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The main aim of this paper is to calculate the dispersion curves modeling the propagation
of ultrasonic Lamb waves inside a bonded tri-layer plane aluminum/epoxy/aluminum structure
using the semi-analytical finite element (SAFE) method. The paper also aims to plot the nodal
displacements normalized by their maximums for the four propagative modes that appear at
the frequency of 200 kHz. These results contribute to the understanding of ultrasonic wave
propagation in planar multilayer structures and have potential applications in non-destructive
testing. The SAFE method is compared to the Graphical User Interface for Guided Ultrasonic
Waves GUIGUW program. In general, this paper highlights the particular dispersive behav-
ior of ultrasonic guided waves propagating in bonded three-layer structures. The GUIGUW
program has been rarely utilized by authors to verify and compare results, particularly for
this kind of structure, despite its robustness in calculating ultrasonic guided waves’ dispersion
curves. We are still among the few who have drawn this parallel. In this paper, we put forth
a very clear-cut and accurate framework for determining the dispersion curves of a three-layer
structure, and researchers who are new to the SAFE method may find this framework helpful
as well. Another result shown in this paper is that the S0 mode is more sensitive to changes in
the epoxy layer thickness than the A0 mode in the low-frequency range. Therefore, we can de-
termine how much resin epoxy adhesive layer is missing from two ostensibly identical structures
by estimating the difference in adhesive thickness. One of the structures is used as a reference,
and the variation in phase velocity can allow the estimation of the lack of resin epoxy. However,
if we want to assess defects such as debonding using the S0 mode, a low frequency should be
used, and it must be strictly smaller than its frequency of high dispersivity and correspond to
a maximum group velocity.

Keywords: non-destructive testing; bonded structures; ultrasonic guided waves; Lamb waves;
semi-analytical finite element method; GUIGUW.
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1. Introduction

If one compares bonding principles with other forms of assembly, such as
welding, riveting, stapling, or bolting, one sees that bonding enables the combi-
nation of materials possessing quite diverse properties. These techniques guar-
antee assembly, whether it is permanent or removable. Like the assembly of car
body pieces or empennages on aircraft cells, bonding can be either permanent
or removable. Adhesive memory aids are good examples of removable bonding.
In contrast, the mechanical assembly methods involve drilling the materials to
be joined. In addition, the assembly effort is concentrated on these anchoring
sites, causing localized stress on the surrounding structures. These stress local-
izations [1] are frequently the cause of splitting in one or both combined materi-
als [2], potentially causing the constructed structure to collapse. It should also be
noted here that in such assembly procedures, effective sealing is not guaranteed.
All these assembly procedures have the benefit of being quick. As the bonding
surface is often bigger than that produced by mechanical assembly, resulting in
lower stresses for the same type of stress and reduced susceptibility to a fracture
start that is always local. Bonding provides several advantages, including high
strength, weight savings, the ability to integrate multiple materials of varied
thicknesses, and convenience in combining complicated designs. While welding
polymers for composites is only suitable for certain materials, adhesive bond-
ing is progressively replacing mechanical assembly methods in the aerospace and
automotive sectors. During commissioning, bonded structures may suffer dam-
age caused by cyclic loading conditions or environmental conditions, leading to
degradation of the adhesive layer. Therefore, a regular assessment of the state of
the bonded joint is recommended. We were interested in non-destructive testing
by ultrasonic guided waves of a structure assembled using bonding techniques,
because this method is very sensitive to changes in size, position, and mechanical
properties of the interfaces between different layers [3].

Thomson [4] and Haskell [5] conducted theoretical studies on the trans-
mission of a plane elastic wave through a stratified solid, consisting of any num-
ber of plates of different materials and thicknesses by using the matrix method to
systematize the analysis and present equations in a form suitable for computa-
tion. Seifried [6] integrated an analytic model, the finite element method, and
experimental measures to gain a quantitative understanding of the dispersion
features of guided Lamb waves in multilayered adhesive-bonded components.
Lindgren et al. [7] presented the inspection of defects in multilayer structures
using high frequency ultrasonic guided waves. The obtained results proved a sub-
stantial reduction in the pervasion of ultrasonic guided waves at high frequencies
when an adhesive material was present between the layers. Lowe and Cow-
ley [8] investigated the possibility of applying plate waves to assess the health
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of adhesive joints and reviewed modal techniques that could be used to measure
the adhesion and cohesion properties of adhesive joints.

