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The purpose of the study was to analyze the combined model of bioheat transfer and
oxygen distribution in tissue during exposition to the external heat impulse. The effect of
temperature and thermal damage to the tissue on the values of its thermophysical parameters
was taken into account. The variable value of the perfusion coefficient affects the blood velocity
in the capillary and thus the distribution of the partial oxygen pressure in the tissue. Various
models of the oxygen dissociation curves were also considered and a sensitivity analysis was
performed for the parameters of the oxygen distribution model. In the numerical realization
stage, the finite difference method and the shooting method were used.
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1. Introduction

Thermal damage to biological tissue is a complex process that involves nu-
merous changes in the tissue domain. Under the influence of an uncontrolled
external heat impulse, the values of the thermophysical parameters of the tissue
can change. Special attention should be paid to the perfusion coefficient, which
describes the presence of blood in the tissue and is often taken as a certain
indicator of thermal damage. It is known that blood vessels dilate under the
influence of heat, but if the thermal pulse is prolonged and/or the temperature
is high enough, they can undergo permanent damage resulting in a decrease in
perfusion. It should be noted that in the smallest blood vessels, the capillaries,
gas exchange takes place to supply oxygen to the tissue. In view of this, an
increase in tissue temperature can cause a disruption of this process, and thus
the hypoxia phenomenon [1–5].
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The amount of oxygen delivered to the tissue under normal conditions de-
pends on the oxygen content in the blood. It can take two forms: chemical
bonds that form oxyhemoglobin and free molecules. The concentration of these
free molecules is described by oxygen partial pressure. When the partial pressure
decreases, oxyhemoglobin releases oxygen, and reverse reactions are also possi-
ble. The relationship between oxygen hemoglobin saturation and oxygen partial
pressure is described by a sigmoidal oxyhemoglobin dissociation curve (ODC).
It is laboratory-determined for specific temperature values, carbon dioxide, pH,
2,3-DPG (2,3 diphosphoglycerate), and other substances. Note that an increase
in temperature shifts the dissociation curve to the right, which is called the Bohr
effect [6–12].

Mathematical models describing the presence of oxygen in biological tissue
are various and often derived from the concept of the Krogh cylinder, which
represents a cylindrical region of tissue around a capillary. This model, despite
the initial numerous simplifications adopted by its author, became the basis
for many subsequent works related to various therapies, muscle work during
exercise, the presence of cancerous tissue in the body, or the process of angio-
genesis, among others [7, 8, 10, 13, 14]. On the mathematical side, the model
is described by differential equations for the tissue and capillary subdomains,
in which the dependent variable is the partial oxygen pressure. These equations
are supplemented by equations related, for example, to the saturation of oxy-
hemoglobin in the capillary area, and the connecting element between the two
types of equations is the adopted ODC model [10, 13, 14].

To analyze heat distribution in biological tissue, one of the existing bioheat
transfer equations is used. The oldest of them, but still the most popular, is
the Pennes equation, in which the presence of small blood vessels and metabolic
phenomena is taken into account through appropriate source heat functions
[4, 14–17]. The Cattaneo-Vernotte equation (hyperbolic thermal wave model)
takes into account the relaxation time, i.e., the delay of the heat flux with respect
to the temperature gradient [18]. In the dual-phase lag model derived from
the theory of porous media, a thermalization time was additionally introduced
to denote the delay in the temperature gradient caused by heat conduction
in microscale structures [19–25].

The bioheat transfer equations are sometimes supplemented by various func-
tions for thermophysical parameters, allowing us to take into account their al-
teration depending on the temperature and/or the degree of thermal damage
to the tissue. In turn, thermal damage is most often expressed by an Arrhe-
nius model assuming an irreversible exponential increase in thermal damage as
a function of temperature [4, 14, 16]. Recent work on the use of this model pos-
tulates the inclusion of the effect of oxygen as a counteracting factor to thermal
damage [26].
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The analysis carried out in this paper consists of steps related to bioheat
transfer analysis, estimation of tissue thermal damage, and oxygen distribution
in tissue. The 3D domain of a biological tissue subjected to an external thermal
impulse is taken into consideration. The analysis is based on the bioheat trans-
port equation in the Pennes form. Using the Arrhenius scheme, the degree of
thermal damage to the tissue is estimated, and, tissue parameters are treated as
temperature- or damage-dependent. The thermal model is supplemented by
an axisymmetric Krogh cylinder model to analyze changes in the partial pres-
sure of oxygen in the capillary vessel and surrounding tissue. The main equation
in this model for the tissue subdomain includes a component related to oxygen
consumption in the tissue, while the equation for the capillary subdomain takes
into account blood saturation and its relationship to partial oxygen pressure via
three models of the oxygen dissociation curve. In addition, a sensitivity analy-
sis of the parameters appearing in the equation for the tissue subdomain, i.e.,
Krogh coefficient and oxygen demand, was carried out. The oxygen distribution
model is linked to the thermal model through the relationship between blood
velocity in the capillary and the perfusion coefficient. In the numerical realiza-
tion stage, mainly a finite difference method is used; the shooting method was
used to determine the distribution of oxygen in the tissue subdomain.

