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In this paper, we study forced harmonic waves in a magneto-electro-viscoelastic (MEV)
nanobeam embedded in a viscoelastic foundation using nonlocal strain gradient elasticity the-
ory. The viscoelastic foundation is modeled as a Winkler-Pasternak layer. The governing equa-
tions of the nonlocal strain gradient viscoelastic nanobeam are derived using Hamilton’s princi-
ple and solved analytically. A parametric study is presented to examine the effects of physical
variables on the field. It is found that the effect of strain gradient and nonlocal parameter
on dimensionless amplitude and phase angle is quite important. The findings from this study
highlight the significance of identifying magneto-piezoelectricity in predicting the vibration
characteristics of intelligent nanostructures and elucidating the impact of humid thermal ef-
fects on nanomaterials.

Keywords: piezoelectric nanobeam; vibration analysis; viscoelastic damping; nonlocal strain
gradient; magneto-electro-viscoelastic.

1. Introduction

Magneto-electro-elastic (MEE) materials were first used in the 1970s. In
1974, Van Den Boomgard et al. [1] discovered MEE composites consisting of
piezoelectric and piezomagnetic phases. MEE nanomaterials, including BiFeO3,
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BiTiO3-CoFe2O4, NiFe2O4-PZT, and their nanostructures have played a sig-
nificant role in research (Zheng et al. [2], Martin et al. [3], Wang et al.
[4], Prashanthi et al. [5]). For this reason, to harness the enormous poten-
tial of nanostructures and their applications, their mechanical behavior must
be investigated and well identified before introducing new designs. Given these
considerations, classical mechanic continuum theories are no longer suitable to
predict the response of structures at very small scales, as they fail to provide
accurate predictions. To address this problem, nonlocal theories (Eringen [6–
11]) were presented which add a size parameter in the continuum modeling.
Furthermore, various researchers (Li et al. [12], Lam et al. [13]) demonstrated
that an increase in stiffness is not considered in nonlinear elasticity. Therefore,
the nonlocal strain gradient theory was presented, where the stress field applies
to not only the nonlocal stress field but also the strain gradients stress field. In
this paper, the models that are developed according to Eringen’s widely used
nonlocal elasticity theory are studied.

Hence, Peddieson et al. [14] developed a nonlocal Euler-Bernoulli beam
model by presenting a version of the nonlocal elasticity theory. The authors
solved some representative problems, especially for cantilever beams to illus-
trate the magnitude of predicted nonlocal effects. Zenkour and Sobhy [15]
studied the thermal buckling of single-layered graphene sheets on an elastic
medium by using the sinusoidal shear deformation plate theory. Also, several
researchers (Wang [16], Wang et al. [17], Civalek and Demir [18]) inves-
tigated the wave propagation and bending in carbon nanotubes (CNTs) and
microtubules for nonlocal Euler-Bernoulli and Timoshenko beam models. In re-
cent years, Murmu and Pradhan [19] analyzed the small-size effects on single-
walled carbon nanotubes (SWCNTs). They described the stability response of
SWCNTs based on the nonlocal Timoshenko beam theory while considering an
elastic medium. Additionally, the nonlocal parameter, the aspect ratio of the
SWCNT, and Winkler and Pasternak parameters were studied.

Yang et al. [20] studied the nonlinear free vibration of SWCNTs based on
Eringen’s nonlocal elasticity theory and von Kármán geometric nonlinearity.
They solved the obtained equations by using the differential quadrature (DQ)
method. The free vibration, buckling and bending of Timoshenko nanobeams
based on a meshless method were investigated by Roque et al. [21]. Şimşek and
Yurtcu [22] analyzed static bending and buckling of a functionally graded (FG)
nanobeam under transvers distributed loads based on the nonlocal Timoshenko
and Euler–Bernoulli beam theory. They derived the governing equations by ap-
plying the principal of the minimum total potential energy and solved analyti-
cally the resulting equations. A bending analysis of a thermo-magneto-electro-
elastic nanobeam integrated with functionally graded piezomagnetic layers was
conducted by Arefi and Zenkour [23]. Selvamani et al. [24] employed a non-
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local state-space strain gradient approach to study the vibration of piezoelectric
functionally graded nanobeam. Selvamani et al. [25] discussed the static sta-
bility analysis of mass sensors consisting of hygro-thermally activated graphene
sheets using a nonlocal strain gradient theory. The influence of rotation on
a transversely isotropic piezoelectric rod coated with a thin film was reported
by Selvamani and Makinde [26].

Ebrahimi et al. [27] studied the thermal buckling analysis of magneto-
electro-elastic (MEE) porous FG beam in a thermal environment. Ebrahimi
et al. [28] analyzed the bending behavior of magneto-electro-piezoelectric nano-
beam system under hygro-thermal loading. Ke et al. [29] investigated the free
vibration of MEE nanoplates based on Eringen’s nonlocal theory and Kirch-
hoff plate theory. In their analysis, the governing equations and boundary con-
ditions for a MEE nanoplate subjected to biaxial force, external electric po-
tential, external magnetic potential and temperature rise were derived using
the Hamilton’s principle and then solved analytically to obtain the natural fre-
quencies of MEE nanoplates. They also studied the free vibration of the MEE
nanobeam based on the Timoshenko beam theory and solved numerically the
resulting equations. Ke and Wang [30], however, did not investigate magneto-
electro-viscoelastic nanobeams via nonlocal strain gradient theory in their re-
search. A new tangential-exponential higher-order shear deformation theory for
advanced composite plates was studied by Mantari et al. [31].

