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In this paper, we aim to identify the most appropriate mother wavelet for analyzing the
displacements of ultrasonic guided waves in tri-layered adhesive plates. We determine the group
velocities of a given mode using various mother wavelets. The precision of each mother wavelet
is evaluated by comparing the values of the group velocities with those found by the semi-
analytical finite element method (SAFEM). The most appropriate mother wavelet function
can then be used to study tri-layered adhesive plates with defects.
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1. Introduction

Non-destructive testing (NDT) is essential for maintaining safety and relia-
bility across various industries, as it allows material integrity assessment without
causing harm. This is especially crucial in the aviation sector, where safety is an
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absolute necessity and regular maintenance of aircraft and their components is
vital. Through the non-invasive detection of defects or anomalies, potential fail-
ures can be prevented, and maintenance practices can be optimized. Ultrasonic
guided waves (UGWs) have been extensively used for thin structures due to their
ability to travel long distances with low attenuation and sensitivity to the pres-
ence of small damages. For this purpose, dispersion curves are used to identify
specific modes that can propagate at a given frequency [1]. The use of ultra-
sonic guided waves is critical for identifying defects and assessing the integrity
of adhesive bonding to ensure optimal performance and structural robustness
throughout the operational life [2]. To ensure this, it is necessary to post-process
displacements obtained through experimentation or finite element (FE) software
using effective methods, such as the continuous wavelet transform (CWT).

In the aerospace and automotive industries, tri-layered adhesive plates are
widely used due to their lightweight nature and improved mechanical properties.
The wavelet transform (WT) becomes a valuable mathematical tool for analyz-
ing ultrasonic guided waves. It was Daubechies [3] and Newland [4] who first
introduced wavelet analysis into the study of vibrational signals in the early
1990s. Initially, wavelet analysis was introduced to the time-frequency represen-
tation of transient waves propagating in a dispersive medium. Hayashi et al. [5]
estimated the thickness and elastic properties of metallic foils through wavelet
analysis of laser-generated ultrasonic guided waves. Jeong and Jang [6] used
the Gabor wavelet to draw an A0-mode dispersion curve in composite laminates.
El Allami et al. [7, 8] investigated wavelet transform analysis for Lamb mode
signals in plates to define the optimal mother wavelet. In the industrial sector,
ultrasonic guided waves are frequently employed. Lamb waves can travel long
distances without experiencing appreciable attenuation, which makes them ideal
for large structures like plates, sheets, and other types of structures. In [7, 8],
building on this foundation, a mother wavelet Shannon 1-1.5 was applied to
a plate with internal defects to calculate energetic coefficients.

Paget et al. [9] used a wavelet technique to detect damage in aerospace
composites. The finite element method (FEM) is typically used for modeling
the propagation of ultrasonic guided waves, resulting in displacement signals in
the structure and their processing primarily created by the Fourier transform
or, more recently, by the wavelet transform. When a structure is defective, the
power coefficients of the reflected and transmitted ultrasonic guided modes by
the defect can be calculated by post-processing the predicted displacement field
using the CWT. The wavelet transform allows for the examination of signals
in the time and frequency domains, enabling the detection and localization of
defects in plates [10, 11]. Selecting an appropriate mother wavelet function is
crucial for accurate and reliable results [12]. Zhao et al. [13] conducted research
on the detection of composite beam delamination using ultrasonic guided waves,
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and the damage response signal was processed by the CWT. Sha et al. [14]
studied delamination imaging in laminated composite plates using 2D wavelet
analysis of guided wavefields. Hameed et al. [15] used the CWT and, specifically,
the Gabor wavelet to detect damage in a plate-like structure. Feng et al. [16]
proposed a new method to detect delamination in composite structures using
chirp-excited ultrasonic guided waves and wavelet transform. They used the
Morlet mother wavelet and worked on carbon fiber reinforced plate (CFRP).
Liu et al. [17] worked on the scale and translation parameters to optimize the
Morlet wavelet and they applied their findings to a glass fiber epoxy composite
plate.

