ T

a,

The formula (3.15) can be written as follows:
(3.22) Yap R Weas gy— (L ap +13 blllg) wy—byg w + 1 (= Wllap) -
With the aid of the approximations (3.21) we obtain

(3.23) Veg® Yap+1 P> Pap=—Wlag-

The approximations (3.11) and (3.21) are analogous to those of the theory of
shallow shells (see [7], Sect. 11.3). The tensor pﬁ, has been expressed by an analogous
formula as a tensor of changes of curvature of a shallow shell (see [7], Point 11.4,
Formula 11.4.6).

A.E. GreeN and W. ZERNA [7] assume for the tensor of flexible deformation
for a shell of an arbitrary shape, the considerable simplified version (3.23),. The
derivation described above, leading to Egs. (3.23), provides a geometric interpreta-
tion of the approximations utilized by the authors of the monograph [7].

3.4. Linearity of strain distribution across the thickness of the shell

As it was pointed out in the Sect. 3.2, the linearity of strain distribution (3.15)
follows directly from the assumptions (3.11). We now proceed to prove that the
linear distribution of deformations described by means of the equation

(324) '?aﬁ_—_ 3’41[1 +u? ﬁaﬁ

is consistent with considering the assumption #/R<1 during the derivation of con-
stitutive equations (since the assumption #/R<1 refers to the approximation of
constitutive equations).

We know from the literature (see e.g. [12] Eq. (6.14), (6.15)) that the con-
stitutive equations of the theory of elastic shells, isotropic and homogeneous
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across the thickness can be reduced, with the aid of Egs. (2.16) and (3.14), to the
following form:

NV

NO=EY  [(S+1 &) Fup it

(3.25)

= wj=

2
MP=E"" [ (85+u &) §op 0 di®
h

2

where by E"#?° the tensor of elastic moduli has been denoted; dy; has been defined
by Eq. (1.3),. Substituting the formulae (3.1) in Eq. (3.25), integrating with respect
to u* from —1/2 h to 1/2 h and making use of the assumption #/R <1, we obtain

% hs
(3'26) Naﬁ o hEaﬂm’ yaé ’ Mllﬁ = —i—z‘ Evﬂaﬁ p:o'é ’
where
@.27) Pies=0% Pos+4&% a5

is an ,exact” expression of the tensor of flexible deformation in the first-approx-
imation theory(?). Substituting the linear equations (3.24) in Egs. (3.25), we obtain
relationships between stress resultants and strain measures which are identical with
Egs. (3.26). Thus we have proved the correctness of the assumption (3.24) in the
first approximation theory of shells.

3.5. Equations describing deformations in the ,jimproved” first approximation
theories

We shall discuss briefly equations describing the state of strain of two base
versions of the first approximation theories, in which the following conditions hold
true: tensors of stress and couple resultants as well as strain and change of curvature
tensors are symmetric, constitutive equations are not coupled, the sixth equation
of equilibrium is satisfied identically and the rigid motion of the shell does not
cause a state of stress in the shell.

3.5.1. The theory of P. M. Naghdi [13], J, L. Sanders and B. Budiansky [11]

In the papers [11, 13] the measure p,; (2.4), was assumed as a tensor of flexible
deformation namely

(3.28) Pap=—WlLs—blls wv-—2b(va ey D —2b], ;yp)—caﬂ w.

(*) P. M. Naghdi states that the assumption 4/R<1 involves the simplification Dros =04 #(a0)-
In our opinion, the omission of terms of the type ®/R and ¢/R requires an additional justification.
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The above equation follows from Egs. (3.3), (3.10). In view of Egs. (3.28) and (3.3)
one observes that the tensor p,, differs in terms of the type &/R from p,y.

3.5.2. Theory due to W. T. Koitar [9], J. L. Sanders and B. Budiansky [10, 11]

In the paper [9] it was pointed out, on the basis of an analysis od strain energy
per unit volume of a shell, that the terms of type g¢/R are unimportant in the defini-
tion of the tensor of changes of curvature. Making use of this ,,free choice”, the
following expression for the tensor of flexible deformation was assumed ([9, 10, 11],
see [14] as well)

(3.29) Pap=Kapy—b(y €p) P

which differs from p,5 Eq. (3.9) in the term by, }y,,).
With the aid of Eq. (3.10) we have

(3.30) Pag=—Wllag = B2lly Wy—2B7, €5y D—BY, ypy— Cap W

As it is possible to observe from Eqgs. (3.29) and (3.5),, the tensor p,, depends
explicitly only on the components of the vector £ (3.7).

The tensors p,; (3.28) and p,,; (3.30) differ in the terms of the type &/R which
can be neglected according to W. T. KOITER’S arguments [9] in the fitst approxi-
mation theory (see remarks of P. M. NAGHDI [13], Sect. 6, p. 521).