2. Governing equations

In Fig. 1, the models considered in the current work are presented. On the
left, the considered domain of 3D biological tissue for thermal analysis is pre-
sented. The tissue domain is exposed to the external heat impulse at the upper
Γ0 boundary. On the right, the model for considering oxygen transport in tissue
is visible. The main assumption of the Krogh model is that tissue is composed of
contiguous cylindrical units (the so-called Krogh cylinders), with a diameter
of the individual cylinders large enough that there is no oxygen transport be-
tween them [5, 7, 8]. The Krogh cylinder corresponds to the tissue surrounding
the capillary vessel, but its dimensions are much smaller compared to the cube

Fig. 1. Domains considered for the bioheat transfer and oxygen distribution model.
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that forms the bioheat transfer model (this paper adopts: 1.5× 1.5× 1.5 cm for
the bioheat transfer model, Rc = 2.5 µm, Rt = 25 µm, Lt = 500 µm for the
Krogh cylinder), and the overall model proposed in the paper can be treated as
a multiscale problem. Due to differences in the dimensions of the two models,
the full capillary structure is not considered but rather a single Krogh cylin-
der [5, 10].

In the bioheat transfer model, the presence of blood is described by a per-
fusion coefficient. In practice, it is determined, among other things, by knowing
the number of capillaries in the cross-section or the tissue volume (depending
on the method adopted). Thus, it is also possible to determine the velocity of
blood in the capillary ub based on knowledge of the perfusion coefficient and
dimensions of the capillary. This relationship was used to combine the bioheat
transfer model and the oxygen distribution model. In the bioheat transfer model,
points A–F have been highlighted, for which the curses of the determined pa-
rameters, including the perfusion coefficient, will be presented. For selected time
steps, calculations will be carried out using the oxygen distribution model.

The bioheat transfer in the tissue domain Ω is described by the Pennes equa-
tion supplemented with appropriate boundary and initial conditions [4, 16, 17]:

(2.1)

x ∈ Ω : cṪ = ∇ (λ∇T ) +Qperf +Qmet,

x ∈ Γ0 : q = q0, for t ≤ texp, q = 0, for t > texp,

x ∈ Γc : q = 0,

t = 0 : T = Tinit,

where λ [W ·m−1 ·K−1] is the thermal conductivity, c [J ·m−3 ·K−1] is the vol-
umetric specific heat of tissue and blood, respectively, Qmet [W ·m−3] is the
metabolic heat source, q0 [W ·m−2] is the boundary heat flux, texp [s] is the expo-
sure time while Tinit denotes the initial distribution of temperature. The external
heat impulse at the boundary Γ0 is described by a function:

(2.2) q0(x, y) = q0,max exp

(
−2(x2 + y2)

r2imp

)
,

where q0,max [W ·m−2] denotes the maximal value of the heat flux, while rimp is
the radius of the impulse. The function of internal heat sources associated with
perfusion Qperf is as follows [4, 16]:

(2.3) Qperf(x, t) = cBw [TB − T (x, t)],

where cB [J ·m−3 ·K−1] is the volumetric specific heat of the blood, TB corre-
sponds to the arterial blood temperature, and w [s−1] is the perfusion coefficient.
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Tissue subjected to an external heat impulse can undergo thermal damage.
The basic model for determining the degree of thermal damage to tissue is the
Arrhenius scheme [16]:

(2.4) Arr(x, tF ) =

tFˆ

0

A exp

[
− E

RT (x, t)

]
dt,

where R [J ·mol−1 ·K−1] is the universal gas constant, E [J ·mol−1] is the acti-
vation energy, and A [s−1] is the preexponential factor. The integral values of
Arr = 1 and Arr = 4.6 correspond to a probability of 63% and 99% of cell death
at a specific point x, respectively. Both values are used as criteria for tissue
necrosis.

