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We investigate the dynamic behavior of a rectangular orthotropic plate loaded with the
concentrated force moving with constant speed along the structure. In this work, we consider
two types of plates in terms of boundary conditions. In the first case, we assume that the plate
is simply supported on all of its edges with a number of point supports arbitrarily located in
its area, and in the second one, we look at a two-span bridge plate with arbitrarily oriented
intermediate linear support. Solutions for both cases are obtained by replacing the original
structure with a single-span plate subjected to a given moving load and redundant forces
situated in positions of removed intermediate supports. Redundant forces are obtained by the
application of Volterra integral equations for the simply supported plate, and finite difference
discretization and the Newmark method for the bridge plate. Two numerical examples are
given to prove the effectiveness of the presented approach.
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1. Introduction

Many types of structures are subjected to various types of moving loads
causing structural vibrations. It is a problem that occurs, for example, in road
and railway bridges, ceilings above underground passages, tunnels, or runways.
This issue was analyzed by many authors for many years with various types
of structures as well as different moving load models taken into account [2, 7,
11, 12]. In civil engineering, structures such as bridges or ceilings can be ef-
fectively modeled as rectangular orthotropic plates. Structural orthotropy oc-
curs in slabs stiffened with uni- or bidirectional ribs, grillages, box floors, and
slabs on trapezoidal plates or plates made of orthotropic material (for exam-
ple, wood). Langer [4] proposed a solution for the eigenvalue problem of the
orthotropic bridge plate by applying the Ritz method and Legendre’s polyno-
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mials. Klasztorny [3] analyzed damped vibrations of rectangular orthotropic
bridge plate resulting from moving inertial loads, described by matrix differ-
ential equations of Hill’s type. Law et al. [6] obtained the dynamic response
of a bridge deck subjected to moving loads by applying Hamilton’s principle
and modal superposition. Papkov [10] proposed an asymptotically exact solu-
tion for the problem of transverse vibrations of rectangular orthotropic plate
with free edges. Zhang and Zhang [13] applied the method of finite inte-
gral transforms to solve the problem of the transverse vibration of a plate
with two opposite edges rotationally restrained. Mart́ınez-Rodrigo et al. [9]
investigated the dynamic response of railway bridges modeled as orthotropic
plates simply- or elastically supported on opposite edges in terms of free vi-
brations and vibrations resulting from a stream of moving constant forces.
Farah et al. [1] proposed a semi-analytical solution based on modal super-
position for the free vibration problem of a multi-span orthotropic bridge plate
with rubber bearings. Lenartowicz and Guminiak [8] applied the finite ele-
ment method and finite difference method to describe free vibrations of iso- and
orthotropic plates with variable thickness and contact with water taken into
account.

This work is focused on two types of orthotropic plates. The first one is
a plate of dimensions B and L simply supported on all its edges and point
supported by a number of k intermediate supports (see Fig. 1). The second one
is a plate with two simply supported and two free edges with arbitrarily oriented
intermediate linear support dividing the plate into two spans (see Fig. 2). Both
plates are subjected to the concentrated force of magnitude P moving along the
plate with constant speed v.

Fig. 1. Simply supported plate with point supports subjected to a moving force.
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Fig. 2. Two-span bridge plate subjected to a moving force.

Equation of motion describing vibrations w = w(x, y, t) of an orthotropic
plate subjected to a force P moving with speed v on the distance y0 measured
from the axis x has the form

(1.1) Dx
∂4w

∂x4
+ 2H

∂4w

∂x2∂y2
+Dy

∂4w

∂y4
+ µẅ = Pδ (x− vt) δ (y − y0) ,

where Dx and Dy are the flexural rigidities in the x- and y-directions, H =
D1 +2Dxy is the effective torsional rigidity, where D1 = νyDx = νxDy is defined
with Poisson’s ratios νx and νy, Dxy is the torsional rigidity, and µ is the mass
of the plate per unit area. Symbol δ on the right side of Eq. (1.1) denotes the
Dirac delta.

2. Simply supported plate with point supports

As the first type of structure, we shall consider a simply supported rectan-
gular plate of length L and width B with a number of k arbitrarily situated
point supports. In the presented approach, we replace this model with a simply
supported plate subjected to a given moving load and point time-varying forces
Xi(t) applied at positions of removed intermediate supports (see Fig. 3).