Ebrahimi and Salari [32] analyzed the effect of various thermal loadings on
the buckling and vibrational characteristics of nonlocal temperature-dependent
FG nanobeams. Ebrahimi et al. [33] investigated the dynamic characteristics
of hygro-magneto-thermo-electrical nanobeam with non-ideal boundary condi-
tions. Ebrahimi et al. [34] reported the thermo-electro-elastic nonlinear stabil-
ity analysis of viscoelastic double-piezo nanoplates under a magnetic field. Shen
et al. [35] investigated the modulation of topological structure including ultra-
high energy density of graphene nanofiber. Sahmani and Aghdam [36] studied
the nonlocal strain gradient beam model for nonlinear vibration in nanobeams.

To the best of the authors’ knowledge, there has been no record regarding
the nonlinear forced harmonic vibration of humid MEV nanobeam using the
nonlocal strain gradient theory. Therefore, there is a strong scientific need to
understand the nonlinear forced harmonic vibration of an MEV nanobeam in
a humid thermal environment using the nonlocal strain gradient theory.

This paper investigates the forced harmonic vibration of a MEV nanobeam
using the nonlocal strain gradient theory. Governing equations of a nanobeam rest-
ing on a viscoelastic substrate are derived based on Hamilton’s principle. The
multiple scale perturbation method is implemented to solve the governing equa-
tions. Effects of different factors, including shape parameter and nonlocal pa-
rameter, on damping vibration characteristics of a nanobeam are studied.
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2. Theory and formulation multiscale composite

In Fig. 1, a piezoelectric nanobeam with length L, width b, and thickness h
is illustrated.

Fig. 1. Geometry of an MEV nanobeam resting on a viscoelastic foundation.

2.1. Multiscale model

The properties of the PCF shell, which is treated as orthotropic, can be
presented as:

E11 = VfE
F
11 + Vmcn,(2.1)

1

E22
=

1

EF11
+
Vmcn
Emcn

− VfVmnc −

V 2
f Emcn

EF22
+ V 2

mcnEmcn
Emcn − 2VfVmcn

VfE
F
22 + VmcnEmcn

,(2.2)

1

G12
=

Vf

GF11
+
Vmcn
Gmcn

,(2.3)

ρ = Vfρf + Vmcnρmcn,(2.4)

ϑ12 = Vfvf + Vmcnvmcn,(2.5)

where EF11 and EF22 are Young’s modulus of the CNT and G12 is the shear
modulus ρ is the mass density, and ϑ12 represents Poisson’s ratio of the fibers.
The corresponding properties of the isotropic matrices in the CNT composite are
Emcn, Gmcn, ρmcn and Vmcn and the volume fractions of the fiber are represented
by Vf .

Using the Halpin-Tsai model, composite tensile modulus is expressed as:

(2.6) Emcn =
EM
8

[
5

(
1 + 2βddVcn
1− βddVcn

)
+ 3

(
1 + 2( lcndcn )β

ll
Vcn

1− βllVcn

)]
,

where

(2.7) βll =

Ecn11
EM
− dccn

4tcn

Ecn11
EM

+ lcn
2hcn/gpl

,
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(2.8) βdd =

Ecn11
EM
− dcn

4hcn

Ecn11
EM

+ dcn
2hcn

,

where Ecn11 refers to Young’s modulus, hcn, dcn, and lcn represent thickness, outer
diameter, and length, respectively, Vcn is the volume fraction of CNT, Vmcn and
Emcn are the volume fraction of the matrix and Young’s modulus, respectively.

For the different distribution multiscale composite shells, we study how the
weight fraction of CNT changes layer-wise in accordance with specific distribu-
tion patterns such as U , X, A, and O. The CNT volume fraction for the n-th
layer corresponding to each distribution pattern can be expressed as:

(2.9)

U : V n
cn = Vcn,

X : V n
cn = 2V cn

(
|2n− nt − 1|

nt

)
,

O : V n
cn = 2V cn

(
1− |2n− nt − 1|

nt

)
,

A : V n
cn = Vcn

(
|2n− 1|
nt

)
,

where the total number of layers is expressed by nt and the total volume fraction
of CNT can be determined by:

(2.10) Vcn =
wcn

wcn +
(
ρcn
ρm

)
−
(
ρcn
ρm

)
wcn

,

where ρcn are the mass densities of the CNT, ρm is the mass density of the
epoxy resin matrix, and wcnis the mass fraction of the CNT.

The relationships between mass density, modulus, and Poisson’s ratio for
the CNT can be expressed as follows:

ρmnc = Vcnρcn + vmρm,(2.11)

Gmnc =
Emnc

2(1 + vmcn)
,(2.12)

Vmcn = Vm,(2.13)

where vm and vmcn are Poisson’s ratio of the matrix and CNT and α11 refers
to the thermal expansion coefficients in the longitudinal direction and α22 in
the transverse direction.
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The thermal expansion coefficients of the longitudinal and transverse direc-
tions of the fiber αf11 and αf22, and the thermal expansion of the CNT αmcn
can be expressed as [12]:

α11 =
VfE

f
11α

f
11 + VmcnEmcnαmcn

VfE
f
11 + VmcnEmcn

,(2.14)

α22 = (1 + Vf )Vfα
f
22 + (1 + V mnc)V mcnαmcn − v12α11,(2.15)

αmcn =
1

2

(
VcnEcnαcn + vmEmαm

vcnEcn + vmEm

)
(1− vmcn)(2.16)

+ (1 + vm)αmVm + (1 + vcn)αcnVcn,

where αmcn, βmcn are the thermal expansion and moisture coefficients of the
epoxy resin CNT matrix and αcn is the thermal expansion coefficient of the CNT.

