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An analytical study of the strain energy release rate for an inhomogeneous beam structure
with a lengthwise crack subjected to non-linear creep is developed. The beam is inhomogeneous
along its length. Two cases are analysed (material with identical creep behaviour in tension
and compression, and material with asymmetrical creep behaviour). Since the stress cannot
be determined explicitly from the non-linear stress-strain-time relationship, an approach for
obtaining of time-dependent solutions of the strain energy release rate is developed by express-
ing the z-coordinate as a function of the stress. The analysis indicates that the asymmetrical
creep behaviour leads to an increase in the strain energy release rate.

Keywords: beam structure; non-linear creep; lengthwise crack.

1. Introduction

Due to their superior mechanical properties, such as high strength-to-weight
and stiffness-to-weight ratios and good processability, structural members and
components made of continuously inhomogeneous functionally graded materials
are widely used in various engineering applications in modern technology [1–7].
The effects of inhomogeneity on stresses distributions in functionally graded
discs were analysed by applying the theory of elasticity in [1–3]. An efficient
method for the thermo-elastic analysis of functionally graded rotating disks
of variable thickness was developed in [3]. A functionally graded beam under
combined loads was investigated analytically in [4]. A method applicable for
a vast class of functionally graded and variable thickness beams was presented,
and A study of the effect of non-homogenous coefficient on the rotation and
deflection of the beam was carried out [4].

Functionally graded beams resting on a nonlinear foundation were investi-
gated in [5]. A method that can be applied on both linear and nonlinear foun-
dations was developed [5]. An analytical solution of a curved beam made of
functionally graded materials was derived in [6], where the influence of mate-
rial non-homogeneity on the radial distribution of circumferential stress was
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studied. Nonlinear static deflections of functionally graded porous beams under
thermal effect were investigated in [7], where different porosity models were ap-
plied and discussed. The nonlinear displacements of laminated composite beams
were studied under non-uniform temperature in [8]. Post-buckling analysis of
a functionally graded beam under hygro-thermal effect was performed assum-
ing a power-law variation of material properties along the beam thickness [9].
Furthermore, design, modelling, processing and evaluation of functionally graded
materials as well as their applications were described comprehensively in [10].
An introduction to the functionally graded material can be found in [11], where
a brief description of different functionally graded materials and their presence in
nature was presented. A critical review of the functionally graded materials and
their use in various areas can be found in [12]. Additionally, a review of modelling
studies related to functionally graded materials was presented in [13]. Lastly,
processing methods of functionally graded materials were discussed in [14].

Functionally graded materials usually have a layered structure [8–14]. There-
fore, they are prone to the development of lengthwise cracks between layers.
In fact, lengthwise fractures are among the most common failure modes of
beam structures made of continuously inhomogeneous engineering materials.
The lengthwise cracks diminish the strength and load-bearing capacity, com-
promise the stability and increase the deformability of structural members.

Lengthwise fracture of inhomogeneous beams with a layered structure was
analysed in [15], where solutions for the strain energy release rate were obtained.
For this purpose, linear-elastic fracture mechanics was applied since the layers
exhibited the linear-elastic behaviour [15]. Additionally, layered beam structural
members with linear-elastic behaviour were investigated in [16], with solutions
of the strain energy release rate for lengthwise cracks derived by using linear-
elastic fracture mechanics. Fracture in beams made of continuously inhomo-
geneous (functionally graded) materials was analysed theoretically in [17]. The
basic hypothesis used in [17] was that the layers exhibit linear-elastic behaviour.
Various works on the fracture behaviour of materials with a graded structure
were reviewed in [18], along with considerations of numerous applications of the
linear-elastic fracture mechanics ]. The study also included analyses of cracks
in materials with graded structure under cyclic fatigue loading conditions [18].
Furthermore, a theoretical study of continuously inhomogeneous (functionally
graded) beams with cracks was developed in [19] for the case of linear-elastic
behaviour of the material, where exponential distributions of the material prop-
erties in the beam structure were assumed. It seems that existing works on
lengthwise cracks in continuously inhomogeneous beam structures deal mainly
with layers exhibiting linear-elastic behaviour.