Rokhlin [9] conducted a theoretical and experimental analysis of the in-
teraction of Lamb waves with lap-shear joints. Additionally, Lowe et al. [10]
investigated the transmission of Lamb waves across adhesively bonded lap joints
using finite element analysis. The study considered three modes for excitation
and reception (S0, A0, and A1) applied to lap joints consisting of parallel alu-
minum sheets bonded with an epoxy adhesive. In the last few decades, many
non-destructive studies have been developed. For example, Wang et al. [11]
proposed a framework for the detection and sizing of disbonds in a multilayer
bonded structure using modally selective guided wave experiments both in ac-
tual experiments and numerical simulations. Both numerical and experimental
validations were performed, in which disbonds of different lengths, ranging from
10 to 40 mm, were examined.

Gauthier et al. [12] presented a method for characterizing the level of adhe-
sion in structural metal/adhesive/metal bonding using ultrasonic guided waves
and showed that the cut-off frequency measurement of the vertical longitudi-
nal mode can be a very good indicator of bonding integrity. Several numerical
methods have been used to determine the dispersion curves of tri-layer and
multilayer structures. The precise calculation of dispersion curves is a crucial
preliminary step in non-destructive testing using ultrasonic guided waves. For
example, Zitouni et al. [13] proposed a novel hybrid analytical algorithm to
calculate the dispersion curves in multilayer plane structures. Their algorithm
achieved good convergence and shorter computation times by combining the bi-
section and Newton-Raphson techniques. In another paper, Zitouni et al. [14]
used the spectral method to study the propagation of ultrasonic guided waves in
a graphite-epoxy composite plate. They calculated dispersion curves for various
fiber orientations, and compared their results with those obtained from the DIS-
PERSE software. In order to determine the dispersion curves of ultrasonic guided
waves in anisotropic media, Zitouni et al. [15] compared several methods. They
particularly contrasted their results with those of Nayfeh and Chimenti [16].
The dispersion curves were calculated for a wide range of structures by using an
implementation of finite element models [17], ensuring accurate mode prediction
due to element discretization.

Deng et al. [18] developed a simplified model of bi-layer composite insu-
lators using the theory of ultrasonic guided wave propagation. To address the
issue of composite insulator debonding, they analyzed the propagation veloc-
ity and energy decay of longitudinal and torsional ultrasonic guided waves in
the insulator bilayer model. Based on the ultrasonic guided wave attenuation
characteristics, they proposed a method for detecting axial and circumferen-
tial debonding of composite insulators. Bougaze et al. [19] investigated ultra-
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sonic guided waves in a tri-layer structure consisting of two aluminum sheets
bonded by a resin epoxy adhesive layer. They also showed how the quality
of bonding could be determined by examining the dispersion curves. To inves-
tigate a novel use of ultrasonic Lamb waves for detecting the coating disbond
in an aluminum-adhesive double-layer waveguide and a triple-layer waveguide
(aluminum-adhesive-coating), Mehrabi et al. [20] carried out experimental and
numerical studies. The purpose of their experimental tests was to determine
how the adhesive bonding influences the attenuation of Lamb waves in addition
to the coating layer’s influence on Lamb wave behavior.

In the current study, we are interested in studying the propagation of ultra-
sonic Lamb waves in planar multilayer structures to trace the dispersion curves
and possibly for non-destructive evaluation. So, we study the propagation of ul-
trasonic Lamb waves in a planar tri-layer bonded aluminum/epoxy/aluminum
structure, and we use the semi-analytical finite element (SAFE) [21, 22] method
to calculate dispersion curves and nodal displacements. Next, we compare them
with those obtained by using Graphical User Interface for Guided Ultrasonic
Waves (GUIGUW), a widely-used commercial program for analyzing ultrasonic
guided wave propagation in elastic media. Our research contributes to under-
standing the dispersion properties of ultrasonic Lamb waves in planar multilayer
structures, holding potential usage in applications in non-destructive evaluation.
Additionally, our study reveals that the S0 mode is more sensitive to changes in
epoxy layer thickness than the A0 mode, especially in the low-frequency range.

2. Overview of the semi-analytical finite element method
(SAFE)

2.1. Tri-layer plane structure sample

To calculate the dispersion curves modeling the propagation of ultrasonic
guided waves in our planar tri-layer structure (aluminum/epoxy/aluminum) us-
ing the semi-analytical finite element SAFE method, a sample of the structure
is presented with all the mechanical and geometric properties shown below (see
Fig. 1 and Table 1).