β11 =
VfE

f
11 + VmcnEmcnβm

VfE
f
11 + VmcnEmcn

,(2.17)

β22 = (1 + Vmcn)Vmcnβm − v12β11.(2.18)

If we define αmcn, βmcn and its parameters are hypothetical.

2.2. Kinematic relations

The displacement field of the refined shear deformable nanobeam can be ex-
pressed as:

u(x, z, t) = u(x, t)− z ∂wb
∂x
− f(z)

∂ws
∂x

,(2.19)

w(x, z, t) = wb(x, t) + ws(x, t),(2.20)

where u is the axial mid-plane displacement, and wb, ws denote the bending
and shear components of transverse displacement, respectively. Also, f(z) is
the shape function representing the shear stress/strain distribution through the
beam thickness. For the present study has a trigonometric nature, and thus,
a shear correction factor is not required (Mantari et al. [31]):

(2.21) f(z) = z − tan (mz), m = 0.03.
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The non-zero strains of the suggested beam model can be expressed as fol-
lows:

εxx =
∂u

∂x
− z ∂

2wb
∂x2

− f(z)
∂2ws
∂x2

,(2.22)

γxz = g(z)
∂ws
∂x

,(2.23)

where g(z) = 1 − df(z)/ dz. According to Maxwell’s equation, the electric
potential Φ and magnetic potential Ψ distributions across the thickness of the
nanobeam are approximated as follows [30]:

Φ(x, z, t) = − cos (βz)φ(x, t) +
2z

h
V,(2.24)

Ψ(x, z, t) = − cos (βz)ψ(x, t) +
2z

h
Ω,(2.25)

in which β = π/h. Also, V and Ω are the external electric voltage and magnetic
potential applied to the nanobeam, respectively. The relationship between elec-
tric field (Ex, Ez) and electric potential (φ) and also magnetic field (Hx, Hz)
and magnetic potential (ψ), can be obtained as:

Ex = −Φ,x = cos (βz)
∂φ

∂x
,(2.26)

Ez = −Φ,z = −β sin (βz)φ(x, t)− 2V

h
,(2.27)

Hx = −Ψ,x = cos (βz)
∂ψ

∂x
,(2.28)

Hz = −Ψ,z = −β sin (βz)ψ(x, t)− 2Ω

h
.(2.29)

Through an extended Hamilton’s principle, the governing equations can be
derived as follows:

(2.30)

tˆ

0

δ(ΠS −ΠK +ΠW ) dt = 0,

where ΠS is the total strain energy, ΠK is the kinetic energy, and ΠW is the
work done by external applied forces. The strain energy ΠS can be calculated
as:

(2.31) ΠS =
1

2

ˆ

V

(σxxεxx + σxzγxz −DxEx −DzEz −BxHx −BzHz) dV.
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By calculating the first variation of strain energy ΠS and substituting
Eqs. (2.22)–(2.23) into Eq. (2.31) yields:

(2.32) δΠS =

L̂

0

(
N
∂δu

∂x
−Mb

∂2δwb
∂x2

−Ms
∂2δws
∂x2

+Q
∂δws
∂x

)
dx

+

L̂

0

(
−Dx

∂δφ

∂x
+Dzδφ−Bx

∂δψ

∂x
+Bzδψ

)
dx.

The variables expressed in the above equation are defined as follows:

(N,Mb,Ms) =

h/2ˆ

−h/2

σxx(1, z, f(z)) dz,(2.33)

Q =

h/2ˆ

−h/2

σxzg(z) dz,(2.34)

(Dx, Bx) =

h/2ˆ

−h/2

(Dx, Bx) cos (βz) dz,(2.35)

(Dz, Bz) =

h/2ˆ

−h/2

(Dz, Bz)ξ sin (βz) dz,(2.36)

where σij , εij , Di, Bi, Ei, Hi, N , Mi, and Q are the stress, strain, electric
displacement, magnetic induction electric field, magnetic field, the axial force,
bending moment and shear force resultants, respectively. The kinetic energy can
be expressed as follows:

(2.37) ΠK =
1

2

ˆ

V

ρ

[(
∂u

∂t

)2

+

(
∂w

∂t

)2
]

dV.

Also, the first variation of kinetic energy of present theory can be written in
the form:
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(2.38) δΠK =

L̂

0

[
I0

(
∂u

∂t

∂δu

∂t
+
∂(wb + ws)

∂t

∂δ(wb + ws)

∂t

)

− I1
(
∂u

∂t

∂2wb
∂t∂x

+
∂2wb
∂t∂x

∂δu

∂t

)
− I2

(
∂u

∂t

∂2δws
∂t∂x

+
∂2ws
∂t∂x

∂δu

∂t

)

+I3

(
∂2wb
∂t∂x

∂2δws
∂t∂x

+
∂2ws
∂t∂x

∂2δwb
∂t∂x

)
+ I4

∂2wb
∂t∂x

∂2δwb
∂t∂x

+ I5
∂2ws
∂t∂x

∂2δws
∂t∂x

]
dx,

in which the mass inertia are defined as:

(2.39) (I0, I1, I2, I3, I4, I5) =

h/2ˆ

−h/2

ρ
(
1, z, f(z), zf(z), z2, f2(z)

)
dz.