It is obvious that thermally damaged tissue can damage the blood vessel
network within it. Therefore, the perfusion coefficient w was assumed using
a function that maps the phenomena that occur in the tissue during the increase
in temperature (the initial increase in perfusion during vasodilation) and the
subsequent thermal damage (the decrease in perfusion resulting from rupture of
the vasculature) as (w0 is the initial perfusion coefficient) [1, 4, 14]:

(2.5) w(Arr) =


(
1 + 25Arr− 260Arr2

)
w0, 0 ≤ Arr ≤ 0.1,

(1−Arr)w0, 0.1 < Arr ≤ 1,

0, Arr > 1.

Other thermophysical parameters of the tissue may also change as a re-
sult of an increase in its temperature. In the current work, the thermal con-
ductivity λ is assumed to be temperature-dependent (temperature in Kelvin),
whereas the volumetric specific heat c is treated as dependent on thermal con-
ductivity. The following functions are assumed for these reasons [27, 28]:

λ(T ) = 0.6489 + 0.0427 arctan [0.0252(T − 315.314)] ,(2.6)

c(λ) = (3.385λ+ 2.17) · 106.(2.7)

Separate equations for the radial and axial directions are applied for the
Krogh cylinder model (see Fig. 1). For radial direction [4, 5, 14]:

(2.8)

r ∈ Ωt : Kt
1

r

d
dr

(
r

dPt
dr

)
= Mt(Pt), Mt(Pt) =

M0Pt
Pcrit + Pt

,

r = Rc : 2πRcKt
dPt
dr

= −k (Pb − Pt),

r = Rt :
dPt
dr

= 0,

where Pt and Pb [mmHg] are the partial oxygen pressure in tissue and blood,
respectively,Kt [(cm2 · s−1)(mol · cm−3 ·mmHg−1)] is the Krogh diffusion coef-
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ficient, M0 [mol · cm−3 · s−1] is the oxygen demand, Pcrit [mmHg] is the par-
tial pressure that corresponds to half maximum oxygen consumption, and
k [(cm2 · s−1)(mol · cm−3 ·mmHg−1)] is the mass transfer coefficient. Note that
component Mt(Pt) is oxygen consumption in the tissue, which in current work
is assumed to be the Michaelis-Menten kinetics.

Along the Krogh cylinder, the partial pressure of oxygen in the capillary Pb
changes, which is expressed by the following relation [29]:

(2.9)
z ∈ Ωc : Qbκb

d [SHb(Pb)]

dz
= −k (Pb − Pt) ,

z = 0 : Pb = Pb inlet,

whereQb [cm3 · s−1] denotes the blood flow rate in the capillary, κb [mol · cm−3blood]
is the oxygen carrying capacity of blood at 100% saturation, while SHb is the sat-
uration of oxyhemoglobin, determined by the adopted model of oxyhemoglobin
dissociation curve (ODC).

The bioheat transfer model and the oxygen distribution model are linked
through parameters related to blood flow: the perfusion coefficient w and the
blood velocity in the capillary ub. Because the perfusion coefficient is dependent
on the Arrhenius integral, the blood velocity in the capillary varies with the
thermal damage [14, 29]

(2.10) w =
Qb

πR2
tLt

=
πR2

cub
πR2

tLt
→ ub = w(Arr)Lt

R2
t

R2
c

.

As already mentioned, Eq. (2.9) should be supplemented by the ODC model.
The most popular ODC model is Hill’s model in the form of (Fig. 2) [10, 11, 29]:

(2.11) SHb(Pb) =
Pnb

Pnb + Pn50
,

where n denotes the Hill coefficient related to the slope of the dissociation curve,
while P50 is the oxygen pressure corresponding to 50% hemoglobin saturation.

Fig. 2. Oxyhemoglobin dissociation curve with parameters of the Hill model.
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The popularity of Hill’s model is mainly due its simplicity and the ease
of obtaining the inverse relationship Pb(SHb). However, it is assumed that the
model reproduces well the relationship between partial pressure and saturation
only in the range of 20–80%, which may be important for modeling phenomena
associated with thermal damage to biological tissue. For this reason, in addition
to the Hill model, the ODC models proposed by Adair were considered in the
study [7]:

(2.12)

SHb(Pb) =
a1Pb + 2a2P

2
b + 3a3P

3
b + 4a4P

4
b

4(1 + a1Pb + a2P 2
b + a3P 3

b + a4P 4
b )
,

a1 = 0.02567, a2 = 0.00077734,

a3 = 0.00000447, a4 = 0.000002251,

as well as the ODC model proposed by Kelman [13]:

(2.13)

Pb < 12 mmHg : SHb(Pb) = b1Pb + b2P
2
b ,

Pb ≥ 12 mmHg : SHb(Pb) =
a1Pb + a2P

2
b + a3P

3
b + P 4

b

4(a4 + a5Pb + a6P 2
b + a7P 3

b + P 4
b )
,

a1 = −8532.2289, a2 = 2121.401,

a3 = −67.073989, a4 = 935960.87,

a5 = −31346.258, a6 = −2396.1674

a7 = −67.104406,

b1 = 0.003683, b2 = 0.000584.

.

In Fig. 3, the scheme shows the relationship between the particular parts
of the current analysis. The thermal analysis uses thermophysical parameters

Fig. 3. Data transfer between particular parts of the model considered.
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that are updated with each temperature change. One can see that after tissue
damage is evaluated, the perfusion coefficient is updated, and then these new
values are used in the next step of the analysis. The blood velocity is calculated
on the basis of the perfusion coefficient, and then the value is used in the oxygen
distribution model. In thermal analysis, the transient model is considered, while
the oxygen model is used for the steady-state problem. This means that the
oxygen distribution model was calculated only for some selected time steps.

3. Sensitivity analysis

Parameters in biological systems are often very different, which may be
due to individual characteristics, among other things. One way to account for
such differences is to use sensitivity analysis. The literature on various methods
of sensitivity analysis in bioheat transfer problems is quite extensive [30–34].
In the current work, the direct method was used to investigate the sensitivity
of the oxygen transport model to a change in the Krogh coefficient Kt and the
oxygen demand M0. Note that the sensitivity analysis was performed under
the assumption that w = w0, which corresponds to thermally intact tissue.

Taking as ps = Kt, M0 (s = 1, 2) and differentiating the Eq. (2.8) due to ps:

(3.1)
∂

∂ps

[
Kt

1

r

dPt
dr

+Kt
d2Pt
dr2

]
=

∂

∂ps
[Mt(Pt)],

so

(3.2)
∂Kt

∂ps

d2Pt
dr2

+Kt
∂

∂ps

(
d2Pt
dr2

)
+

1

r

∂Kt

∂ps

dPt
dr

+
1

r
Kt

∂

∂ps

(
dPt
dr

)
=
∂Mt(Pt)

∂ps
.

By performing the appropriate mathematical transformations and taking
into account that

(3.3)
d2Pt
dr2

=
Mt(Pt)

Kt
− 1

r

dPt
dr

one obtains an equation in the form

(3.4) Kt
d2

dr2

(
∂Pt
∂ps

)
+Kt

1

r

d
dr

(
∂Pt
∂ps

)
=
∂Mt(Pt)

∂ps
− ∂Kt

∂ps

Mt(Pt)

Kt
.

We assume that

(3.5) Us =
∂Pt
∂ps
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is a function of the sensitivity of the parameters ps, so finally, we can write the
equation as follows:

(3.6)

Kt
1

r

d
dr

[
r

dUs
dr

]
=
∂Mt(Pt)

∂ps
− ∂Kt

∂ps

Mt(Pt)

Kt
,

∂Mt

∂ps
=

∂M0
∂ps

PcritPt + ∂M0
∂ps

P 2
t +M0PcritUs

(Pcrit + Pt)
2

along with boundary conditions obtained in a similar manner

(3.7)
r = Rc : 2πRcKt

dUs
dr

= −k
[
Us +

1

Kt

∂Kt

∂ps
(Pb − Pt)

]
,

r = Rt :
dUs
dr

= 0.

4. Methods of solution

In the stage of numerical implementation, an explicit scheme of the finite
difference method was used to solve the bioheat transfer problem and shoot-
ing methods to solve the task of oxygen distribution and associated sensitivity
analysis tasks.

The finite difference method uses the 7-point stencil shown in Fig. 4, with
corresponding definitions of differential quotients (h is the grid step) [35, 36]

(4.1)

(
λ
∂T

∂x

)f−1
i+0.5,j,k

= λ01
T f−11 − T f−10

h
,

(
λ
∂T

∂x

)f−1
i−0.5,j,k

= λ02
T f−10 − T f−12

h
,

(
λ
∂T

∂y

)f−1
i,j+0.5,k

= λ03
T f−13 − T f−10

h
,

(
λ
∂T

∂y

)f−1
i,j−0.5,k

= λ04
T f−10 − T f−14

h
,

(
λ
∂T

∂z

)f−1
i,j,k+0.5

= λ05
T f−15 − T f−10

h
,

(
λ
∂T

∂z

)f−1
i,j,k−0.5

= λ06
T f−10 − T f−16

h
,

where

(4.2) λ0e =
2λ0λe
λ0 + λe

, i = 1, ..., 6.