Fig. 1. Geometric configuration of the planar tri-layer structure.
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Table 1. Mechanical and geometric properties of the planar tri-layer structure.

Layer Material Longitudinal velocity
[m/s]

Transverse velocity
[m/s]

Density
[kg/m3]

Thickness
[mm]

1 Aluminum 6150 3100 2700 3

2 Epoxy 771 370 1106 0.25

3 Aluminum 6150 3100 2700 3

2.2. Theoretical formulation

The calculation of dispersion curves is based on the following presumptions:
1) Each layer is regarded as a homogeneous, elastic, and isotropic medium.
2) The faces of the tri-layer structure are free from constraints.
3) Based on Hamilton’s principle, the computation will be developed.
4) The Gaussian quadrature method will be used to approximate the elemen-

tary stiffness and mass matrices.
The dispersion curves for any planar tri-layer structure can be calculated

using the SAFE method, which combines the finite element method with an-
alytical expressions. In this study, we consider a planar bonded tri-layer alu-
minum/epoxy/aluminum structure with infinite width. So, the model simplifies
to a 2D problem in the x-y plane with an ultrasonic guided wave propagating
along the x-direction (see Fig. 2), and the cross-section domain is divided into
a system of 2D elementary layers, modeled using 1D finite elements with three
nodes, as shown below.

Fig. 2. Infinite 2D elementary layer with three nodes [21, 22].

Using the Hamilton principle [21], the equation of motion for the cross-section
in its linear form can be written as follows:

(2.1)
(
A− ω2M

)
Q = 0,

where

(2.2) A = K1 + kK̂2 + k2K3, Q =
[
Û kÛ

]T
.
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Here, ω = 2πf represents angular frequency, k denotes the wavenumber, T is
the symbol for matrix transpose, and [22]

(2.3) M =

Nel⋃
e=1

m(e), Kn =

Nel⋃
e=1

k(e)
n , n = 1, 2, 3,

where Nel denotes the number of elements. K̂2 and Û represent the K2 sym-
metric real matrix and the cross-sectional mode shape or the new displacement
vector, respectively. For any frequency obtained by solving Eq. (2.1), the phase
velocity VP and the wavelength λ can be deduced using the following formulas:

(2.4) VP = ω/k,

and

(2.5) λ = 2π/k.

Furthermore, Eq. (2.1) leads to calculating the group velocity VG as follows:

(2.6) VG =
∂ω

∂k
=
(
φT

RK
′φR

) /(
2ωφT

RMφR

)
,

where φR denotes the right eigenvector of the system and K′ is defined by:

(2.7) K′ = K̂2 + 2kK3.

2.3. Numerical solution

To compute dispersion curves, we study the dispersion characteristics of ul-
trasonic guided waves in planar multilayer structures. Thus, we present a frame-
work that outlines the key stages involved in developing a Matlab code that can
compute the dispersion curves and nodal displacements for any planar multilayer
structure through the application of the SAFE method (refer to Fig. 3).

2.4. Dispersion curves of the three-layer structure

2.4.1. Determination of the minimum number of elements Nmin. The frame-
work discussed above was implemented efficiently in the Matlab language and
the resulting code was executed. This code allowed us to plot the dispersion
curves (see Subsec. 2.4.3, Figs. 9–12). It should be noted that for each fre-
quency range, there is a well-defined number of modes, and for all these modes
to appear in the figures, it is necessary to determine the minimum number of
elements Nmin from which the maximum number of modes is reached. So, if
we consider the frequency range of 3 MHz, determining the number of possible
modes necessitates knowledge of Nmin. One can vary the number of elements up
to a sufficiently large value and record the number of generated modes. In fact,
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Fig. 3. Framework for calculating the dispersion curves and nodal displacements using SAFE.

one can create a numerical sequence Nm = f(Nel) by assigning to each number
of elements Nel the corresponding number of all modes Nm, as shown in Table 2.

Table 2. The number of elements determines how many modes appear
in the 3 MHz frequency range.