The work done by applied forces and its first variation are expressed by:

ΠW =

L̂

0

[
F (wb + ws)−

1

2

(
NE +NH

)(∂ (wb + ws)

∂x

)2
]

dx,(2.40)

δΠw =

L̂

0

[
Fδ (wb + ws)−

(
NE +NH

) ∂ (wb + ws)

∂x

∂δ (wb + ws)

∂x

]
dx,(2.41)

in which F denotes the external transverse load from the viscoelastic medium
which is obtained as:

(2.42) F = kw (wb + ws)− kp
∂2 (wb + ws)

∂x2
+ cd

∂ (wb + ws)

∂t
,

where kw, kp, and cd are the linear, shear and damping coefficients of the
medium. Also, NE and NH denote electric and magnetic loading, respectively.

The following Euler-Lagrange equations are obtained by inserting Eqs. (2.32),
(2.38), and (2.41) into Eq. (2.40) and integrating by parts, with the coefficients
of δu, δwb, δws, δφ, δψ equal to zero, resulting in the following set of equations:

∂N

∂x
= I0

∂2u

∂t2
− I1

∂3wb
∂x∂t2

− I2
∂3ws
∂x∂t2

,(2.43)

∂2Mb

∂x2
= I0

∂2 (wb + ws)

∂t2
+ I1

∂3u

∂x∂t2
− I3

∂4ws
∂x2∂t2

(2.44)

− I4
∂4wb
∂x2∂t2

+
(
NE +NB

) ∂2 (wb + ws)

∂x2
+ F,
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∂2Ms

∂x2
+
∂Q

∂x
= I0

∂2 (wb + ws)

∂t2
+I2

∂3u

∂t2∂x
− I3

∂4wb
∂t2∂x2

(2.45)

− I5
∂4ws
∂t2∂x2

+
(
NE +NB

) ∂2 (wb + ws)

∂x2
+ F,

∂Dx

∂x
+Dz = 0,(2.46)

∂Bx

∂x
+Bz = 0.(2.47)

2.3. The nonlocal strain gradient theory for MEV materials

In Eringen’s nonlocal theory of elasticity, the stress state at a reference
point x in an elastic continuum is not only dependent on the strain state at x
but also on the strain state at all other points x′ in the body. In addition,
based on the nonlocal strain gradient theory developed by Lam et al. [13], the
stress accounts for both the nonlocal elastic stress field and the strain gradient
stress field. Therefore, the stress can be expressed as follows:

(2.48) σij = σ
(0)
ij −∇σ

(1)
ij ,

where the stress σ(0)ij corresponds to strain εij and the higher-order stress σ(1)ij

corresponds to the strain gradient ∇εij . They are defined as:

σ
(0)
ij =

L̂

0

α0

(
x,x′, e0a/l

)
σcij
(
x′
)

dx′,(2.49)

σ
(1)
ij = l2

L̂

0

α1

(
x,x′, e1a/l

)
∇σcij

(
x′
)

dx′,(2.50)

where L is the length of the nanobeam, σcij is the classical stress components at
any point x′ in the body, αi (x,x′, eia/l) is the kernel of the integral equation, in
which a and l correspond to the nonlocalness and denote the internal characteris-
tic length (lattice parameter, size of grain, or granular distance) and the external
characteristic length of the system (wavelength, crack length, size, or dimensions
of the sample), respectively, and ei is a constant appropriate to the material and
has to be determined independently for each material. When the nonlocal func-
tions αi (x,x′, eia/l) satisfy the conditions developed by Eringen [11], the linear
nonlocal differential operator can be assumed as follows:

(2.51) Li = 1− (eia)2∇2 for i = 0, 1.
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By applying Eq. (2.33) into Eq. (2.30), a general constitutive relation in a dif-
ferential form for a nanobeam can be stated as:

(2.52)
[
1− (e1a)2∇2

][
1− (e0a)2∇2

]
σij =

[
1− (e1a)2∇2

]
σcij

−
[
1− (e0a)2∇2

]
l2∇2σcij ,

where ∇2 = ∂2/∂x2 denotes the Laplacian operator. By retaining terms of order
o(∇2) and assuming e0 = e1 = e, the general constitutive relation in a simplified
form can be written as follows:

(2.53)
[
1− (ea)2∇2

]
σij =

(
1− l2∇2

)
σcij .

Similarly, the following equations are obtained for a MEV nanobeam:[
1− (ea)2∇2

]
Dj =

(
1− l2∇2

)
Dc
j ,(2.54) [

1− (ea)2∇2
]
Bj =

(
1− l2∇2

)
Bc
j .(2.55)

In the above equations, σcij , D
c
j and Bc

j are given by Ke et al. [29] as follows:

σcij = Cijklεkl − emijEm − qnijHn,(2.56)

Dc
j = ejklεkl + χjmEm + djnHn,(2.57)

Bc
j = qjklεkl + djmEm + λjnHn,(2.58)

where εkl is the strain and Cijkl, emij , χjm, qnij , djn, and λjn denote the elas-
tic, piezoelectric, dielectric, piezomagnetic, magnetoelectric and magnetic con-
stants, respectively. Finally, the stress-strain relations of a MEV solid can be
expressed as:[