The main objective of the present study is to assess the effectiveness of var-
ious mother wavelet functions in determining the group velocity of ultrasonic
guided waves propagating in tri-layered adhesive plates. This will be accom-
plished by implementing a FE model using COMSOL Multiphysics software
to compute the displacement field in tri-layered adhesive plates. Subsequently,
by applying the wavelet transform process to the obtained displacements with
a specially created MATLAB code, the group velocity will be obtained. Fur-
ther, a comparative analysis will be performed to assess the accuracy of different
wavelet functions and their outcomes versus the SAFE method. The findings of
this study will provide valuable insights into the application of wavelet trans-
forms and their utility in analyzing complex composite materials.

2. Formulation of SAFE method

By applying Hamilton’s principle, the equation of motion is formulated us-
ing the SAFE method and solved numerically, considering an infinite elementary
layer as shown in Fig. 1. This method combines the FEM with analytical ex-
pressions [18]. Specifically, the FEM is utilized to characterize the displacement
field in the waveguide cross-section. For this particular case, the cross-section
of the infinite elementary layer is sub-discretized using a 3-noded 1D element,
and the wave is propagated in the longitudinal x-direction.

Fig. 1. Infinite elementary layer with three nodes (WPD – wave propagation direction).

The displacement field along the propagation direction is described analyti-
cally by a complex exponential function. Considering an infinitely wide structure



206 A. YACOUBI et al.

in the y-axis direction, its cross-section domain is subdivided into a system of
multilayers modeled using 1D FEs with three nodes, as shown in Fig. 1. The
displacement per element denoted by u(e)(x, z, t) is expressed in terms of shape
functions matrix N(z), and the unknown nodal displacement for each element
q(e) as follows:

(2.1) u(e)(x, z, t) = N(z)q(e)ei(kx−ωt),

where k is a complex wavenumber, ω = 2πf is the angular frequency, t is the
time variable, and i is the imaginary unit. N(z) is defined as follows:

(2.2) N(z) =

[
N1(z) 0 N2(z) 0 N3(z) 0

0 N1(z) 0 N2(z) 0 N3(z)

]
,

with

(2.3) N1(z) =
1

2
z(z − 1), N2(z) = 1− z2, N3(z) =

1

2
z(z + 1).

The strain ε can be represented as a function of the nodal displacements by
using Eq. (2.1) as follows:

(2.4) ε =

[
Lx

∂

∂x
+ Lz

∂

∂z

]
N(z)q(e)ei(kx−ωt) = (ikB1 +B2)q(e)ei(kx−ωt),

where Lx and Lz express the strain parameters in matrix form and they are
defined by:

(2.5) Lx =

 0 0
0 1
1 0

, Lz =

 1 0
0 0
0 1

,
and

(2.6) B1 = Lx
∂N

∂x
, B2 = LzN.

The stiffness and mass matrices for each element can be calculated in the
elementary domain Ωe as follows:

(2.7)

k
(e)
1 =

ˆ

Ωe

[
BT

1 CeB1

]
dΩe, k

(e)
2 =

ˆ

Ωe

[
BT

1 CeB2 −BT
2 CeB1

]
dΩe,

k
(e)
3 =

ˆ
Ωe

[
BT

2 CeB2

]
dΩe, m(e) =

ˆ

Ωe

[
NTρeN

]
dΩe,
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where Ce and ρe are the rigidity matrix and density of the elementary do-
main Ωe, respectively, and T is the transpose operator. These integrals are calcu-
lated numerically by using the Gaussian quadrature method between the limits
of −1 and 1 on isoparametric elements, with full details available in the lite-
rature [19]. In order to accurately describe the dynamic behavior of the entire
medium through its thickness, it is necessary to combine the mass and stiffness
matrices of each element into four global matrices, which can be expressed as:

(2.8) K1 =

nel⋃
e=1

k
(e)
1 , K2 =

nel⋃
e=1

k
(e)
2 , K3 =

nel⋃
e=1

k
(e)
3 , M =

nel⋃
e=1

m(e),

where nel represents the total number of cross-sectional elements. These global
matrices are then employed to reformulate the equation of motion within the
cross-section as described below:

(2.9)
[
K1 + ikK2 + k2K3 − ω2M

]
U = 0,

where k is a complex wavenumber, ω = 2πf is the angular frequency, U is
the global vector of unknown nodal displacements, and i is the imaginary unit.
K1, K2, K3, and M are defined in Eq. (2.8). A transformation is used by the
SAFE method to simulate wave propagation in elastic waveguides and achieve
a symmetric eigenvalue problem, as described by the following equation:

(2.10)
(
A− ω2M

)
Q = 0,

where

(2.11) A = K1 + kK̂2 + k2K3, Q =

[
Û

kÛ

]
,

noting that K̂2 is the K2 symmetric matrix and Û is the new eigenvector.
The group velocity can be directly calculated by using a well-known formula
proposed by Viola et al. [18], which is

(2.12) Vg =
φTRK

′φR

2ωφTRMφR
, K ′ = K̂2 + 2kK3,

noting that

(2.13) TTK2T = −iK̂2,

where T is the identity matrix, whose odd diagonal positions are replaced by
the imaginary unit i, and φR denotes the right eigenvector of the system.
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3. Dispersion behavior

The analysis of the dispersion behavior of tri-layered adhesive plates, as
shown in Fig. 2, is conducted using SAFE method. Notably, the z-coordinate is
parallel to the through-thickness direction of the structure, while the propaga-
tion direction is along the x-coordinate.

Fig. 2. Sample of the tri-layered adhesive plates (WPD – wave propagation direction).

To perform the numerical solution of the eigenvalue problem, a MATLAB
code is established. The resulting dispersion curves are presented in terms of
the wavenumber, group velocity, phase velocity and wavelength. Throughout
the paper, the dispersion behavior of tri-layered adhesive plates is studied by
considering the properties shown in Table 1.

Table 1. Mechanical and geometric properties of the tri-layered adhesive plates.

Layer Material
Longitudinal

velocity
[m/s]

Transverse
velocity
[m/s]

Density
[kg/m3]

Thickness
[mm]

Length
[mm]

1 Aluminum 6150 3100 2700 3 750

2 Epoxy 771 370 1106 0.25 750

3 Aluminum 6150 3100 2700 3 750

Dispersion curves refer to the relationship between frequency and wave prop-
agation characteristics, such as phase velocity or group velocity, in a given
medium. The frequency has a significant impact on the dispersion curves, and
even a minor change in frequency can change their behavior. This dispersive
property is determined using the SAFE method. We use a mode separation ap-
proach based on the signs of displacement on the upper and bottom surfaces of
the structure [20]. We decided to analyze multiple modes – there cannot be fewer
than four – to conduct our investigation. To ensure an adequate examination,
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we limited our study to 500 kHz. Within this frequency range, we identified two
symmetrical modes, S0 and S1, and two antisymmetric modes, A0 and A1. It is
important to keep in mind the shape of deformation and the thickness of the
structure when the mode is excited to determine whether it is symmetric or an-
tisymmetric. Furthermore, we can refer to the antisymmetric modes as bending
modes and the symmetric modes as compression modes.

Figures 3 and 4 depict the profiles of wavenumber, group velocity, phase
velocity and wavelength for a range of frequencies up to 500 kHz. It should
be noted that when using the SAFEM, a minimum number of elements has to be
used to generate all modes that must appear in a given frequency range [21], and
the accuracy of solutions increases with the number of elements. For example,
in the range of 3000 kHz, the minimum number of elements required is 18.

a) b)

Fig. 3. Dispersion curves of tri-layered adhesive plates using the SAFE method:
a) wavenumber, b) group velocity.

a) b)

Fig. 4. Dispersion curves of tri-layered adhesive plates using the SAFE method:
a) phase velocity, b) wavelength.
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Three is the minimum number of elements for the maximum frequency range
of 500 kHz. Each layer is regarded as a separate element. However, curves in
Figs. 3 and 4 are calculated using six elements per layer. Yet, 120 elements are
employed per layer when comparing the group velocities of the SAFE method
with those determined by the CWT. This is used to approach analytical solutions
with good accuracy, making the comparison more equitable.