2.1. Case of a moving constant force

The equation of motion for the plate loaded with a force moving with con-
stant speed has the form (1.1). Boundary conditions for the plate simply sup-
ported on all edges are
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Fig. 3. Simply supported plate subjected to a moving force and concentrated time-varying
forces.

(2.1)

w (0, y, t) = w (L, y, t) = 0,

w (x, 0, t) = w (x,B, t) = 0,

∂2w (x, y, t)

∂x2

∣∣∣∣
x=0

=
∂2w (x, y, t)

∂x2

∣∣∣∣
x=L

= 0,

∂2w (x, y, t)

∂y2

∣∣∣∣
y=0

=
∂2w (x, y, t)

∂y2

∣∣∣∣
y=B

= 0,

and the initial conditions are

(2.2) w (x, y, 0) = ẇ (x, y, 0) = 0.

We assume the solution in the form of double sine series:

(2.3) wP (x, y, t) =
∞∑
m=1

∞∑
n=1

Ymn (t) sin
mπx

L
sin

nπy

B
.

After substituting expression (2.3) into Eq. (1.1) and applying the orthogo-
nality method, we obtain a set of ordinary differential equations:

(2.4) Ÿmn (t) + ω2
mnYmn (t) =

4P

µBL
sin

mπvt

L
sin

nπy0
B

,
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where

(2.5) ω2
mn =

1

µ

[
Dx

(mπ
L

)4
+ 2H

(mπ
L

)2 (nπ
B

)2
+Dy

(nπ
B

)4]
.

Assuming zero initial conditions, function Ymn (t) can be presented as

(2.6) Ymn (t) =
4P

µBL

sin mπvt
L sin nπy0

B

ω2
mn −

(
mπv
L

)2 − mπv
L sin mπvt

L sin nπy0
B

ωmn

[
ω2
mn −

(
mπv
L

)2]
.

Therefore, vibrations of the plate resulting from the moving force have the fol-
lowing form:

(2.7) wP (x, y, t) =
4P

µBL

[ ∞∑
m=1

∞∑
n=1

sin mπvt
L sin nπy0

B sin mπx
L sin nπy

B

ω2
mn −

(
mπv
L

)2
−
∞∑
m=1

∞∑
n=1

mπv
L sin mπvt

L sin nπy0
B sin mπx

L sin nπy
B

ωmn

[
ω2
mn −

(
mπv
L

)2]
.

2.2. Case of a concentrated time-varying force

The equation of motion for the plate loaded with the concentrated time-
varying force Xi(t) situated at coordinates xi, yi has the following form:

(2.8) Dx
∂4w

∂x4
+ 2H

∂4w

∂x2∂y2
+Dy

∂4w

∂y4
+ µẅ = Xi(t)δ (x− xi) δ (y − yi) .

The solution of Eq. (2.9) has a similar form as for Eq. (1.1):

(2.9) wXi (x, y, t) =
∞∑
m=1

∞∑
n=1

Ymn (t) sin
mπx

L
sin

nπy

B
.

Substituting expression (2.9) into Eq. (1.1) and using the orthogonality
method, we obtain a set of ordinary differential equations

(2.10) Ÿmn (t) + ω2
mnYmn (t) =

4

µBL
Xi (t) sin

mπxi
L

sin
nπyi
B

,

where ω2
mn is described as (2.5). The solution of Eq. (2.10) can be presented in

the convolution form:

(2.11) Ymn (t) =
4

µBL
sin

mπxi
L

sin
nπyi
B

tˆ

0

hmn (t− τ)Xi (τ) dτ,
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where hmn (t) is the impulse response function described as

(2.12) hmn (t) =
1

ωmn
sinωmnt.

Finally, vibrations of the plate have the following form:

(2.13) wXi (x, y, t) =
4

µBL

∞∑
m=1

∞∑
n=1

sin
mπxi
L

sin
nπyi
B

· sin mπx
L

sin
nπy

B

tˆ

0

1

ωmn
sinωmn (t− τ)Xi (τ) dτ.

2.3. Vibrations of a plate with point supports

Vibrations of a simply supported plate with k point supports can be pre-
sented through the superposition of previously solved cases:

(2.14) w (x, y, t) =

k∑
i=1

wXi (x, y, t) + wP (x, y, t) .