4. CONCLUSIONS

The methods of describing the state of strain in a shell discussed in point 2 of
the present paper can be appreciated considering their usefulness in a certain theory
or estimating their possibility of generalization. The derivation presented as a gener-
alization of the one given by A. E. Love is clear and brief. The formulae (2.3) have
a simple form, the tensors y,; and p,, have an explicit physical interpretation fol-
lowing directly from the definition (2.4). The tensor u,,; can be treated as the set of
components of strain of Gauss sphere related to the given point of the middle surface
of the shell.

The certain disadvantage of the latter derivation, and simultaneously, the reason
of its simple form is the assumption to refer the actual configuration to a normal
coordinate system, see Eq. (2.2). This fact restricts the application of this derivation
to the theories with Kirchhoff-Love constraints.

The method of V. Z. Vlasov and P. M. Naghdi leading to Eqs. (2.3) does not
include any additional restrictions on a deformation up till the ,,exact” formulae
(2.7) are obtained. The latter formulae can be utilized for the formulation of the
theory of shells with transverse shear deformations.

The essential role in the theory of shells is fulfilled by the tensor ¥,, which de-
scribes extensions and a change of the angle between material fibres of a parallel
surface (#®=const), parallel to the base vectors r,, r, related to the middle surface.
The components 7,, can be obtained by solving the set of differential equations of
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the parallel transfer or by means of the generalized Taylor series. If the configuration
of the shell is referred to a normal coordinate system, the shifters 43 or their in-
verses are resolvents of the set of differential equations of the parallel transfer.
Then it is needless to employ the generalized Taylor series.

Introducing into our considerations the tensor j,; allows for an examination
of strain distribution along the line u3, independent of changes in the normal co-
ordinate system across the thickness of the shell. The tensor ,; was employed in
the formulation of the assumption (3.24) of linear distribution of strain across
the thickness oi the shell.

The tensor p,;, occurring in Eq. (3.24), is difficult to associate with the name
of a single worker. As it has already been mentioned previously, the physical com-
ponents of this tensor in the case of curvature coordinates are equal to the measures
Ky 7/2 of V. Z. Vlasov. The tensorially invariant definition (3.2), was given inde-
pently by N. A. KiLcHEvsKy [3] and W. T. KoITer [9]. The independence of this
tensor of deformations of the middle surface of the shell is worth mentioning.

In point 3.2 of the present paper the effect of the assumption (3.11) of the first-
-order similitude between geometries of parallel surfaces (#>=const) and the middle
surface was examined. In the next point 3.3 an effect of the powerful assumptions
of second-order similarity (3.11), (3.21) on strain distribution was discussed. The
assumptions (3.11) involve the independence of the tenscr pi,, (3.16) of the rigid
rotation @ of an element of the middle surface around the normal and of an effect
of a uniform displacement wy;=w of points of the middle surface (compare Eqs.
(3.16) and (3.10)).

Introducing simultaneously the assumptions (3.11) and (3.21), which have
a form analogous to the simplifications employed in the theory of shallow shells,
provides the independence of the tensor pi},, Eq. (3.23), of the tangent displacements
w, and of the second fundamental form of the middle surface. The derivation leading
to Egs. (3.23) can be treated as an attempt to state the known derivation of A. E.
GREEN and W. ZerNA ([7], p. 106) more precisely.

The assumptions of the first and second-order similitude Egs. (3.11) and (3.11),
(3.21) are equivalent in the particular case of a spherical shell.

It is not indifferent, whether the assumpticn of first-approximation h/R<1 are
applied to the derivation of strain measures or to the formulation of constitutive
equations (i.e. after integrating Eq. (3.25)).

The first order approximation of the constitutive equations (3.25) permits to
assume the linear distribution of strain across the thickness of the shell (3.24).

The approximations of the equations describing deformation of a shell discussed
in points 3.2 and 3.3 involve vanishing difierences between the tensors y,; and 7,
lead to the linearization of Eq. (3.1) in respect to #* (compare Egs. (3.19) and (3.23))
and modify the tensor p,s, Egs. (3.16) and (3.23),.

In the 1ecapitulation we shall present discussed versions of description of strain
in a shell recalling to this end some equations from the present paper.
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Deformations in an arbitrary point of the shell, referred to the base in this point,
are determined by the formula (see Eq. (2.3)).
3 yaﬂ= 3’:10 +u3 pz[f +(u3)2 /’taﬂ

derived by A. E. Love [l] in the particular case of curvature coordinates and in
the form given above by P. M. NAGHDI [12].

However, deformations in an arbitrary point of the shell referred to the base
on the middle surface can be expressed by means of the tensor (3.1)

7&[3: a’aﬂ +u3 paﬁ +(u3)2 ﬁaﬂ +...
introduced to the shell theory by N. A. KILCHEVSKY [3].