4. Post-processing

4.1. Description of Lamb waves

Lamb waves propagate through solid plates [22]. They are elastic waves with
particle motion occurring in the plane containing both the direction perpendic-
ular to the plate and the direction of wave propagation. This type of ultrasonic
wave was first described and analyzed by the English mathematician Horace
Lamb in 1917. While there are only two wave modes that can travel in an infi-
nite medium at the same velocity, plates can support two infinite sets of Lamb
wave modes, the velocities of which are determined by the relationship between
wavelength and plate thickness.

Since the 1990s, there has been a significant advancement in the under-
standing and application of Lamb waves due to the rapid increase in computing
power availability. Significant practical use has been made of Lamb’s theoretical
formulations, particularly in the area of nondestructive testing.

a) b)

Fig. 5. Particle displacement of (a) antisymmetric (b) symmetric Lamb wave modes [23].

4.2. Wavelet analysis

Wavelet analysis is a powerful mathematical method for digital signal pro-
cessing. It defines the signal process in the time-frequency domain using a set
of basic functions. Linear combinations of modified and scaled functions can be
represented by a wavelet family. The fundamental operations of a wavelet trans-
form (WT) are waves produced by dilating and translating a mother wavelet.
The wavelet transform is used to determine the arrival time of group velocity
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by analyzing peak localization. So, the expression of the wavelet function [24]
for the signal u(t) is defined by:

(4.1) Wf(a, b) =
1√
a

+∞ˆ

−∞

u(t)Ψ∗
(
t− b
a

)
dt,

where Ψ(t) refers to the mother wavelet, ∗ denotes a complex conjugate, a is a di-
lation or scale parameter, and b is a translation parameter. In Eq. (4.1), a variety
of wavelet functions can be applied.

4.3. Time of flight

The time of flight (TOF) represents the arrival time of the related wave
packet to the receiver. Since the distance between transmitter and receiver is
constant in all cases of the current research, it is possible to obtain the frequency-
dependent group velocity Vg(f) by using the following equation:

(4.2) Vg(f) =
d2 − d1

t2 − t1
.

The WT, with the post-processing of displacement fields, identifies arrival
times t1 and t2 for points Prob A and Prob B on the upper surface of the
structure at propagation distances d1 and d2, respectively (Fig. 5). This equation
allows the calculation of the numerical group velocity at different frequencies.
The time of flight can be extracted either experimentally or numerically, which
is our target. A sensitivity analysis is then performed on the group velocity to
validate its accuracy. The general test configuration of this study is shown in
Fig. 6. The detection of data at working points Prob A and Prob B is also
presented in Fig. 6. This particular set of data has been selected for specific
frequency of 200 kHz as an example to illustrate several essential methodologies
and results appearing from the time of flight extraction process.

Fig. 6. Test configuration.
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With the implementation of FE simulation, the displacements can be de-
picted as indicated in Fig. 6. The variances between the times of flight obtained
from the wavelet transform approach and theoretical times are determined by
using a set of mother wavelets.

5. Numerical simulation

5.1. Normalized displacement

The displacement field presents the variation of motion along the thickness
of the structure. As we work in the sagittal plane (xoz) of the structure, which
is parallel to the direction of wave propagation, we will have two displacements
ux and uz. These displacements depend on the z variable and are expressed
analytically by:

(5.1)

u
(j)
x =

[
ik
(
Aje

iqjz +Bje
−iqjz

)
+ isj

(
Cje

isjz −Dje
−isjz

)]
ei(kx−ωt),

u
(j)
z =

[
iqj
(
Aje

iqjz −Bje−iqjz
)
− ik

(
Cje

isjz +Dje
−isjz

)]
ei(kx−ωt),

where Aj , Bj , Cj and Dj are constants of the layer j determined by applying
the boundary conditions;

qj =
√
k2
L,j − k2 and sj =

√
k2
T,j − k2

with
k2
L,j = ω2

/
V 2
L,j and k2

T ,j = ω2
/
V 2
T ,j .