Knowing that deflections of the plate at the positions of point supports are
equal to 0, we can build a system of Volterra integral equations of the first kind
in order to find functions Xi(t) describing reactions on the point supports:

(2.15)
k∑
i=1

T̂

0

dij (t− τ)Xj (τ) dτ + ∆iP (t) = 0, j = 1, 2, ..., k,

where

(2.16)
dij (t) =

4

µBL

∞∑
m=1

∞∑
n=1

hmn (t) sin
mπxi
L

sin
nπyi
B

sin
mπxj
L

sin
nπyj
B

,

∆iP (t) = wP (xi, yi, t) .

To avoid difficulties of solving a system of integral equations analytically,
we shall apply a simple procedure in which we replace direct integration with a
numerical one:

(2.17)

TRˆ

0

dij (tR − τ)Xj (τ) dτ =

R∑
r=1

dij (tR − τr)Xj (τr) ∆τ.
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The procedure above is based on the midpoint method in which we divide the
time of force movement on the plate tmax = L/v into N equal time segments ∆τ .
This way, we can replace Eq. (2.15) with

(2.18)
k∑
j=1

R∑
r=1

dij (tR − τr)Xj (τr) ∆τ + ∆iP (tR) = 0, i = 1, 2, ..., k,

where

(2.19)
tR = R∆τ, τr = (r − 0, 5) ∆τ, r = 1, 2, ..., R,

R = 1, 2, ..., N, ∆τ = L/(Nv).

Time step ∆τ used for the numerical calculations should be carefully selected
in order to obtain an acceptable and stable solution. The size of time step ∆τ
depends on the highest value of ωmn used in previous formulas and should fulfill
the condition:

(2.20) ∆τ <
2π

ωmn,max
.

Further calculations were performed assuming mmax = nmax = 10. The
convergence analysis proved that for higher values of m and n used in the series,
differences in obtained results are negligible.

3. Two-span bridge plate

As the second type of structure, we consider a two-span bridge plate with
arbitrarily situated linear support dividing the plate into two spans. Similarly
to the previous model, we remove intermediate support and introduce linear
load X(x, y, t) describing support reaction. Single-span bridge plate subjected
to a given moving force P and distributed load X(x, y, t) is shown in Fig. 4.

Boundary conditions for the bridge plate are

(3.1)

w (0, y, t) = w (L, y, t) = 0,

∂2w (x, y, t)

∂x2

∣∣∣∣
x=0

=
∂2w (x, y, t)

∂x2

∣∣∣∣
x=L

= 0,

∂2w (x, y, t)

∂y2

∣∣∣∣
y=0

=
∂2w (x, y, t)

∂y2

∣∣∣∣
y=B

= 0,

∂3w (x, y, t)

∂y3

∣∣∣∣
y=0

=
∂3w (x, y, t)

∂y3

∣∣∣∣
y=B

= 0.

Initial conditions are the same as for the simply supported plate – Eq. (2.2).
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Fig. 4. Single-span bridge plate subjected to a moving force and distributed time-varying linear
load.

3.1. Case of moving constant force

The solution of the equation of motion (1.1) for a simply supported bridge
plate subjected to the moving force can be presented as

(3.2) wP (x, y, t) =
∞∑
n=1

Vn (y, t) sin
nπx

L
.

After substituting expression (3.2) into the equation of motion (1.1) and
using the orthogonality method, we obtain a set of partial differential equations:

(3.3) µV̈n (y, t) +Dy
∂4Vn (y, t)

∂y4
− 2H

(nπ
L

)2 ∂2Vn (y, t)

∂y2

+Dx

(nπ
L

)4
Vn (y, t) =

2P

L
sin

nπvt

L
δ (y − y0) .