1− µ∇2
]
σxx =

(
1− λ∇2

)
[C11εxx − e31Ez − q31Hz],(2.59) [

1− µ∇2
]
σxz =

(
1− λ∇2

)
[C55γxz − e15Ex − q15Hx],(2.60) [

1− µ∇2
]
Dx =

(
1− λ∇2

)
[e15γxz + χ11Ex + d11Hx],(2.61) [

1− µ∇2
]
Dz =

(
1− λ∇2

)
[e31εxx + χ33Ez + d33Hz],(2.62) [

1− µ∇2
]
Bx =

(
1− λ∇2

)
[q15γxz + d11Ex + λ11Hx],(2.63) [

1− µ∇2
]
Bz =

(
1− λ∇2

)
[q31εxx + d33Ez + λ33Hz],(2.64)

where µ = (ea)2 and λ = l2.
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Applying the Kelvin-Voigt viscoelastic damping model with the damping
coefficient (g0) and integrating Eq. (2.59)–(2.64) over the cross-section area of
the nanobeam provides the following nonlocal relations for a refined beam model:

N−µ∂
2N

∂x2
=
(
1−β∇2

)[(
1 + g0

∂

∂t

)(
J11

∂u

∂x
−Jz11

∂2wb
∂x2

−Jf11
∂2ws
∂x2

)
(2.65)

+Ke
31φ+Km

31ψ−NE−NH

]
,

Mb−µ
∂2Mb

∂x2
=
(
1−β∇2

)[(
1+g0

∂

∂t

)(
Jz11

∂u

∂x
−Jzz11

∂2wb
∂x2

−Jzf11
∂2ws
∂x2

)
(2.66)

+Xe
31φ+Xm

31ψ−ME
b −MH

b

]
,

Ms−µ
∂2Ms

∂x2
=
(
1−β∇2

)[(
1+g0

∂

∂t

)(
Jf11

∂u

∂x
−Jzf11

∂2wb
∂x2

−Jff
11

∂2ws
∂x2

)
(2.67)

+ Y e
31φ+Y m

31ψ−ME
s −MH

s

]
,

Q−µ∂
2Q

∂x2
=
(
1−β∇2

)[(
1+g0

∂

∂t

)(
K55

∂ws
∂x

)
−X15

∂φ

∂x
−Y15

∂ψ

∂x

]
,(2.68)

Dx−µ
∂2dx
∂x2

=
(
1−β∇2

)(
X15

∂ws
∂x

+X11
∂φ

∂x
+Y11

∂ψ

∂x

)
,(2.69)

Dz−µ
∂2dz
∂x2

=
(
1−β∇2

)(
Ke

31

∂u

∂x
−Xe

31

∂2wb
∂x2

−Y e
31

∂2ws
∂x2

(2.70)

−X33φ−Y33ψ−F e33
)
,

Bx−µ
∂2bx
∂x2

=
(
1−β∇2

)(
Y15

∂ws
∂x

+Y11
∂φ

∂x
+K11

∂ψ

∂x

)
,(2.71)

Bz−µ
∂2bz
∂x2

=
(
1−β∇2

)(
Km

31

∂u

∂x
−Xm

31

∂2wb
∂x2

−Y m
31

∂2ws
∂x2

(2.72)

− Y33φ−K33ψ−Fm33
)
.
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In the above equations, the cross-sectional rigidities are expressed as follows:

(
J11, J

z
11, J

f
11, J

zz
11 , J

zf
11 , J

ff
11

)
=

h/2ˆ

−h/2

C11

(
1, z, f, z2, zf, f2

)
dz,(2.73)

(Ke
31, X

e
31, Y

e
31) =

h/2ˆ

−h/2

e31γ sin (γz) (1, z, f) dz,(2.74)

(Km
31, X

m
31, Y

m
31 ) =

h/2ˆ

−h/2

q31γ sin (γz) (1, z, f) dz,(2.75)

K55 =

h/2ˆ

−h/2

C55g
2(z) dz,(2.76)

(X15, Y15) =

h/2ˆ

−h/2

(e15, q15) g cos (γz) dz,(2.77)

(X11, Y11,K11) =

h/2ˆ

−h/2

(χ11, d11, λ11) cos2 (γz) dz,(2.78)

(X33, Y33,K33) =

h/2ˆ

−h/2

(χ33, d33, λ33)β
2 sin

2
(γz) dz,(2.79)

(F e33, F
m
33) =

h/2ˆ

−h/2

(
χ33

2V

h
+d33

2Ω

h
,(2.80)

d33
2V

h
+λ33

2Ω

h

)
γ sin (γz) dz.

Also, the summation of normal forces and moments due to magneto-electrical
field can be defined as:

(2.81)
(
NE+NH,ME

b +MH
b ,M

E
s +MH

s

)
= −

h/2ˆ

−h/2

(
e31

2V

h
+ q31

2Ω

h

)
(1, z, f) dz.
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The governing equations of a refined nanobeam under electrical and magnetic
fields based on the nonlocal strain gradient theory in terms of the displacement
can be obtained by substituting Eqs. (2.55)–(2.54) into Eqs. (2.33)–(2.37) as
follows:

(2.82)
(
1− µ∇2

)(
I0
∂2u

∂t2
− I1

∂3wb
∂t2∂x

− I2
∂3ws
∂t2∂x

)
−
(
1− β∇2

)
·
[(

1 + g0
∂

∂t

)(
J11

∂2u

∂x2
− Jz11

∂3wb
∂x3

− Jf11
∂3ws
∂x3

)
+Ke

31

∂φ

∂x
+Km

31

∂ψ

∂x

]
= 0,

(2.83)
(
1− µ∇2

)(
I0
∂2 (wb + ws)

∂t2
+ I1

∂3u

∂t2∂x
− I3

∂4ws
∂t2∂x2

−I4
∂4wb
∂t2∂x2

+
(
NE +NH

) ∂2 (wb + ws)