However, one of the factors influencing the lengthwise fracture behaviour
is creep. This factor deserves a thorough study because engineering structures
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oftentimes are under external loads that do not change with time. These loads
usually induce material creep.

Therefore, the main objective of the present paper is to develop an analyt-
ical study of the strain energy release rate with taking into account non-linear
creep for a lengthwise crack in a continuously inhomogeneous beam configura-
tion in the longitudinal direction. In order to accomplish this, a time-dependent
solution of the complementary strain energy cumulated in the beam is derived
by using a non-linear stress-strain-time relationship (two cases are considered –
a material with identical creep behaviour in tension and compression and a ma-
terial with asymmetrical creep behaviour in tension and compression). Then,
time-dependent solutions of the strain energy release rate are obtained by dif-
ferentiating the time-dependent complementary strain energy with respect to
the crack area. In order to verify these solutions, the time-dependent strain
energy release rate is also derived by considering the energy balance. The solu-
tions derived are applied to investigate the change of the strain energy release
rate with time due to non-linear creep behaviour. Additionally, the influence
of asymmetrical creep behaviour of the material in tension and compression
on the strain energy release rate is evaluated. It should be underlined that the
key novelty in the present paper is that non-linear creep is taken into account
(distinguishing it from previous papers that concentrated on lengthwise fracture
analyses in continuously inhomogeneous beam configurations with linear creep
behaviour [20, 21]). It should also be specified that the present analysis is carried
out for small strains.

2. Beam with identical creep behaviour in tension and compression

A simply supported inhomogeneous beam configuration with one lengthwise
crack, as shown schematically in Fig. 1, is under consideration in this paper.
The length of the beam is denoted by l. The beam cross-section is a rectangle
of width b and thickness h. A vertical notch of depth h2 is cut out in the
lower surface of the beam at a distance l1 from the left-hand end of the beam.
The notch in the beam in Fig. 1 is needed to induce conditions for lengthwise
cracking. However, in real beam specimens the presence of such a notch is not
obligatory. For instance, lengthwise cracking can occur at the end sections of the
beam structure. In fact, the beam configuration considered in the paper (Fig. 1)
illustrates the way for application of the approach to treat lengthwise cracks in
functionally graded beams exhibiting non-linear creep behaviour. A lengthwise
crack of length a is located in the beam portion B2B3, as shown in Fig. 1. The
upper and lower crack arms have different thicknesses, denoted by h1 and h2,
respectively. The beam is subjected to three-point bending by a vertical force F
applied at the mid-span. It is obvious that the lower crack arm is free of stresses
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Fig. 1. Geometry and loading of a beam structure with a lengthwise crack.

(Fig. 1). The beam under consideration exhibits non-linear creep behaviour,
addressed by using the following non-linear stress-strain-time relationship [22]:

(2.1) ε = A0 sinh (β0σ) +Antn sinh (βσ),

where ε is the strain, σ is the normal stress, t is the time, A0, β0, A, β, and
n are material constants. It should be noted that the first term on the right-
hand side of formula (2.1) describes the instantaneous strain, while the creep
strain is described by the second term on the right-hand side of (2.1). It is
evident from (2.1) that both the instantaneous and the creep strains depend
non-linearly on stress. Non-linear stress-strain-time relationship, Eq. (2.1), il-
lustrates the approach for application of the analysis. Other non-linear stress-
strain-time relationships can also be used depending on the particular problem
under consideration. It should also be noted that at time = infinity, the creep
strain approaches infinity according to Eq. (2.1). However, it should be noted
that the present analysis is carried out for small strains, i.e., the case ‘time =
infinity’ is beyond the scope of the paper (actually, at time = infinity the beam
would fail as a result of an unlimited growth of the creep strains). It should also
be noted that the present study assumes that the crack will begin to propagate
long before the failure of the beam as a result of the unlimited growth of creep
strains.