Nepl Nel Nosm Noam Nm

1 3 7 7 14

2 6 10 10 20

3 9 10 10 20

4 12 12 11 23

5 15 12 11 23

6 to 120 18 to 360 12 12 24

Nepl is the number of elements per layer, Nel is the number of elements, Nosm is
the number of symmetric modes, Noam is the number of antisymmetric modes, Nm

is the number of modes.
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From Table 2, we can deduce that the number of all possible modes that can
appear in the frequency range of 3 MHz is equal to 24 with 12 symmetric modes
and 12 antisymmetric modes. This occurs when the number of elements per layer
varies from 6 up to 120. This will surely keep its value when Nepl ≥ (120 + n)
for every integer n ≥ 1. Therefore, it is evident that Nmin is equal to 18.

2.4.2. The influence of the number of elements on the number of modes
appearing. For each given frequency range, there exists a maximum number of
modes that must appear. Corresponding to this maximum, there is a minimum
number of elements with which the calculation of the dispersion curves must be
made. This is the subject of this subsection (see Figs. 4–8).
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Fig. 4. Wavenumber dispersion curves by SAFE:
red circles for Nel = 3 vs. black points for Nel = 18.
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Fig. 5. Wavenumber dispersion curves by SAFE:
red circles for Nel = 6 vs. black points for Nel = 18.
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Fig. 6. Wavenumber dispersion curves by SAFE:
red circles for Nel = 9 vs. black points for Nel = 18.
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Fig. 7. Wavenumber dispersion curves by SAFE:
red circles for Nel = 12 vs. black points for Nel = 18.
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Fig. 8. Wavenumber dispersion curves by SAFE:
red circles for Nel = 15 vs. black points for Nel = 18.



10 M. AZKOUR et al.

The number of elements chosen in this study is a multiple of 3, such that
each layer has the same number of elements. When the number of elements Nel

is 3 (as shown in Fig. 4), 14 modes appear in a frequency range of 3 MHz.
Among these 14 modes, only the first four modes align adequately with the
expected modes for Nel = 18 within a restricted frequency range. We can see
that 14 is always less than the maximum number of expected modes, which
is 24, in the same frequency range. For Nel = 6 (as shown in Fig. 5), the
number of modes appearing increases from 14 to 20. The number of modes
coinciding with the expected modes when Nel = 18 also increases from 4 to 7,
and the frequency range of this coincidence expands. Furthermore, 20 is lower
than the maximum number of expected modes – 24, in the frequency range
of 3 MHz. For Nel = 9 (see Fig. 6), where 20 modes appear, the number of
coinciding modes with Nel = 18 increases from 7 to 11, along with an expanded
frequency range of coincidence for the first 7 modes. For Nel = 12 (see Fig. 7),
the number of modes is 23, with 13 modes coinciding with those of Nel = 18.
Similarly, for Nel = 15 (see Fig. 8), the number of modes is 23. So, Nmin must be
higher than 15, and numerical verification shows that the minimum number of
elements should be equal to 18 when each layer has the same number of elements.
If each layer is divided into a different number of elements, it is necessary to
perform another numerical calculation to determine if Nmin differs from 18. It is
noticed that the coincidence of the modes appearing obtained by increasing
the number of elements takes place and it is prolonged on the left side of the
frequency range. The precision of dispersion curves calculated by the SAFE
method depends on the chosen number of elements. So, for each desired precision
in each frequency range, it is necessary to determine the number of elements for
which this precision will be well ensured. Thus, for a desired precision p0, we
cannot be sure that the calculated Nmin will ensure the accuracy in the same
frequency range.

Determining the minimum number of elements Nmin by varying the num-
ber of elements Nel, as presented in Table 2, has been crucial, as we did not
find any precise formula in the literature making it possible to determine Nmin

for any given frequency range in the case of a three-layer bonded structure.
However, for a single plate, Galán and Abascal [23] provided a precise for-
mula. Nevertheless, this study visualizes the satisfactory coincidence of lower
order modes, particularly A0 and S0 modes, calculated with Nel = N0 = 3, to
which we can add A1 and S1 with those calculated by Nmin, provided that the
upper limit of the chosen frequency band does not exceed a certain relatively
low value. Finding a formula to determine Nmin directly for bonded three-layer
structures can be the subject of another paper. We must remember that if the
number of elements increases, then the following remarks hold:
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a) The number of modes increases.
b) The precision of solutions improves.
c) The computing time increases.
d) High-performance computing hardware is required, etc.

2.4.3. Plotting the dispersion curves using the minimum number of ele-
ments. The dispersion curves presented below (Figs. 9–12) are calculated us-
ing Nmin.