∂x2

+kw (wb + ws)− kp
∂2 (wb + ws)

∂x2
+ cd

∂ (wb + ws)

∂t

)
−
(
1− β∇2

) [(
1 + g0

∂

∂t

)(
Jz11

∂3u

∂x3
− Jzz11

∂4wb
∂x4

− Jzf11
∂4ws
∂x4

)
+Xe

31

∂2φ

∂x2
+Xm

31

∂2ψ

∂x2

]
= 0,

(2.84)
(
1− µ∇2

)(
I0
∂2 (wb + ws)

∂t2
+I2

∂3u

∂t2∂x
− I3

∂4wb
∂t2∂x2

− I5
∂4ws
∂t2∂x2

+
(
NE +NH

) ∂2 (wb + ws)

∂x2

+kw (wb + ws)− kp
∂2 (wb + ws)

∂x2
+ cd

∂ (wb + ws)

∂t

)
−
(
1− λ∇2

) [(
1 + g0

∂

∂t

)(
Jf11

∂3u

∂x3
− Jzf11

∂4wb
∂x4

− Jff
11

∂4ws
∂x4

+K55
∂2ws
∂x2

)
+ (Y e

31 −X15)
∂2φ

∂x2
+ (Y m

31 − Y15)
∂2ψ

∂x2

]
= 0,

(2.85)
(
1− λ∇2

)(
Ke

31

∂u

∂x
−Xe

31

∂2wb
∂x2

+ (X15 − Y e
31)

∂2ws
∂x2

+X11
∂2φ

∂x2
+ Y11

∂2ψ

∂x2
−X33φ− Y33ψ − F e33

)
= 0,
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(2.86)
(
1− λ∇2

)(
Km

31

∂u

∂x
−Xm

31

∂2wb
∂x2

+ (Y15 − Y m
31 )

∂2ws
∂x2

+Y11
∂2φ

∂x2
+K11

∂2ψ

∂x2
− Y33φ−K33ψ − Fm33

)
= 0

(see Appendix).

3. Solution procedure

The following boundary conditions for an exact solution of the governing
equations of a magneto-electro-viscoelastic nanobeam are expressed as:

• simply-supported (S):

(3.1) wb = ws = M =
∂u

∂x
= 0 at x = 0, L.

• clamped (C):

(3.2) u = wb = ws =
∂(wb + ws)

∂x
= 0 at x = 0, L.

According to the above boundary conditions, the displacement quantities are
presented in Eq. (3.3)–(3.7) as:

u(x, t) =
∞∑
n=1

Un
∂Xn(x)

∂x
eiωnt,(3.3)

wb(x, t) =

∞∑
n=1

WbnXn(x)eiωnt,(3.4)

ws(x, t) =

∞∑
n=1

WsnXn(x)eiωnt,(3.5)

φ(x, t) =
∞∑
n=1

ΦnXn(x)eiωnt,(3.6)

ψ(x, t) =

∞∑
n=1

ΨnXn(x)eiωnt.(3.7)
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The admissible function Xn is considered as a mode shape according to
boundary conditions as follows [33]:

S–S : Xn = sin
(nπ
L
x
)
,(3.8)

C–C : Xn = sin2
(nπ
L
x
)
.(3.9)

Finally, Eqs. (2.4)–(2.7) can be written as:

(3.10) EI
∂4ŵ

∂x̂4
+m

∂2ŵ

∂t̂2
+ P̂

∂2ŵ

∂x̂2
+ Ĉ

∂ŵ

∂t̂
− EA

2L

∂2ŵ

∂x̂2

L̂

0

(
∂ŵ

∂x̂

)2

dx̂

= F̂ (x̂) cos
(
Ω̂ t̂
)
.

3.1. Primary resonance

In the primary resonance case, it is assumed that the excitation frequency
and the linear frequency of the system ω0 are close to each other and therefore
Ω = ω0. So a detuning parameter σ is employed to illustrate how close Ω is
to ω0:

(3.11) ω2 = Ω + εσ,

where σ is the detuning parameter.
The uniformly approximate solutions of Eq. (3.10) are obtained as:

(3.12) w = w0 (T0, T1, T2, ...) + εw1 (T0, T1, T2, ...) + ε2w2 (T0, T1, T2, ...) ,

where T0 = t and T1 = εt.
The terms of T0 and T1 are expressed as:

(3.13) F (t) = εq cos (ω0T0 + σT1) ,

the derivatives to t yield:

d
dt

= D0 + εD1,(3.14)

d
dt

= D2
0 + 2εD0D1 + ε2(D2

1 + 2D0D1).(3.15)
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Substituting Eqs. (3.14) and (3.15) and equating the coefficients of ε to zero
yield the following differential equations:

ε0 : D2
0w0+Ω2w0 = 0,(3.16)

ε1 : D2
0w1+Ω2w1 = −2D0D1w0−µD0w0−P3w

3
0−k cos (ω0T0+σT1).(3.17)

With this approach, it is convenient to write the solution of Eq. (3.12) as:

(3.18) w0 (T0, T1, T2, ...) = exp (iT0) +A exp (−iT0) ,

where A is an unknown complex function and A is the complex conjugate of A.
By requiring w1 to be periodic in T0 and extracting the secular terms that are
coefficients of e±iω0T0 the governing equation is determined as:

(3.19) 2iω0(A
′ + µA) + 3P3A

2A− 1

2
k exp (−iσT1) = 0.