Here, ω is the angular frequency, VL,j and VT,j are the longitudinal and trans-
verse velocities, respectively, for layer j = 1, 2, 3. By normalizing the displace-
ment field with respect to the acoustic power, we can attain significant insights
into the modes and their characteristics. The displacements are normalized by
the acoustic power related to the quantity of energy delivered by ultrasonic
guided waves. The displacement and stress profiles of the guided modes can be
standardized by the acoustic power. Mathematical equations can be employed
to obtain the expressions for the normalized displacements as follows:

(5.2) ux,N =
ux√
|P |

, uz,N =
uz√
|P |

,

where P is the acoustic power utilized by a mode along the x-axis and perpen-
dicular to the section defined in the (yoz) plane with a length of 1 meter along
the y-axis and a total thickness of h along the z-axis, and it can be expressed as:

(5.3) P = −1

2
Re

 +h/2ˆ

−h/2

(v∗ · σ) n dz

,
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where n is the normal to the elementary section dy dz, σ is the stress tensor,
v is the velocity vector and ∗ is the complex conjugate.

Figure 7 illustrates the normalized displacements at the frequency of 200 kHz
for all existing modes. At this frequency, the dispersion curves illustrate four
propagating modes: A0, S0, A1, and S1.

Fig. 7. Normalized displacement through the thickness of tri-layered adhesive plates.

5.2. Guided waves excitation

To acquire numerical displacements at the two probes A and B, the dis-
placements are normalized and modulated by the Hann window to ensure the
excitation at a set of selected frequencies ranging from 25 kHz to 262.5 kHz at
the left edge of the tri-layered adhesive plates. An example of an excitation
signal is presented in Fig. 8.
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Fig. 8. A 10-cycle signal by a Hann window for A0 mode at 200 kHz.

5.3. Modeling guided waves propagation by FEM

The simulation employs a 2D FE model in COMSOL Multiphysics. The se-
lection of parameters for the simulation’s temporal and spatial steps requires
specific proprieties to describe wave propagation accurately. The mesh assem-
bly and temporal step conditions necessitate that the temporal step ∆t must
be sufficiently small to capture the dynamic behavior of the waves over time.
It should be smaller than a critical value determined by the maximum wave
velocity in the material and the spatial step size. By satisfying these spatial and
temporal step conditions, the FE model in COMSOL can accurately capture the
wave propagation characteristics and provide reliable results for the simulation
of guided waves testing on tri-layered adhesive plates. The selection of mesh is
an important factor in achieving accuracy in computational analysis. Precision
is directly proportional to the number of sub-domains employed. Moreover, the
number of nodes constituting each element is a key factor that significantly im-
pacts the accuracy of calculations. An increase in the number of sub-domains
of the mesh leads to an increase in the size of the system to be solved and,
consequently, increases the overall computation time.

In order to mesh the structure under analysis, we choose to utilize an element
size of 0.2 mm, which satisfies the following condition [25]:

(5.4) max (∆x,∆z) <
λmin

10
.

Here, we note that λmin represents the minimum wavelength. It is required
that the size of the waveguide elements be less than one-tenth of the smallest
wavelength of the modes that may propagate in the structure for computational
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convergence to be achieved. For temporal discretization, the time step must
satisfy the condition presented in [26]:

(5.5) ∆t < 0.7
min (∆x,∆z)

VL
.