So, for the central node, one can write

(4.3) ∇ (λ∇T ) =

[
∂

∂x

(
λ
∂T

∂x

)f−1
0

+
∂

∂y

(
λ
∂T

∂y

)f−1
0

+
∂

∂z

(
λ
∂T

∂z

)f−1
0

]

=
1

h

6∑
e=1

λ0e

(
T f−1e − T f−10

)
.
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Fig. 4. The 7-point stencil used in the bioheat transfer problem.

The final equation for the central node of the stencil can be written in the
form

(4.4) T f0 =T f−10 +
∆t

ch

6∑
e=1

λ0e

(
T f−1e −T f−10

)
+
cBw∆t

c

(
TB−T f−10

)
+

∆t

c
Qmet.

The solving equations for the boundary nodes are obtained in a similar manner.
As already mentioned, the shooting method was used to determine the partial

pressure in the tissue subdomain Ωt of the Krogh cylinder model (Eq. (2.8)). This
method was also used in sensitivity analysis tasks to determine the sensitivity
function Us for the parameters Kt (Krogh coefficient) and M0 (oxygen demand)
(Eqs. (3.5)–(3.6)).

The idea of a shooting method is to transform a boundary value problem into
an initial value problem (IVP). The boundary condition at the selected bound-
ary of the domain under consideration is then used as the initial condition, while
the second initial condition must be guessed. The task defined this way can then
be solved using one of the numerical methods for solving ODEs. The obtained
value of the solution “on the second boundary” of the domain must be compared
with the given boundary condition there. If the accuracy between the value of
the boundary condition and the obtained from IVP is unsatisfactory, the initial
value is guessed again and the problem is solved once again. The procedure is
repeated until the value of the IVP solution agrees with the value of the bound-
ary condition “on the second boundary”. It should be added that approximate
methods of solving equations are used to determine the guess values [37–39].

One can write governing equations with boundary conditions for the oxygen
distribution problem (Eq. (2.8)) and sensitivity analysis tasks (3.5)–(3.6) in
a more general form

(4.5)

r ∈ Ωt : Kt
1

r

d
dr

(
r

dV
dr

)
= QV ,

r = Rc :
dV
dr

+ e1V = e2,

r = Rt :
dV
dr

= e3,
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where V stands for Pt or the corresponding sensitivity function Us, and taking as
the boundary from which the shots are taken r = Rt, the initial-value problem
can be written as

(4.6)

KtV
′′ +Kt

1

r
V ′ = QV ,

V ′(Rt) = e3,

V (Rt) = αguess.

After finding the solution of IVP, the following difference is checked

(4.7) r(Rc, αguess) = V ′(Rc, αguess) + e1V (Rc, αguess)− e2.

The calculations of the shooting method were carried out in the Matlab
2021b environment. In the oxygen distribution problem, the secant method was
used for the determination of the guess value and the fourth-order Runge-Kutta
method, while for sensitivity problems (Eqs. (3.5) and (3.6)), the combination
of built-in solvers fzero and ode45 was used [37].

5. Results of computations

In this work, a cube-shaped tissue domain with dimensions of 1.5× 1.5× 1.5 cm
was considered. To reduce the computational complexity, only a quarter of the
area was taken into account, so in the end, the calculations were carried out
on the dimension of the tissue of 0.75× 0.75× 1.5 cm. For the FDM analy-
sis, the domain was discretized using 76× 76× 151 nodes. The following val-
ues of the thermophysical parameters of tissue and blood were assumed: cB =
3.9962 MJ·m−3 ·K−1, w0 = 0.041 s−1, Qmet = 245 W ·m−3, and TB = 37◦C.
Values used in the boundary-initial condition for the thermal problem were:
q0,max = 19000 W ·m−2, texp = 20 s, and Tinit = 37◦C. For the model that
uses Arrhenius integral, the following data were assumed: A = 3.1 · 1098 s−1,
E = 6.27 · 105 J ·mol−1, and R = 8.314 J ·mol−1 ·K−1 [4, 31, 40].