Due to material inhomogeneity, A0 and A vary continuously along the beam
length according to the following laws:

(2.2) A0 = A0KRe
ϕ0

x
l , A = AKRe

ϕx
l ,

where A0KR and AKR are the values of A0 and A at the left-hand end of the
beam, ϕ0 and ϕ are material constants, x is the position along the centroidal axis
of the beam (Fig. 1). The application of Eq. (2.2) is based on the fact that the
exponential laws are frequently used to describe the distribution of properties
in continuously inhomogeneous structural members.
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The strain energy release rate for the lengthwise crack shown in Fig. 1 is
obtained by using the complementary strain energy. For this purpose, the strain
energy release rate G is written as:

(2.3) G =
1

b

dU∗

da
,

where U∗ is the complementary strain energy, and da is an elementary in-
crease of crack length. The complementary strain energy involved in Eq. (2.3)
is found as:

(2.4) U∗ = U∗1 + U∗2 ,

where U∗1 and U∗2 are the complementary strain energies cumulated in the upper
crack arm and the beam portion B3B4, respectively. It should be mentioned that
the complementary strain energy in the lower crack arm is zero since this crack
arm is free of stresses. It should also be mentioned that the complementary
strain energies cumulated in beam portions B1B2 and B4B5 are not included in
formula (2.4) since these energies do not depend on a.

The complementary strain energy in the upper crack arm is obtained by
integrating the complementary strain energy density u∗01 in the volume of the
upper crack arm:

(2.5) U∗1 = b

l1+aˆ

l1

h1
2ˆ

−h1
2

u∗01 dx dz1,

where z1 is the vertical centric axis of the cross-section of the upper crack arm.
The complementary strain energy density is numerically equal to the area that
supplements the area enclosed by the stress-strain curve to form a rectangle.
Therefore, the complementary strain energy density is written as:

(2.6) u∗01 = σε− u01,

where u01 is the strain energy density. As commonly known, the strain energy
density is equal to the area enclosed by the stress-strain curve. Thus, u01 is
expressed as:

(2.7) u01 =

ˆ
σ dε.

From formula (2.1), dε is derived as:

(2.8) dε = [A0β0 cosh (β0σ) +Anβtn cosh (βσ)] dσ.
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By substituting (2.8) into (2.7), one obtains:
(2.9)

u01 = A0

[
σ sinh (β0σ)− 1

β0
cosh (β0σ)

]
+Antn

[
σ sinh (βσ)− 1

β
cosh (βσ)

]
.

By combining (2.1), (2.6) and (2.9), one derives

(2.10) u∗01 =
A0

β0
cosh (β0σ) +

An

β
tn cosh (βσ) .

In order to verify formula (2.10), the complementary strain energy density
is written as:

(2.11) u∗01 =

ˆ
εdσ.

By substituting (2.1) into (2.11), one obtains an expression for the comple-
mentary strain energy density that exactly matches (2.10).

The complementary strain energy density has to be presented as a function
of z1 in order to perform the integration in (2.5). For this purpose, the stress-
strain-time relationship (2.1) is used. In the present paper, the distribution of
the strains involved in (2.1) is treated by applying Bernoulli’s hypothesis for
plane sections since beams of high length-to-thickness ratio are under consider-
ation. Therefore, the distribution of z1 along the thickness of the cross-section
of the upper crack arm is expressed as:

(2.12) ε = κ1z1,

where κ1 is the curvature of the upper crack arm. By substituting (2.12) into
(2.1), one obtains:

(2.13) κ1z1 = A0 sinh (β0σ) +Antn sinh (βσ) .

The stress σ cannot be determined explicitly from Eq. (2.13). Therefore, in
order to facilitate the integration in (2.5), z1 and dz1 are presented as functions
of the stress. By using (2.13), z1 is obtained as:

(2.14) z1 =
1

κ1
[A0 sinh (β0σ) +Antn sinh (βσ)] .