In order to replace partial differential equations with ordinary differential
equations, we shall use central difference quotients:

(3.4)

∂2Vn (y, t)

∂y2
=

1

(∆y)2
[Vn,i−1 (t)− 2Vn,i (t) + Vn,i+1 (t)] ,

∂4Vn (y, t)

∂y4
=

1

(∆y)4
[Vn,i−2 (t)− 4Vn,i−1 (t) + 6Vn,i (t)

−4V n,i+1 (t) + Vn,i+2 (t)] .
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Let us divide the plate into s longitudinal stripes (along axis x) of equal
width ∆y and apply formulas (3.4). This will lead us to ordinary differential
equations:

(3.5) µV̈ P
n,i (t) +AnV

P
n,i−2 (t) +BnV

P
n,i−1 (t) + CnV

P
n,i (t) +BnV

P
n,i+1 (t)

+AnV
P
n,i+2 (t) = Pn,i (t) for i = 2, 3, ..., s− 2,

where constants An, Bn, Cn are described as

(3.6)

An =
Dy

(∆y)4
, Bn = −

[
4Dy

(∆y)4
+

2H

(∆y)2

(nπ
L

)2]
,

Cn =

[
6Dy

(∆y)4
+

4H

(∆y)2

(nπ
L

)2
+Dx

(nπ
L

)4]
equations for i = 0, i = 1, i = s − 1, i = s are related to boundary conditions
(free edges at y = 0 and y = B)

µV̈ P
n,0(t)+DnV

P
n,0(t)+EnV

P
n,1(t)+FnV

P
n,2(t) = Pn,0(t)

for i = 0,

µV̈ P
n,0(t)+GnV

P
n,0(t)+HnV

P
n,1(t)+BnV

P
n,2(t)+AnV

P
n,3(t) = Pn,1(t)

(3.7) for i = 1,

µV̈ P
n,s−1(t)+AnV

P
n,s−3(t)+BnV

P
n,s−2(t)+HnV

P
n,s−1(t)+GnV

P
n,s(t) = Pn,s−1(t)

for i = s− 1,

µV̈ P
n,s(t)+FnV

P
n,s−2(t)+EnV

P
n,s−1(t)+DnV

P
n,s(t) = Pn,s(t)

for i = s,

where constants Dn, En, Fn, Gn, Hn have the form:

(3.8)

Dn =
6Dy

(∆y)4
+

4H

(∆y)2

(nπ
L

)2
+Dx

(nπ
L

)4
−
[

2Dy

(∆y)4
+
H − 2Dxy

(∆y)2

(nπ
L

)2][
2 + (∆y)2 νx

(nπ
L

)2]
,

En = − 2Dy

(∆y)4

[
2 + (∆y)2

H + 2Dxy

Dy

(nπ
L

)2]
,

Fn =
2Dy

(∆y)4
, Gn = −

[
2Dy

(∆y)4
+

2H − νxDy

(∆y)2

(nπ
L

)2]
,

Hn =
5Dy

(∆y)4
+

4H

(∆y)2

(nπ
L

)2
+Dx

(nπ
L

)4
.
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Equations (3.5) and (3.7) can be presented in the matrix notation:

(3.9) M · V̈P
(t) + K ·VP (t) = P(t).

Taking into account a number of N mode shape functions, the vectors of
displacements and accelerations will be presented as

(3.10)

VP (t) =


VP

1 (t)

VP
2 (t)

...

VP
N (t)

, VP
n (t) =



V P
n,0 (t)

V P
n,1 (t)

...

V P
n,s (t)

,

V̈
P

(t) =


V̈
P
1 (t)

V̈
P
2 (t)

...

V̈
P
N (t)

, V̈
P
n (t) =


V̈ P
n,0 (t)

V̈ P
n,1 (t)

...

V̈ P
n,s (t)

, n = 1, 2, ..., N.

The mass matrix M will have diagonal form:

(3.11)

M =


M1

M2

. . .

MN


N(s+1)xN(s+1)

,

Mn =


µ/2

µ

. . .

µ/2


(s+1)x(s+1)

.

The stiffness matrix K will be presented as

(3.12) K =


K1

K2

. . .

KN


N(s+1)xN(s+1)

,
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(3.12)[Cont.] Kn =



Dn En Fn

Gn Hn Bn An

An Bn Cn Bn An

. . . . . . . . . . . . . . .

An Bn Cn Bn An

An Bn Hn Gn

Fn En Dn


(s+1)x(s+1)

.

The load vector has the form:

(3.13) P(t) =


P1 (t)

P2 (t)
...

PN (t)

, Pn(t) =


Pn,0 (t)

Pn,1 (t)
...

Pn,s (t)

,
where

(3.14)

Pn,i (t) =
2P

∆yL
sin

nπvt

L
for i = j, j 6= 0 and j 6= s,

Pn,i (t) =
P

∆yL
sin

nπvt

L
for i = j, j = 0 or j = s,

Pn,i (t) = 0 for i 6= j.