The number and types of modes (symmetric and antisymmetric) that can
propagate in the structure at various frequencies are depicted in Fig. 9. However,
when we are forced to use signal processing in an experimental or numerical
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Fig. 9. Wavenumber dispersion curves of the planar tri-layer aluminum/epoxy/aluminum
structure.

Fig. 10. Phase velocity dispersion curves of the planar tri-layer aluminum/epoxy/aluminum
structure.
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Fig. 11. Group velocity dispersion curves of the planar tri-layer aluminum/epoxy/aluminum
structure.

Fig. 12. Wavelength dispersion curves of the planar tri-layer aluminum/epoxy/aluminum
structure.

study of the interaction of ultrasonic guided waves with one or more defects in
such a structure, we want to minimize the number of modes that can propagate.
Since A0 and S0 are fundamental and always exist regardless of the excitation
frequency, this count can no longer be less than two.

Comparing an isotropic structure of the same thickness with a bonded struc-
ture reveals that the latter has a comparatively higher number of propagating
modes. Our three-layer structure is a dispersive medium, as evidenced by the
wavenumber curves’ lack of rectilinear lines. Nonetheless, the variation is nearly
linear for some frequency ranges, which may indicate a less dispersive nature.
Examining the wavenumber curves, for instance, in the 0–0.1 MHz frequency
range, the S0 mode exhibits very weak dispersive behavior. It is evident that
at certain frequencies, symmetric and antisymmetric modes intersect, and there
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exist frequency ranges where two distinct modes are so close to each other that
they appear to be asymptotes of each other. We believe that this effect is most
likely caused by the adhesive layer. Each one of the two modes, A3 and S4, can
have two distinct wavenumbers for the same frequency, approximately 1 MHz.
There are then two group velocities with the opposite signs, indicating that
a wave packet with a negative group velocity travels against the direction of
propagation.

Except for the modes A0 and S0, with cutoff frequencies at 0 and the corre-
sponding phase velocities being noninfinite, the vertical lines whose abscissa are
the cutoff frequencies of the symmetric and antisymmetric modes are vertical
asymptotes for the phase velocity curves. Equations (2.4) and (2.6) lead us to
the conclusion that:

(2.8) VG = V 2
P

(
VP − f

∂VP
∂f

)−1
.

It is then important to note that the group velocity and the frequencies corre-
sponding to the extrema of the phase velocity are the same, and this equality is
well-known in non-dispersive media (VG = VP ). We observe that there are likely
a few frequencies with three-phase velocities in the 1.25–1.5 MHz band for the
A0 mode.

The associated group velocities are zero or almost zero when the wavenumber
curves for nearby frequencies appear vertical or nearly vertical. Certain frequen-
cies result in too low or zero group velocities. Therefore, selecting these fre-
quencies for excitation would not be a good idea if we wanted to conduct exper-
imental or numerical studies on three-layer structures because it would require
a large execution time and the need for quite powerful resources. Notably, the
phase velocity is substantially higher near the cutoff frequencies than the group
velocity, even with a certain increase in velocity. By comparing the group ve-
locity with the phase velocity, we notice that the latter is higher. We know that
the relationship between the wavenumber and the group velocity is given by:

(2.9) VG = 2π

(
∂k

∂f

)−1
.

As a result, the group velocity in a frequency band where the wavenumber
varies linearly is constant; this is evident for the S0 mode in the 0–0.1 MHz band.

The vertical asymptotes for the wavelength curves are the lines whose ab-
scissas are the cutoff frequencies of the symmetric and antisymmetric modes.
A higher frequency corresponds to a shorter wavelength. The wavelength does,
however, decrease for the A0 mode, but at a certain point, it moves backward
in a zigzag pattern (see Fig. 12), creating the potential for two distinct wave-
lengths for the same frequency. It should be mentioned that determining the
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wavelength is crucial when utilizing the finite element method to simulate and
investigate how ultrasonic guided waves interact with a defective three-layer
structure.

2.5. SAFE method compared to GUIGUW program

2.5.1. Comparison of dispersion curves. The dispersion curves calculated
by the SAFE method and those obtained by the GUIGUW program are com-
pared using Nmin.

The dispersion curves obtained using the SAFE method and those calculated
using the GUIGUW program show good agreement, as shown in Figs. 13–16. The
solutions determined by the GUIGUW program and the SAFE method, under
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Fig. 13. Superposition of k-dispersion curves:
red points by GUIGUW vs. black circles by SAFE.