The calculations for the oxygen distribution model were carried out for
the following data: Rc = 2.5 µm, Rt = 25 µm, Lt = 500 µm, Kt =
2.202 · 10−14 (cm2 · s−1)(mol · cm−3 ·mmHg−1),M0 = 5.000 · 10−8 mol · cm−3 · s−1,
Pcrit = 1 mmHg, k = 2.79 · 10−13 (cm2 · s−1)(mol · cm−3 ·mmHg−1), Pb inlet =
100 mmHg, κb = 9.1 · 10−6 mol · cm−3blood, n = 2.57, and P50 = 27 mmHg
[4, 13, 29].

In the first step, the task related to determining the temperature distribution,
tissue damage, and damage-dependent perfusion coefficient was solved. Then
the values determined in this task for the selected node were used to solve tasks
related to oxygen distribution.
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Figure 5 shows the temperature distribution in the domain under consider-
ation for 10, 20 and 30 s, while Fig. 6 shows the distribution of the Arrhenius
integral and perfusion coefficient for the same time steps. It can be seen that
the Arrhenius integral exceeds both values of the necrosis criteria, i.e., Arr > 1
and Arr > 4.6. For the perfusion coefficient, both the areas of increased perfu-
sion, above w0 = 0.041 s−1, and the area where, due to exceeding Arr > 1, the
perfusion disappeared (see Eq. (2.5)) are clearly visible.

Fig. 5. Distribution of temperature for 10, 20, and 30 s.

Fig. 6. Distribution of the Arrhenius integral and perfusion coefficient for 10, 20 and 30 s.

Figures 7 and 8 are also related to the bioheat transfer analysis. Figure 7
presents courses of temperature and Arrhenius integral at selected points of the
domain (see Fig. 1). The coordinates of the particular nodes are as follows [cm]:
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A(0.75, 0.75, 0.005), B(0.75, 0.75, 0.293), C(0.75, 0.75, 0.412), D(0.75, 0.75,
0.472), E(0.75, 0.75, 0.492), and F (0.75, 0.75, 0.641). Figure 8 shows, among
other things, the history of perfusion and temperature at point D. This point
was chosen as the one where the Krogh cylinder oxygen distribution model is
placed. As the temperature increases, the perfusion also increases, which is asso-
ciated with the phenomenon of vasodilation of blood vessels. A further increase
in temperature causes more and more tissue destruction; this leads to the dis-
appearance of perfusion. The maximum perfusion value w = 0.0656 s−1 at this
point was reached for time t = 12.45 s.

a) b)

Fig. 7. Courses of temperature (a) and Arrhenius integral (b) at selected nodes.

a) b)

Fig. 8. Courses of the perfusion coefficient in selected nodes (a) and history of perfusion and
temperature at node D (b).

To analyze oxygen distribution, it is necessary to know the blood velocity
in the capillary ub (see Eq. (2.10)). This was calculated from the value of the
perfusion coefficient at node D.
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Figure 9 shows the results of the calculations for the Krogh cylinder model in
the radial (Eq. (2.8)) and axial (Eq. (2.9)). Calculations were made for selected
time steps, using various models of oxyhemoglobin dissociation curve, that is,
Hill, Adair, and Kelman models (see Eqs. (2.11)–(2.13)). For the radial direction,
the results shown correspond to z = 0 and z = Lt/2. As you can see, in most
cases, the results for different ODCs are quite close to each other. The exceptions
are the curves obtained for the axial direction for 20 s, according to which, for
Kelman ODC, hypoxia occurs earlier than for the other two curves.

a) b)

Fig. 9. Distribution of the partial pressure in radial (a) and axial (b) directions for selected
time steps.

Figure 10 shows the partial pressure in the whole Krogh cylinder, while
Table 1 shows the percentage of tissue area in which hypoxia occurred. The

a) b)

Fig. 10. Distribution of the partial oxygen pressure in Krogh cylinder
for 0 s (a) and 12.45 s (b) (Hill ODC).
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Table 1. Hypoxia volume in tissue subdomain for selected time steps.

Hill Adair Kelman

10 s 13.45% 13.24% 12.97%

12.45 s 10.29% 10.18% 9.83%

15 s 21.51% 21.13% 21.15%

20 s 86.66% 86.49% 97.58%

volume of hypoxia was calculated for the subdomain of tissue; it was assumed
that the tissue is hypoxic if Pt < 1 mmHg.