3.2. Case of concentrated time-varying forces

Continuous load X(x, y, t) shown in Fig. 4 is replaced with concentrated
forces Xi(t) situated on the support line (see Fig. 5).

The equation of motion for a case of single concentrated time-varying force
has the form (2.8). The solution of the equation can be presented as

(3.15) wX (x, y, t) =

∞∑
n=1

Vn (y, t) sin
nπx

L
.

Taking a similar approach as for the previously mentioned cases, we obtain
a set of partial differential equations:

(3.16) µV̈n (y, t) +Dy
∂4Vn (y, t)

∂y4
− 2H

(nπ
L

)2 ∂2Vn (y, t)

∂y2
+Dx

(nπ
L

)4
Vn (y, t)

=
2Xi (t)

L
sin

nπx0
L

δ (y − yi) .
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Fig. 5. Single-span bridge plate subjected to concentrated time-varying forces situated on the
line of intermediate support.

Ordinary differential equations obtained by applying finite difference proce-
dures have the form:

µV̈ X
n,0 (t) +DnV

X
n,0 (t) + EnV

X
n,1 (t) + FnV

X
n,2 (t) = Xn,0 (t)

for i = 0,

µV̈ X
n,0 (t) +GnV

X
n,0 (t) +HnV

X
n,1 (t) +BnV

X
n,2 (t) +AnV

X
n,3 (t) = Xn,1 (t)

for i = 1,

µV̈ X
n,i (t) +AnV

X
n,i−2 (t) +BnV

X
n,i−1 (t) + CnV

X
n,i (t)

+BnV
X
n,i+1 (t) +AnV

X
n,i+2 (t) = Xn,i (t)

(3.17) for i = 2, 3, ..., s− 2,

µV̈ X
n,s−1 (t) +AnV

X
n,s−3 (t) +BnV

X
n,s−2 (t) +HnV

X
n,s−1 (t)

+GnV
X
n,s (t) = Xn,s−1 (t)

for i = s− 1,

µV̈ X
n,s (t) + FnV

X
n,s−2 (t) + EnV

X
n,s−1 (t) +DnV

X
n,s (t) = Xn,s (t)

for i = s.

Constants An, ...,Hn are described by formulas (3.6) and (3.8). The matrix
notation for the equations above has the form:

(3.18) M · V̈X
(t) + K ·VX (t) = X (t) ,
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where mass and stiffness matrices are described as (3.11) and (3.12). Vectors of
displacements and accelerations can be presented as

(3.19)

VX(t) =


VX

1 (t)

VX
2 (t)
...

VX
N (t)

, VX
n (t) =


V X
n,0 (t)

V X
n,1 (t)

...

V X
n,s(t)

,

V̈
P

(t) =


V̈
X
1 (t)

V̈
X
2 (t)
...

V̈
X
N (t)

, V̈
P
n (t) =


V̈ X
n,0 (t)

V̈ X
n,1 (t)

...

V̈ X
n,s (t)

, n = 1, 2, ..., N.

The load vector has the form:

(3.20) X (t) =


X1 (t)
X2 (t)

...
XN (t)

, Xn (t) =


Xn,0 (t)
Xn,1 (t)

...
Xn,s (t)

,
where

(3.21)

Xn,i (t) =
2Xi(t)

∆yL
sin

nπxi
L

for i 6= 0 and i 6= s,

Xn,i (t) =
Xi(t)

∆yL
sin

nπxi
L

for i = 0 or i = s.

3.3. Two-span bridge plate

The solution for a two-span bridge plate is obtained by combining two pre-
viously analyzed cases and applying the Newmark method formulas [5] for the
case of moving constant force:

(3.22)

VP (tr+1) = VP (tr) + ∆tV̇
P

(tr) + α (∆t)2 V̈
P

(tr) + β (∆t)2 V̈
P

(tr+1) ,

V̇
P

(tr+1) = V̇
P

(tr) +
1

2
∆tV̈

P
(tr) +

1

2
∆tV̈

P
(tr+1) ,

V̈
P

(tr+1) = M̃−1P̃(tr+1) ,

P̃ (tr+1) = P(tr+1)−K
[
VP (tr) + ∆tV̇

P
(tr) + α (∆t)2 V̈

P
(tr)
]
,
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and for the case of concentrated time-varying forces situated on the support
line:

(3.23)

VX(tr+1) = VX(tr) + ∆tV̇
X

(tr) + α (∆t)2 V̈
X

(tr) + β (∆t)2 V̈
X

(tr+1) ,

V̇
X

(tr+1) = V̇
X

(tr) +
1

2
∆tV̈

X
(tr) +

1

2
∆tV̈

X
(tr+1) ,

V̈
X

(tr+1) = M̃
−1

X̃(tr+1) ,

X̃ (tr+1) = X(tr+1)−K
[
VX(tr) + ∆tV̇

X
(tr) + α (∆t)2 V̈

X
(tr)
]
,

where r = 0, 1, ..., R. R is the number of time steps used in the Newmark numer-
ical integration. For further calculations, the average acceleration method has
been chosen with parameters β = 0.25 and α = 0.5 − β = 0.25 = β providing
unconditional stability. Initial conditions are

(3.24)
VP (t0 = 0) = 0, V̇

P
(t0 = 0) = 0, V̈

P
(t0 = 0) = 0,

VX(t0 = 0) = 0, V̇
X

(t0 = 0) = 0, V̈
X

(t0 = 0) = 0.

The matrix M̃ required to determine the vector of accelerations unknown at
every time step is described as

(3.25)

M̃ = M + β (∆t)2K,

M̃
−1

=
(
M + β (∆t)2K

)−1
,

M̃
−1

=


M̃
−1
1

M̃
−1
2

. . .

M̃
−1
N


N(s+1)xN(s+1)

,

M̃
−1
n =


mn,00 mn,01 · · · mn,0s

mn,10 mn,11 · · · mn,1s

...
...

. . .
...

mn,s0 mn,s1 · · · mn,ss


(s+1)x(s+1)

=


mT
n,0

mT
n,1

...

mT
n,s

,

mT
n,i =

[
mn,i0 mn,i1 · · · mn,is

]
.
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The vector X∗ containing values of forces Xi(t) can be obtained from the
system of compatibility equations given in the matrix form:

(3.26) B ·X∗(tr+1) + b(tr+1) = 0.

The matrix B has the form:

(3.27) B =
2α (∆t)2

∆yL

N∑
n=1

{
sin

nπxi
L

}
M̃
−1
n

{
sin

nπxi
L

}
,

where

(3.28)
{

sin
nπxi
L

}
= diag

(
sin

nπx0
L

; sin
nπx1
L

; · · · ; sin
nπxs
L

)
.

The vector b (tr+1) is defined as

(3.29) b(tr+1) =



wP0 (x0, tr+1) +

N∑
n=1

sin
nπx0
L

dn,0 (tr+1)

wP1 (x1, tr+1) +
N∑
n=1

sin
nπx1
L

dn,1 (tr+1)

...

wPs (xs, tr+1) +
N∑
n=1

sin
nπxs
L

dn,s (tr+1)


,

where

(3.30) dn(tr+1) = VX
n (tr) + ∆tV̇

X
n (tr) + α (∆t)2

[
V̈
X
n (tr)− un(tr+1)

]

=


dn,0 (tr+1)

dn,1 (tr+1)

...
dn,s (tr+1)


and

(3.31) un (tr+1) =


mT
n,0 ·

[
K ·VX

n (tr+1)
]

mT
n,1 ·

[
K ·VX

n (tr+1)
]

...
mT
n,s ·

[
K ·VX

n (tr+1)
]

.
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The vector X∗ can then be defined as

(3.32) X∗(tr+1) = −B−1 · b (tr+1) =


X0(tr+1)

X1(tr+1)
...

Xs(tr+1)

.
The load vector in Eq. (3.16) has the form:

(3.33) X(tr+1) =


X1(tr+1)

X2(tr+1)
...

XN (tr+1)

, Xn(tr+1) =


Xn,0(tr+1)

Xn,1(tr+1)
...

Xn,s(tr+1)

,
where

(3.34)

Xn,i (tr+1) =
2Xi (tr+1)

∆yL
sin

nπxi
L

for i 6= 0 and i 6= s,

Xn,i (tr+1) =
Xi (tr+1)

∆yL
sin

nπxi
L

for i = 0 or i = s.