Fig. 14. Superposition of VP -dispersion curves:
red points by GUIGUW vs. black circles by SAFE.
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Fig. 15. Superposition of VG-dispersion curves:
red points by GUIGUW vs. black circles by SAFE.

Fig. 16. Superposition of λ-dispersion curves:
red points by GUIGUW vs. black circles by SAFE.

the previously outlined framework approach, are perfectly aligned in Figs. 13–16.
To keep the GUIGUW or SAFE curves from being obscured by the others,
we had to trace the solutions in extremely bold black circles. This shows the
perfect coincidence between the SAFE method and the GUIGUW program.
Calculating a relative error or difference between GUIGUW and SAFE was not
possible due to their perfect coincidence. In light of this, we can conclude that,
by selecting the f -fixed approach, the GUIGUW program most likely operates
using the SAFE method. Additionally, the GUIGUW curves indicate that there
are frequency regions in which the solutions deviate significantly, a phenomenon
not observed in our SAFE code. It is important to note that we employed the
same number of elements per layer as in the GUIGUW program.
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2.5.2. Comparison of displacements. We chose to compute the longitudinal
displacements ux and transverse displacements uy using the SAFE method at
the frequency f = 200 kHz. Then, we find that at this frequency, two symmetric
modes S0 and S1 and two antisymmetric modes A0 and A1 are observed (see
Fig. 17).
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Fig. 17. Appearing Lamb modes at the frequency of 200 kHz.

Table 3. Wavenumbers, phase velocities, group velocities, and wavelengths
for A0, S0, A1, and S1 at the frequency of 200 kHz.

Mode Wavenumber [1/m] Phase velocity [m/s] Group velocity [m/s] Wavelength [mm]

A0 627.592 2002.313 2927.364 10.011

S0 565.748 2221.194 2340.726 11.105

A1 226.090 5558.105 4998.748 27.790

S1 235.021 5346.900 5217.721 26.734

According to the SAFE method, the nodal displacement is given by:

(2.10) u =
[
ux uy

]T
=
[
iUx Uy

]T
ei(kx−ωt)

with ω = 2πf , Ux and Uy are the real amplitudes of the nodal displacements
ux and uy, respectively, and these amplitudes are represented for all four modes
in Figs. 18–21. The displacements calculated by the SAFE method and those
obtained by the GUIGUW program are compared using Nmin.

The normalized displacement curves calculated using the SAFE method and
those obtained using the GUIGUW program show good agreement, as shown
in Figs. 18–21. The GUIGUW program provides displacements in the range of
−1 to 1. We normalized our displacements by their absolute maximum values
to facilitate comparisons between our displacements and those of the GUIGUW
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Fig. 18. Normalized displacements ux and uy at f = 200 kHz for the A0 mode:
red (ux) and blue (uy) solid lines by the SAFE method vs. blue circles and green cross

by the GUIGUW program.
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Fig. 19. Normalized displacements ux and uy at f = 200 kHz for the S0 mode:
red (ux) and blue (uy) solid lines by the SAFE method vs. blue circles and green cross

by the GUIGUW program.

program. The nodal displacements provided by the SAFE method are typi-
cally of the order of 10−4 or 10−5. For both SAFE and GUIGUW, the same
number of elements per layer is considered. We can see that all modes’ displace-
ments are continuous. When a mode is symmetric, its normal displacements are
antisymmetric concerning the structure’s median plane, but its longitudinal dis-
placements are symmetric. Antisymmetric modes exhibit the opposite behavior.
Another finding for antisymmetric modes is that, under excitation, the point in
the structure’s median plane does not move longitudinally (ux = 0, uy 6= 0);
in contrast, for symmetric modes, it is limited to the longitudinal movement
(ux 6= 0, uy = 0).
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Fig. 20. Normalized displacements ux and uy at f = 200 kHz for the A1 mode: red (ux) and
blue (uy) solid lines by the SAFE method vs. blue circles and green cross by the GUIGUW

program.
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Fig. 21. Normalized displacements ux and uy at f = 200 kHz for the S1 mode: red (ux) and
blue (uy) solid lines by the SAFE method vs. blue circles and green cross by the GUIGUW

program.

2.5.3. Choice of location for testing. In this section, we seek to determine
the best frequency that can ensure good testing by limiting the choice to the
fundamental modes A0 and S0 (see Figs. 22 and 23). As a matter of fact, in
bonded three-layer structures, certain modes exhibit greater sensitivity to varia-
tions in adhesive thickness, and these can be either symmetric or antisymmetric
modes. To determine which of the modes would be more sensitive, though, if we
were to restrict the options to the fundamental modes A0 and S0, the following
will address this query.