Satisfying the above condition, the time step is set to ∆t = 0.1 µs, and the
chosen frequency of 200 kHz is used to illustrate the temporal displacements
in two probes for A0, S0, A1, and S1 modes. By focusing on this specific fre-
quency, we can analyze and compare the displacement patterns over time for
different modes. This allows us to gain insights into the propagation character-
istics and mode-specific behavior of the waves at the selected frequency. The
presented results provide an analysis of the temporal displacement, highlighting
the variations in amplitude, phase, and shape in the two probes for each mode.

The profiles of displacements of all modes that can propagate at a fre-
quency of 200 kHz in the tri-layered adhesive plates are shown in Fig. 9. The

Fig. 9. Temporal displacements provided by simulations on tri-layered adhesive plates.
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probes A and B depict normal displacements at the upper surface. It can be
noted that these displacements are of the same order (nm) as those of the nor-
malized displacements used for excitations. Knowledge of the amplitude of the
displacement is essential since it determines the wave that will be more easily
generated and/or detected during the inspection. The choice of the distance be-
tween the two probes is essential in this case to eliminate undesired reflection
signals and guarantee reliable results. This distance was selected to give the wave
packet enough room to travel before it encounters material constraints. We have
represented the evolution of collected displacements as a function of time. The
same procedure was executed for a range of frequencies between 25 kHz and
262.5 kHz. By applying the analysis to the entire frequency range of interest, we
can observe and analyze the temporal displacements in the two probes for A0,
S0, A1, and S1 modes. This provides insights into the displacement behavior,
allowing us to identify variations in amplitude, phase, and shape for each mode.

5.4. Wavelet coefficient magnitude

The process for extracting group velocity information from the multimode
guided wave signals must be applied after the displacement signals have been
acquired. Figures 10 and 11 show the magnitude of the wavelet coefficients,
using as examples, the mother wavelets “Shannon 1-1.5” and “Gaussian 1”,
respectively, for the A0 mode at a frequency of 200 kHz. The amplitude of the
coefficients acquired by wavelet analysis is denoted by the wavelet coefficient
magnitude. It is possible to determine interesting changes in the modes at the
chosen frequency by examining the wavelet coefficient magnitude. This strategy
makes it easier to provide a quantitative measurement of the TOF of each peak.

Fig. 10. a) “Shannon 1-1.5” wavelet coefficient of displacement,
b) coefficient lines at probes A and B for the A0 mode at 200 kHz.
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Fig. 11. a) “Gaussian 1” wavelet coefficient of displacement,
b) coefficient lines at probes A and B for the A0 mode at 200 kHz.

In Fig. 10b, peak 1 and peak 2, correspond to the two arrival times of the inci-
dent A0 mode, t1 and t2, respectively, with the first time being t1 = 110.5 µs and
the second time is t2 = 196 µs. Knowing that the distance between probe A
and probe B is fixed at 250 mm and that the analytic group velocity of A0
mode is equal to 2927.249 m/s, it becomes possible to calculate the numerical
group velocity by applying Eq. (4.2) and, subsequently, the relative error err.
Then, by WT Shannon 1-1.5: err = 0.112%. In Fig. 11b, the peak 1 corre-
sponds to t1 = 111 µs and peak 2 corresponds to t2 = 196 µs, which gives err =
0.476%. It should be noted that when the analytical group velocity is very small
and close to zero, calculating the relative error becomes challenging as it involves
a ratio of two values that are both very small or very close to zero. It is probable
that the relative error in this situation may not be representative. Additionally,
launching numerical simulations can be difficult and time-consuming.

6. Results and discussion

A comparison between various mother wavelets regarding the relative error
on the group velocity is conducted. The analysis covers all modes propagating
in the frequency range from 25 kHz to 262.5 kHz. These simulations show the
influence of the mother wavelet on the resulting error and reveal the effect of
wavelet selection on the resulting group velocity values when coupling wavelet
analysis results with those obtained from the SAFEM. The findings are impor-
tant for guiding the precise selection of the suitable mother wavelet (see Figs. 12
and 13).
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It should be noted that the average percentage error for any mother wavelet
is calculated following these steps:

1) We first set the mode A0, A1, S0, or S1.
2) We calculate the absolute relative error (ARE) for each frequency in the

range of 25–262.5 kHz. The following formula is used to calculate this:

(6.1) ARE =

∣∣∣∣Vg,WT − Vg,SAFE

Vg,SAFE

∣∣∣∣× 100,

where Vg,WT is the group velocity calculated using WT and Vg,SAFE is the
group velocity calculated by SAFE method.