The last part of the results is related to the sensitivity analysis. Figure 11
shows the sensitivity functions for the Krogh coefficient (U1) and oxygen demand
(U2) for z = 0 and z = Lt/2, while Fig. 12 presents the functions multiplied by
∆ps = (±5%,±10%) · ps for z = 0.

a) b)

Fig. 11. Sensitivity functions: a) for the Krogh coefficient (U1), b) for the oxygen demand (U2).

a) b)

Fig. 12. Sensitivity functions expressed as Us ·∆ps for ∆ps = (±5%,±10%) · ps.
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6. Final remarks

As the results of the calculations show, the phenomena that occur under the
influence of an external heat impulse affect the distribution of oxygen in the tis-
sue. Exceeding the necrosis criterion for the Arrhenius integral (Arr) sequentially
results in the disappearance of perfusion resulting from the adopted function
(Eq. (2.5)), a decrease in blood velocity in the capillary (Eq. (2.10)), and, ulti-
mately, the occurrence of hypoxia. In addition, the choice of the oxyhemoglobin
dissociation curve (ODC) model may be important, especially in the low oxygen
partial pressure range (Fig. 9). Note that this curve changes shape under the
influence of temperature: it shifts to the right when the temperature increases
(Bohr effect). The current work does not take this phenomenon into account.
Although the phenomenon has been known in the literature, there is not very
much data on the problem, especially on ODC models other than Hill’s model
[4, 7, 11, 29].

Also included in the results presented are the sensitivity functions for the
Krogh coefficient Kt and oxygen demand M0 for the oxygen distribution model
(Figs. 11 and 12). As one can see, for a 10% change in parameter values, they
can cause changes of about ±4 mmHg for the Krogh coefficient and ±5 mmHg
for the oxygen demand. Sensitivity functions were determined for w = w0, which
corresponds to the normothermic state. In the case of progressive thermal dam-
age to the tissue, these increases can significantly affect the depth of hypoxia
occurrence.

It should be added that the calculations associated with the sensitivity ana-
lysis were compared with those taking into account the parameter increments
in the model (Eq. (2.8)), and the differences between the results obtained were
small. This demonstrates the fairly good accuracy resulting from the shooting
method used [37].

The overall model presented shows that the phenomenon of thermal dam-
age is complex, not limited to one type of phenomena. In addition, there are
suggestions in the literature about the effect of oxygen on some kind of reversal
of the thermal damage phenomenon, which may be important, especially when
modeling various types of therapies in which the temperatures used are not
high. Attempts have been made to account for this phenomenon by attaching
an additional component to the Arrhenius integral [26].

The presence of oxygen in the tissue is also important for the photochemical
phenomena that occur in the tissue during the photodynamic therapy treatment.
The temperature increases achieved with this therapy are not high (except for
some variants of PDT), but they can affect changes in perfusion and thus the
concentration of triplet oxygen in the tissue. This form reacts with the photosen-
sitizer, eventually turning into singlet oxygen, which is cytotoxic to cancerous



MODELING OF THE INFLUENCE OF ELEVATED TEMPERATURE. . . 303

tissues. Oxygen supply values are estimated in PDT-related models based on
the Krogh cylinder [9, 10, 41].

The model presented here does not exhaust the issue of modeling thermal
damage, taking into account changes in the thermophysical parameters of the
tissue and the distribution of oxygen in the tissue. In the future, the newer
bioheat transfer equation, which is the dual-phase lag model, should be included
in this type of model in particular. One of its bases is the division of tissue
into so-called equivalent circles that take into account the area of tissue around
a blood vessel. In light of the structure of the Krogh model, this offers interesting
interpretive possibilities. Other types of connection between bioheat and oxygen
distribution models, such as the aforementioned Bohr effect, would also need to
be considered. Furthermore, conducting a more accurate sensitivity analysis for
these models will undoubtedly bring them closer to the real conditions that
occur during thermal damage.
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CO2 content, Pflügers Archiv, European Journal of Physiology, 386(2): 135–140, 1980,
doi: 10.1007/BF00584200.

13. Whiteley J.P., Gavaghan D.J., Hahn C.E.W., Mathematical modelling of oxygen
transport to tissue, Journal of Mathematical Biology, 44: 503–522, 2002, doi: 10.1007/
S002850200135.

14. Jasiński M., Numerical analysis of thermal damage and oxygen distribution in laser
irradiated tissue, Journal of Applied Mathematics and Computational Mechanics, 21(2):
51–62, 2022, doi: 10.17512/JAMCM.2022.2.05.