A better location for testing would be where quantity ∆VP /VP is substantial.
So, the obvious choice is the S0 mode, occurring at around f = 0.12 MHz, and
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Fig. 22. The variation in the phase velocity ∆VP /VP when the thickness
of the epoxy layer is increased by 5% for the A0 mode and the S0 mode.
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Fig. 23. Zoom at the variation in the phase velocity ∆VP /VP when the thickness
of the epoxy layer is increased by 5% for the A0 mode.

∆VP /VP = 21.56676221%, as shown in Fig. 22. However, at this frequency, the
quantity ∆VP /VP is very small, reaching 0.099315001% for the A0 mode, and
its maximal value across the range of 0.45 MHz does not exceed 0.419707654%
at around f = 0.0125 MHz. Regretfully, the sensitivity of the S0 mode is higher,
but it is situated in its most dispersive domain. So, if someone is interested in
estimating the thickness of the adhesive layer or the absence of epoxy resin in
this kind of structure, we can advise them to use the S0 mode for exciting a real
structure or numerical sample because the S0 mode will provide more informa-
tion about estimating the thickness of epoxy or the lack of epoxy. However, for
detecting and sizing disbonds, for example, it is advised to aim for a maximum
group velocity and a frequency that shows minimal dispersive behavior. So,
using the 0–0.1 MHz band is strongly recommended for the present structure.

To observe the impact of the variation in epoxy thickness on the S0 mode’s
phase and group velocities, we selected its high dispersivity frequency, or roughly
0.12 MHz (see Figs. 24 and 25).
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Fig. 24. The quantity ∆VP /VP in relation to the variation in the epoxy layer thickness
for the S0 mode at the frequency f = 0.12 MHz.
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Fig. 25. The quantity ∆VG/VG in relation to the variation in the epoxy layer thickness
for the S0 mode at the frequency f = 0.12 MHz.

We observed that an increase in epoxy layer thickness leads to a decrease
in phase velocity, and vice versa. However, an equal amount of epoxy added
or removed does not always translate into an equal phase velocity variation.
In other words, the curve indicates that the function is no longer odd, as seen in
the values for the positive abscissa being significantly higher than those for the
negative abscissa. Epoxy is a material that encourages slowness in a way. We
can say that this variation of phase velocity follows hysteretic behavior.

The first thing that immediately stands out in the above figure is that, unlike
the phase velocity variation shown in Fig. 24, the group velocity variation does
not follow the same pace. However, this time, the variations are more signifi-
cant; for instance, a 5% change in epoxy thickness results in a velocity change
of 54.6139%, while the phase velocity variation does not exceed 21.5667%. The
figure clearly shows more representative values. The group velocity tends to in-
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crease for most of the thickness range considered; however, this increase is more
pronounced when the epoxy thickness decreases compared to when it increases.
The group velocity only decreases when the thickness increases by a percentage
of no more than 15%.

For group velocity only, at a low frequency of f = 1 kHz, the variation is
measured as given in Fig. 26.
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Fig. 26. The quantity ∆VG/VG in relation to the variation in the epoxy layer thickness
for the S0 mode at the frequency f = 10−3 MHz.

Figure 26 shows that for the S0 mode with a fixed frequency of 1 kHz, neither
a significant change in the epoxy layer thickness nor a decrease in it results in
the group velocity variation. The group velocity associated with this frequency
is roughly equal to the top velocity for the S0 mode. We note that the group
velocity variation is represented by an affine function. The following hypothe-
sis can be supported by the negligible change in group velocity that occurs in
response to changes in the thickness of the epoxy layer: it is advised to inspect
a structure bonded by the S0 mode at low frequencies, preferably at a frequency
that corresponds to a value near the maximum value of the group velocity, as
this parameter may not have any bearing on the sensitivity of experimental
results, especially when looking for a defect in the epoxy layer.