3) Finally, we compute the average of all the previously computed errors.

Fig. 12. Average percentage error for symmetric modes for different mother wavelets and
relative error (err) evolution depending on frequency for the best mother wavelets.
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The average error of all the wavelets for S0 and S1 modes is less than 2%
over the entire considered frequency range (Figs. 12a and 12c). In particular,
the Shannon wavelet 1-1.5 represents the minimum average error for both modes
over the entire frequency range. Although the Shannon 1-1 wavelet represents
a lower average error than Shannon 1-1.5 for the S1 mode over a small frequency
range of 130–140 kHz (Fig. 12d), Shannon 1-1.5 remains five times more precise
than Shannon 1-1 over the entire frequency range of 25–262.5 kHz.

For A0 and A1 modes, we note that the average error of all wavelets does not
exceed 3% over the entire frequency range (Figs. 13a and c). However, Shannon
1-1.5 is the most suitable in terms of accuracy. The average error for A0 and A1
modes of all other wavelets tends to decrease as the frequency increases. On the
other hand, the Shannon 1-1.5 error remains approximately constant (Figs. 13b
and 13d). We see that fbsp2-1-1 comes in second position after Shannon 1-1.5 in
terms of accuracy for A1 mode, but its average error is seventeen times higher

Fig. 13. Average percentage error for antisymmetric modes for different mother wavelets and
relative error (err) evolution depending on frequency for the best mother wavelets.
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Fig. 14. Group velocity: WT Shannon 1-1.5 versus SAFE method.

Fig. 15. Relative errors on the group velocity by WT Shannon 1-1.5.
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than that of Shannon 1-1.5 over the entire frequency range. In general, we see
that all the wavelets used in this study represent a fairly low error (<3%) for
all modes and over the entire frequency range. But, if we demand precision,
Shannon 1-1.5 appears the best choice. Since Shannon 1-1.5 is the most precise,
we used it to draw the group velocity curves and superimpose them on those of
SAFE method (Fig. 14).

The quantification of the relative error for each mode A0, A1, S0 and S1 on
the considered frequency range using WT Shannon1-1.5 is presented in Fig. 15.

As a result, the relative error does not exceed 1% for all modes. However, it
can be noted that the S0 mode presents the smallest average error as presented
in Table 2.

Table 2. Average error per mode on the group velocity by WT Shannon 1-1.5.

Mode A0 S0 A1 S1

Average error [%] 0.415 0.340 0.446 0.487

7. Conclusion

It should be noted that all mother wavelets studied, without exception, yield
good results. However, we noticed that Shannon 1-1.5 presents a minimum error
and is more precise than all the other wavelets. It should be mentioned that the
main objective was no longer the calculation of dispersion curves but shifted to
comparing the accuracy of different mother wavelet functions in determining the
group velocity of ultrasonic guided waves propagating inside tri-layered adhesive
plates. It can be also noted that, through this study, there is a very close link
between the displacement of a point taken on the upper face of the structure
and the dispersive behavior of the ultrasonic guided waves (UGWs). For simu-
lations to be accurate and post-processing to yield acceptable results, execution
times must be adhered to avoid unwanted reflection signals. For frequencies with
group velocities that are too low or very close to zero, simulations become im-
possible given the runtimes, which become extremely long, and it should also
be noted that if the meshing is done improperly, simulations can give erroneous
or divergent results. The Shannon 1-1.5 wavelet can be used to calculate the
energy coefficients of defective tri-layered adhesive plates, aiding in defect iden-
tification and mode sensitivity studies. Furthermore, it is possible to conduct
a comparative study on theoretical, numerical, and experimental results.
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