The first-order similarity assumption (3.11) between geometries of parallel and
middle surfaces leads to the following linear equation in respect to u®:

Vap = Vap = }ap +u? palw >
which is equivalent, considering Eq. (3.11), to A. E. Love’s approximation.
The second-order similarity assumptions (3.11), (3.21) involve the formula
Vaﬂ ~ 7&[1 ~ }aﬂ +u3 pg‘j
given in [7] by A. E. GREEN and W. ZERNA.

Tensors of changes of curvature depend in the following way on the components
of the displacement vector of the middle surface:

Pap=—Wlag—B}llp W, —2b, €1y P—Cyp W—2b(, 7,5,
Pap=—Wlg—b}lls w,—2b; €y P—cop W,
Pag=—Wlp=bllls Wy, i =—wly.
The tensors f,; and ji,, can be expressed by means of Y, Pus, Pup
Hay=— b0, Papy— 15 b} Vs
Fap=b{y Py + 15, 03— b5 b3 Vo«

We mention, however, that some tensors of flexible deformation encountered
in the literature, derived in a variational way, differ from the tensors p,g, Pag, pil,
in terms of the type @/R or ¢/R.

For example, E. REissNER [19] assumed for the flexible deformation tensor the
symmetric part of x,; Eq. (3.5),.

Kapy=— Wlap—llp Wy—bf, €,5) P— Cop W=7, V,p)

whereas W. T. Korter [9], J. L. SANDERS and B. BUDIANSKY [11] obtained the tensor
Pap> Eq. (3.30) in the form

ﬁap= sy W”aﬂ = bZ“p Wy— szu Cyp) b - Cap W— b(”a Yvgy-
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STRESZCZENIE

ETODY OPISU STANU ODKSZTALCENIA POWLOK W LINIOWEJ TEORII TYPU
KIRCHHOFFA-LOVE’A

W pierwszej czésci pracy przedstawiono i poréwnano kilka metod opisu stanu odksztalcenia
powloce cienkiej z wigzami typu Kirchhoffa-Love’a. Omowiono miédzy innymi sposéb N. A, Kil-

czewskiego opisu odksztalcenia w dowolnym punkcie powloki za pomoca sktadowych tensora

de

formacji w bazie na jej srodkowej powierzchni. Z matematycznego punktu widzenia jest to prze-

sunigcie rownolegle. Zwrocono uwage na sens fizyczny tensora N. A. Kilczewskiego. Przedstawiono
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i przedyskutowano dwie postacie rozwiazania problemu przeniesienia rownoleglego, tj. WZory
«operatorowe» oraz uog6lniony szereg Taylora. W drugiej czesci pracy omoéwiono geometryczne
i fizyczne konsekwencje zalozenia h/R<1 pierwszego przyblizenia. Przeprowadzono analize kilku
wersji zwigzkow geometrycznych, w szczegolnosci w odniesieniu do tensora deformacji zgieciowe;j.

Pe3ome

O PA3JIMYHBIX METOOAX OIIMCAHUS JEPOPMAIIVMUM B JIMHEVHOVW TEOPUU
OBOJIOYEK THUIIA JISIBA-KUPXI'OD®A

B nepsoii 4actu pabo1bl NPUBOAATCHA W CPABHUBAIOTCS HECKOIBKHE METOMIBI ONHCAHUS Hedop-
MalMA B TOHKOH oGosouke co ces3amu Tuma JIssa-Kupxrodda. Buumanue ymensiercss MeTomy
H. A. KunbueBckoro, onucheiBaroiemMy AeGopMalnio B IPOH3BOTLHOM 109Ke IOCPEACTBOM COCTa-
BISIIONMX TeH30pa Aedopmanmu B 6asnce ONpeeseHHOM HA CepenHHOM nosepxnocTd. C Mare-
MATHIECKO! TOYKHM 3PEHHS HMEEM 3/1eC IeJI0 C IapaulebHbIM IepeaocoM OBpaiaercs BHEMAHIE
Ha Qu3mueckoit cmeich Tencopa H. A. Kusuesckoro. TIpHBOAATCA B PACCMATPUBAIOTCA [BA BUAA
napaniesbHoOro IepeHoca 1.¢€. ,,0nepaTopHsie” hopMyitsl H 0606mIennsI psix Teitaopa. Bo Bropoit
4acTH paboTBI PACCMATPHBAIOTCA TeOMe . pHYECKHe (BU3MIECKue CITENCTBHS IEPBOro UPUGIIKEHUs
upi h/R<1. OBGCyKNarOTCS HECKOIbKAE BAPMAHTHI T€OMETPHUECKAX 3aBHCHMOCTEH, B YACTHOCTH
B OTHOIICHHWH TEH30pa M3ruOrOM aedopMauuu.
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