3. Results and discussion

The dispersive behavior of ultrasonic guided waves propagating in a three-
layer structure was demonstrated in this paper, along with the frequencies at
which this behavior is most noticeable. We chose and established the frequency
range in this paper to study the interaction of ultrasonic guided waves with
a defect in a bonded three-layer structure. Key findings are as follows:

1) Our research demonstrates how the GUIGUW program employs the SAFE
method. But the strategy we employ in this paper ensures that the desired
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solutions are not overlooked. One advantage of the k-fixed method we used
is this: the f -fixed approach used by the GUIGUW program increases the
likelihood of missing solutions, especially when the wavenumber represents
vertical or nearly vertical curve segments. However, the f -fixed approach
may have the advantage of a faster calculation time.

2) This paper shows that because the S0 mode is more sensitive to changes
in the adhesive layer thickness, it is the ideal candidate for excitation in
the identification and evaluation of adhesive layer deficiency. The phase
velocity is unnecessarily large near cutoff frequencies and the cutoff fre-
quency modifies slightly in response to variations in the thickness of the
adhesive layer. This paper recommends the following tasks: We can choose
the S0 mode to determine whether a real-bonded three-layer structure has
the same adhesive layer thickness as the theoretical sample.

3) Let us emphasize that each frequency range has a fixed number of modes
and that the minimum number of elements from which the maximum
number of modes is reached must be determined. Consequently, creating
a formula to determine this number for bonded three-layer structures di-
rectly may be the subject of a subsequent paper.

4) This paper demonstrates that, for frequencies close to the frequency cor-
responding to the maximum value of the group velocity of the S0 mode,
the adhesive layer thickness has no discernible effect on the mode’s group
velocity. This is equivalent to a low-frequency region where a horizontal
or roughly constant asymptote is admitted by the group velocity curve.
Thus, to regulate the adhesive layer quality, this mode is advised.

5) It should be mentioned that the dispersion curves are plotted as a cloud
of irregularly distributed points if the thickness of the epoxy layer drops
below a specific threshold value. Additionally, a large number of the first
modes concentrate on a low-frequency band if the thickness is excessively
large – and this is practically absurd.

4. Conclusion

The purpose of this study was to use the semi-analytical finite element SAFE
method to calculate the dispersion curves of ultrasonic guided waves propa-
gating through a bonded planar three-layer structure composed of aluminum,
epoxy, and aluminum, and to plot the normalized nodal displacements for the
four propagative modes A0, S0, A1, and S1, which appear at the frequency of
200 kHz. The SAFE method was found to be efficient in calculating the disper-
sion curves for planar bonded three-layer structures and was in good agreement
with the GUIGUW program. A second observation given in this paper is that
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the A0 mode remains insensitive to the change of the epoxy layer thickness in the
low-frequency range; on the other hand, the S0 mode is a good candidate for
better testing. If we limit ourselves to the fundamental modes, it appears that
the S0 mode is highly recommended for the evaluation and characterization of
three-layer structures, and it remains possible to have another mode from the
list (A1, S1, A2, S2, etc.) that is more sensitive than the S0 mode for this kind
of structure in the low-frequency range.

In general, this paper presents the dispersive behavior of ultrasonic guided
waves propagating inside bonded three-layer structures and may be useful in
non-destructive testing. This paper showed that for bonded three-layer struc-
tures, the number of modes is high compared to that of isotropic single-layer
structures, and that the cutoff frequencies of one-order modes, which are A1 and
S1, are very close to those of A0 and S0 for the bonded three-layer structures.
It has been shown that the S0 mode is very sensitive to changes in the adhesive
layer thickness. However, its greater sensitivity is in its most dispersive domain.
Then we can use this mode to estimate the difference in epoxy thickness between
two supposedly identical structures, one of which is considered a reference based
on the difference in phase velocity.

In low frequencies, the S0 mode would be a good choice to examine this kind
of structure because of its small dispersive behavior and maximum group veloc-
ity. It is shown that the thickness of the adhesive layer has no appreciable effect
on the group velocity for frequencies near the frequency corresponding to the
maximum value of the group velocity in the S0 mode. This corresponds to a low-
frequency region where the group velocity curve admits a horizontal or approx-
imately constant asymptote. Therefore, this mode is recommended to control
the quality of the adhesive layer. It should be remembered that for each fre-
quency range, there is a well-defined number of modes, and for all these modes
to appear, it is necessary to determine the minimum number of elements from
which the maximum number of modes is reached. So, finding a formula to deter-
mine this number directly for bonded three-layer structures can be the subject
of a future research. Comparing the theoretical findings presented in this paper
with experimental findings remains an interesting subject to explore, particu-
larly when attempting to investigate how ultrasonic guided waves interact with
a bonding defect.
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