Finally, vibrations of the two-span bridge plate can be presented as

(3.35) w (x, yi, tr) = wP (x, yi, tr) + wX (x, yi, tr)

=
N∑
n=1

sin
nπx

L
V P
n,i (tr) +

N∑
n=1

sin
nπx

L
V X
n,i (tr).

4. Numerical examples

4.1. Simply supported plate with two point supports

The first presented example is of a simply supported rectangular orthotropic
plate with two point supports of dimensions shown in Fig. 6. Plate rigidities are
equal to Dx = 7.68 ·108 N ·m, Dy = H = 1.82 ·108 N ·m, Dxy = 7.29 ·107 N ·m.
Poisson’s ratio is equal to νx = 0.2 and the mass per unit area is equal to
µ = 1414 kg/m2. The plate is subjected to the concentrated force of magnitude
P = 100 000 N moving along axis x with constant speed v = 40 m/s. Figures 7
and 8 show dynamic deflections of points “a” and “b” with respect to time
of the force movement along the plate. Results (continuous line) are compared
with numerical results (dotted line) obtained by applying the finite element
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Fig. 6. Simply supported plate with two point supports subjected to a moving force.

Fig. 7. Dynamic deflection of point “a”.

Fig. 8. Dynamic deflection of point “b”.
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method (FEM) and very good agreement can be observed. FEM results were
obtained for spatial discretization using quadratic plate elements of size 1× 1 m
and time step ∆t = 0.0025 s. Calculations were performed by using the Autodesk
Robot Structural Analysis Professional program. The dashed black line marks
the influence line of static deflection of points “a” and “b”. Figures 9 and 10
show the deformed surface of the plate at the moment when the force arrives at
points “a” and “b”, respectively.
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0.001

0.0015

w
[m
]

0.001–0.0015 

0–0.0005

0.0005–0.001

–0.0005–0

Fig. 9. Deformed surface of the plate at the moment when moving force arrives at point “a”.

–0.0005

0

0.0005

0.001

0.0015

w
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]

0.001–0.0015 
0–0.0005

0.0005–0.001
–0.0005–0

Fig. 10. Deformed surface of the plate at the moment when moving force arrives at point “b”.

4.2. Two span-bridge plate

The second example is a two-span bridge plate of dimensions shown in
Fig. 11. The plate has the same rigidities and material properties as the plate
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Fig. 11. Double-beam system with two elastic restraints loaded with moving point force.

in the previous example, and is also subjected to a force of the same magnitude,
moving with the same speed as in the previously analyzed model. Figures 12
and 13 show dynamic deflections of points “a” and “b” with respect to time of

Fig. 12. Dynamic deflection of point “a”.

Fig. 13. Dynamic deflection of point “b”.
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the force movement along the plate, respectively. Results (continuous line) are
compared with numerical results (dotted line) obtained by applying the FEM
and very good agreement can be observed. FEM results were obtained for spa-
tial discretization using quadratic plate elements of size 1× 1 m and time step
∆t = 0.0025 s.

Calculations were performed using the Autodesk Robot Structural Analysis
Professional program. The dashed black line marks the influence line of static
deflection of points “a” and “b”. Figures 14 and 15 show the deformed sur-
face of the plate at the moment when the force arrives at points “a” and “b”.
respectively.
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Fig. 14. Deformed surface of the plate at the moment when moving force arrives at point “a”.
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Fig. 15. Deformed surface of the plate at the moment when moving force arrives at point “b”.
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5. Conclusion

The presented method can be successfully applied in vibration analysis of
rectangular orthotropic plates with point and linear intermediate supports. After
appropriate modification, the method can be applied to other types of moving
non-inertial loads, such as moving distributed load or moving moment. By us-
ing the presented method, we avoid spatial discretization for a simply supported
plate and discretization in the x-direction for a bridge plate. Difficulties of solv-
ing Volterra integral equations for the case of a simply supported plate can
be bypassed by applying the presented numerical procedure. The effectiveness
of the proposed method has been proven by comparing obtained results with
those obtained by using FEM. The disadvantage of this method is that it can
be applied only for non-inertial loads. Another limitation of the presented ap-
proach is that it is dedicated only to plates of rectangular shape with uniform
cross-section. However, a wide group of structures fulfills these conditions, so
for them, it can be applied as an alternative solution or verification for other
methods.
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