15. El-Nabulsi R.A., Anukool W., Nonlocal thermal effects on biological tissues and tu-
mors, Thermal Science and Engineering Progress, 34: 101424, 2022, doi: 10.1016/J.TSEP.
2022.101424.

16. Paruch M., Mathematical modeling of breast tumor destruction using fast heating during
radiofrequency ablation, Materials (Basel, Switzerland), 13(1): 136, 2020, doi: 10.3390/
MA13010136.

17. Mochnacki B., Ciesielski M., Sensitivity of transient temperature field in domain of
forearm insulated by protective clothing with respect to perturbations of external bound-
ary heat flux, Bulletin of the Polish Academy of Sciences: Technical Sciences, 64(3):
591–598, 2016, doi: 10.1515/BPASTS-2016-0066.

18. El-Nabulsi R.A., Fractal Pennes and Cattaneo–Vernotte bioheat equations from pro-
duct-like fractal geometry and their implications on cells in the presence of tumour
growth, Journal of the Royal Society Interface, 18(182): 20210564, 2021, doi: 10.1098/
RSIF.2021.0564.

19. Chaudhary R.K., Kumar D., Rai K.N., Singh J., Analysis of thermal injuries us-
ing classical Fourier and DPL models for multi-layer of skin under different bound-
ary conditions, International Journal of Biomathematics, 14(6): 2150040, 2021, doi:
10.1142/S1793524521500406.

20. Chaudhary R.K., Kumar D., Rai K.N., Singh J., Numerical simulation of the skin tissue
subjected to hyperthermia treatment using a nonlinear DPL model, Thermal Science and
Engineering Progress, 34: 101394, 2022, doi: 10.1016/J.TSEP.2022.101394.

https://doi.org/10.1080/10739680801938289
https://doi.org/10.1371/JOURNAL.PCBI.1002983
https://doi.org/0.1515/PLM-2014-0037
https://doi.org/10.1117/1.JBO.20.3.038001
https://doi.org/10.1152/JAPPL.1977.43.3.545
https://doi.org/10.1007/BF00584200
https://doi.org/10.1007/S002850200135
https://doi.org/10.1007/S002850200135
https://doi.org/10.17512/JAMCM.2022.2.05
https://doi.org/10.1016/J.TSEP.2022.101424
https://doi.org/10.1016/J.TSEP.2022.101424
https://doi.org/10.3390/MA13010136
https://doi.org/10.3390/MA13010136
https://doi.org/10.1515/BPASTS-2016-0066
https://doi.org/10.1098/RSIF.2021.0564
https://doi.org/10.1098/RSIF.2021.0564
https://doi.org/10.1142/S1793524521500406
https://doi.org/10.1016/J.TSEP.2022.101394


MODELING OF THE INFLUENCE OF ELEVATED TEMPERATURE. . . 305

21. Majchrzak E., Turchan Ł., Dziatkiewicz J., Modeling of skin tissue heating using
the generalized dual phase-lag equation, Archives of Mechanics, 67(6): 417–437, 2015,
doi: 10.24423/AOM.1777.

22. Saeed T., Abbas I., Finite element analyses of nonlinear DPL bioheat model in spherical
tissues using experimental data, Mechanics Based Design of Structures and Machines,
50(4): 1287–1297, 2022, doi: 10.1080/15397734.2020.1749068.

23. Alzahrani F., Abbas I., A numerical solution of nonlinear DPL bioheat model in bio-
logical tissue due to laser irradiations, Indian Journal of Physics, 96(2): 377–383, 2022,
doi: 10.1007/s12648-020-01988-w.

24. Akula S.C., Maniyeri R., Numerical simulation of bioheat transfer: a comparative study
on hyperbolic and parabolic heat conduction, Journal of the Brazilian Society of Mechan-
ical Sciences and Engineering, 42(62): 1–13, 2020, doi: 10.1007/s40430-019-2132-x.

25. Majchrzak E., Stryczyński M., Dual-phase lag model of heat transfer between blood
vessel and biological tissue, Mathematical Biosciences and Engineering: MBE, 18(2):
1573–1589, 2021, doi: 10.3934/MBE.2021081.

26. Dombrovsky L.A., Laser-induced thermal treatment of superficial human tumors: An
advanced heating strategy and non-Arrhenius law for living tissues, Frontiers in Thermal
Engineering, 1: 807083, 2022, doi: 10.3389/FTHER.2021.807083.

27. Oden J.T., Diller K.R., Bajaj C., Browne J.C., Hazle J., Babuška I., Bass J.,
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