Assuming that A is in polar form:

(3.20) A =
1

2
a exp (iγ) ,

where a and γ are real parameters. Separating these term parts of the derived
equation results in:

a′ = −µa+
1

2

q

ω0
sin (σT1 − γ) ,(3.21)

aγ′ =
3

8

P3

ω0
a3 − 1

2

q

ω0
cos (σT1 − γ) .(3.22)

Now, by introducing

(3.23) θ = σT1 − γ,

and substituting Eq. (3.23) into Eqs. (3.21) and (3.22) yield:

a′ = −µa+
1

2

q

ω0
sin θ,(3.24)

aγ′ =
3

8

P3

ω0
a3 − 1

2

q

ω0
cos θ.(3.25)
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The singular point of this system at a′ = 0 and θ′ = 0 represents the steady-
state motion of the system. So, in the steady-state condition, the system can be
expressed as:

a = −µa+
1

2

q

ω0
sin θ,(3.26)

σa− 3

8

P3

ω0
a3 = −1

2

q

ω0
cos θ.(3.27)

The fixed points of Eqs. (3.26) and (3.27) correspond to solutions with constant
amplitude and phase. These solutions satisfy

µa =
1

2

q

ω0
sin θ,(3.28)

σ − 3

8

P3

ω0
a2 = −1

2

q

ω0
cos θ.(3.29)

The equation for the frequency response is presented as:

(3.30)

[(
σ − 3

8

P3

ω0
a2
)2

+ µ2

]
a2 =

q2

4ω2
0

.

Substituting Eq. (3.26) into Eq. (3.30) and then substituting that result into
Eqs. (3.28) and (3.29), one can obtain:

(3.31) w = a cos(ω0t+ εσt− θ) +O(ε).

With this, the amplitude response (the magnification factor) can be obtained as:

(3.32) M =
a

|q|
=

1

2ω0

√(
σ − 3

8
P3
ω0
a2
)2

+ µ2
.

Similar to the case of the linear oscillator, the maximum value of the magnifi-
cation factor can be obtained from

(3.33)
dM
dΩ

= 0,
d2M

dΩ 2
= 0.

Equation (3.33) with respect to Ω yields:

(3.34)
1

32
a
(
3P3a

2 − 8Ω − 8
)(

3P3
da
dΩ
− 4

)
+
(
µ2 + (Ω − 1− 3P3a

2)2
) da

dΩ
= 0
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which can be solved for dadΩ as:

(3.35)
da
dΩ

=
8a
(
3P3a

2 − 8Ω − 8
)

27P 2
3 a

4 − 96(Ω − 1)P3a2 + 64
(
µ2 + (Ω − 1)2

) .
This derivative vanishes (and so does dMdΩ ) when:

(3.36)
(
3P3a

2 − 8Ω − 8
)

= 0 =⇒ ap =

√
8(Ω − 1)

3P3
.

To find the values of the critical points Ω1 and Ω2, which correspond to
vertical tangencies of the response curve, where dMdΩ = 0:

(3.37) 27P 2
3 a

4 − 96(Ω − 1)P3a
2 + 64

(
µ2 + (Ω − 1)2

)
.

This above condition is found by equating the denominator of Eq. (3.36) to zero,
and the roots of this equation give Ω1 and Ω2 can be expressed as:

(3.38) Ω1,2 =
1

8

(
8 + 6P3a

2 −
√

9P 2
3 a

4 − 64µ2
)
.

4. Numerical results and discussion

In this section, the vibration behavior of a nanobeam made of piezoelectric
material in a magnetic field is studied (Table 1 and Table 2).

Table 1. Material constants for MEV BaTiO3-CoFe2O4 composite.

Properties BaTiO3-CoFe2O4

C11 [GPa] 154.81

C55 44.2

e31 [C ·m−2] −7.54

e15 5.8

q31 [N/(A ·m)] 89.23

q15 275

χ11 [10−9 C2 ·m−2 ·N−1] 5.64

χ33 5.95

λ11 [10−4 N · s2 ·C−2] −297

λ33 650.3

d11 [10−12 (N · s)/(V ·C)] 5.36

d33 2752.56

ρ [kg ·m−3] 5550
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The validity of the present study is proved by comparing the frequencies of
this model with those of Ebrahimi and Salari [32] for various nonlocal parame-
ters as presented in Table 3. Also, the dimensionless frequency and dimensionless
viscoelastic parameters with C11 = E and I = h3/12 are adopted as:

(4.1)

ω = ωL2

√
ρA

EI
, Kw = kw

L4

EI
, Kp = kp

L2

EI
,

C = cd
L2

√
ρAEI

, η =
g0
L2

√
EI

ρA
.

Table 3. Comparison of the non-dimensional frequency of undamped S–S nanobeam.

L/h P ∆T µ [nm2]
Non-dimensional frequency

Ebrahimi and Salari [32] Present

20 0 0 0 9.6468 9.65189

1 9.1859 9.19080

2 8.7825 8.78720

3 8.4254 8.42995

Figure 2 demonstrates the second resonance of the clamped FG beam, oc-
curring near the first mode, while considering both strain gradient and nonlocal
parameters. Notably, the right branches in the depicted figures exhibit points of
vertical tangency, leading to a jump phenomenon frequently observed in non-
linear vibratory systems. Figure 3 displays the phase angle characteristics of
the clamped FG beam near the first mode, incorporating strain gradient and
nonlocal parameters. Notably, the right branches in the depicted figures reveal
points of vertical tangency, resulting in a common jump phenomenon observed

Fig. 2. Plots of dimensionless amplitude vs. stress field for various strain gradient and nonlocal
parameters (l = 2π, F0 = 20).
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Fig. 3. Plots of dimensionless phase angle vs. stress field for various strain gradient and nonlocal
parameters (l = 2π, F0 = 20).

in nonlinear vibratory systems. Notably, within the 1/2 subharmonic paramet-
ric resonance, there are nine dynamic buckling patterns, and all curves on the
transition set can be described as either straight lines or quadratic curves. Fig-
ure 4 showcases the amplitude behavior of the clamped FG beam around the

Fig. 4. Plots of dimensionless amplitude vs. stress field for various strain gradient and nonlocal
parameters.
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first mode, considering both strain gradient and nonlocal parameters. As evident
from the depicted figures, the right branches display points of vertical tangency,
leading to a typical jump phenomenon observed in nonlinear vibratory systems.

5. Conclusions

This article investigated the forced harmonic vibration of a magneto-electro-
viscoelastic nanobeam resting on a viscoelastic medium, based on a nonlocal
refined beam theory with various boundary conditions. According to the nonlo-
cal strain gradient theory, the governing equations are obtained using Hamilton’s
principle and solved implementing an analytical solution. Then, nondimensional
amplitude and phase angles are studied over stress fields and the key findings
are as follows:

• Once the nonlocal parameter is increased, a wave amplitude becomes
smaller.

• The higher strain gradient parameter value amplifies the amplitude and
reduces the phase angle.

• The phase angle is affected by both the nonlocal parameter and the load
factors.

• An increase in the stress field strength leads to a decrease of the phase
angle’s rigidity.

• By amplifying the stress field strength and nonlocal values, the non-dimen-
sional amplitude undergoes a decrease.

• It is noticed that the curves on the transition set are straight lines or
quadratic.

Appendix

M11 = I0
(
µX13 −X11

)
,

M12 = I1
(
X11 − µX13

)
,

M13 = I2
(
X11 − µX13

)
,

M21 = I1
(
µX40 −X20

)
,

M22 = I0
(
µX20 −X00

)
+ I4

(
X20 − µX40

)
,

M23 = I0
(
µX20 −X00

)
+ I3

(
X20 − µX40

)
,

M31 = I2
(
µX40 −X20

)
,

M32 = I0
(
µX20 −X00

)
+ I3

(
X20 − µX40

)
,
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M33 = I0
(
µX20 −X00

)
+ I5

(
X20 − µX40

)
,

C11 = ig0J11
(
λX15 −X13

)
,

C12 = ig0J
z
11

(
X13 − λX15

)
,

C13 = ig0J
f
11

(
X13 − λX15

)
,

C21 = ig0J
z
11

(
λX60 −X40

)
,

C22 = i
(
X00 − µX20

)
cd + ig0J

zz
11

(
X40 − λX60

)
,

C23 = i
(
X00 − µX20

)
cd + ig0J

zf
11

(
X40 − λX60

)
,

C31 = ig0J
f
11

(
λX60 −X40

)
,

C32 = i
(
X00 − µX20

)
cd + ig0J

zf
11

(
X40 − λX60

)
,

C33 = i
(
X00 − µX20

)
cd + ig0J

ff
11

(
X40 − λX60

)
+ ig0K55

(
λX40 −X20

)
,

k11 = J11
(
λX15 −X13

)
,

k12 = Jz11
(
X13 − λX15

)
,

k13 = Jf11
(
X13 − λX15

)
,

k14 = Ke
31

(
λX13 −X11

)
,

k15 = Km
31

(
λX13 −X11

)
,

k21 = Jz11
(
λX60 −X40

)
,

k22 =
(
NE +NH

) (
X20 − µX40

)
+ kw

(
X00 − µX20

)
+ kp

(
µX40 −X20

)
+ Jzz11

(
X40 − λX60

)
,

k23 =
(
NE +NH

) (
X20 − µX40

)
+ kw

(
X00 − µX20

)
+ kp

(
µX40 −X20

)
+ Jzf11

(
X40 − λX60

)
,

k24 = Xe
31

(
λX40 −X20

)
,

k25 = Xm
31

(
λX40 −X20

)
,

k31 = Jf11
(
λX60 −X40

)
,

k32 =
(
NE +NH

) (
X20 − µX40

)
+ kw

(
X00 − µX20

)
+ kp

(
µX40 −X20

)
+ Jzf11

(
X40 − λX60

)
,
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k33 =
(
NE +NH

) (
X20 − µX40

)
+ kw

(
X00 − µX20

)
+ kp

(
µX40 −X20

)
+K55

(
λX40 −X20

)
+ Jff

11

(
X40 − λX60

)
,

k34 = (Y e
31 −X15)

(
λX40 −X20

)
,

k35 = (Y m
31 − Y15)

(
λX40 −X20

)
,

k41 = Ke
31

(
X20 − λX40

)
,

k42 = Xe
31

(
λX40 −X20

)
,

k43 = (X15 − Y e
31)
(
X20 − λX40

)
,

k44 = X11

(
X20 − λX40

)
+X33

(
λX20 −X00

)
,

k45 = Y11
(
X20 − λX40

)
+ Y33

(
λX20 −X00

)
,

k51 = Km
31

(
X20 − λX40

)
,

k52 = Xm
31

(
λX40 −X20

)
,

k53 = (Y15 − Y m
31 )
(
X20 − λX40

)
,

k54 = Y11
(
X20 − λX40

)
+ Y33

(
λX20 −X00

)
,

k55 = K11

(
X20 − λX40

)
+K33

(
λX20 −X00

)
,

F e33 = Fm33 = 0.
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