From formula (2.14), one derives

(2.15) dz1 =
1

κ1
[A0β0 cosh (β0σ) +Anβtn cosh (βσ)] dσ.
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The curvature involved in (2.15) is determined in the following way. First,
the equation for the equilibrium of the cross-section of the upper crack arm is
written as:

(2.16) M = b

h1
2ˆ

−h1
2

σz1 dz1,

where the bending moment is obtained as (Fig. 1):

(2.17) M =
F

2
x.

Then by substituting (2.14) and (2.15) into (2.16), and integrating in the
boundaries from −σsr to σsr, one derives

(2.18) M = A2
0

b

2κ21

[
σsr cosh (2β0σsr)−

1

2β0
sinh (2β0σsr)

]

+AnA0t
n b

κ21

{
σsr cosh [(β0 + β)σsr]−

1

β + β0
sinh [(β0 + β)σsr]

}

+AnA0βt
n b

κ21

{
1

β0 − β
σsr cosh [(β0 − β)σsr]−

1

(β0 − β)2
sinh [(β0 − β)σsr]

}

+AnA0β0t
n b

κ21

{
1

β − β0
σsr cosh [(β − β0)σsr]−

1

(β − β0)2
sinh [(β − β0)σsr]

}

+A2nt2n
b

2κ21

[
σsr cosh (2βσsr)−

1

2β
sinh (2βσsr)

]
,

where −σsr and σsr are the normal stresses at the upper and lower surfaces
of the upper crack arm, respectively. There are two unknowns κ1 and σsr in
Eq. (2.18). Further, one equation is written by substituting z1 = h1/2 and
σ = σsr into formula (2.13)

(2.19) κ1
h1
2

= A0 sinh (β0σsr) +Antn sinh (βσsr) .

Equations (2.18) and (2.19) are solved with respect to κ1 and σsr by using
the MATLAB computer program.

The complementary strain energy cumulated in the beam portion B3B4 is
written as:

(2.20) U∗2 = b

l
2ˆ

l1+a

h
2ˆ

−h
2

u∗02 dx dz2,
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where u∗02 is the complementary strain energy density, and z2 is the vertical
centric axis of the cross-section of the beam portion B3B4. The complementary
strain energy density is found using (2.10). The quantity dz2 is obtained by
applying formula (2.15). For this purpose, κ1 is replaced with the curvature κ2
of the beam portion B3B4:

(2.21) dz2 =
1

κ2
[A0β0 cosh (β0σ) +Anβtn cosh (βσ)] dσ.

The curvature κ2 and the normal stress σuc at the lower surface of the beam
in the portion B3B4 are derived by using Eqs. (2.18) and (2.19). For this pur-
pose, κ1, h1 and σsr are replaced, respectively, with κ2, h2 and σuc, and then
Eqs. (2.18) and (2.19) are solved with respect to κ2 and σuc using the MATLAB
computer program.

By substituting of (2.4), (2.5) and (2.20) into (2.3) and expressing the bound-
aries of integration through σsr and σuc, one derives the following expression for
the strain energy release rate:

(2.22) G =

σsrˆ

−σsr

u∗01 dz1 −
σucˆ

−σuc

u∗02 dz2,

where dz1 and dz2 are found by using (2.15) and (2.21), respectively. It should
be noted here that κ1, σsr, κ2 and σuc are obtained by Eqs. (2.18) and (2.19) at
x = l1+a. The integration in (2.22) is carried out using the MATLAB computer
program.

In order to verify solution (2.22), the strain energy release rate is also derived
by analysing the balance of the energy. For this purpose, a small increase δa of
the length of the crack is given. The balance of the energy is expressed as:

(2.23) Fδw =
∂U

∂a
δa+Gbδa,

where w is the vertical displacement of the application point B4 of the exter-
nal force, U is the strain energy. From (2.23), the strain energy release rate is
derived as:

(2.24) G =
F

b

∂w

∂a
− 1

b

∂U

∂a
.

The integrals of Maxwell-Mohr are applied to determine w. For this purpose,
the integrals are written as (Fig. 1):
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(2.25) w =

l1ˆ

0

κB1B2M1(x) dx+

l1+aˆ

l1

κ1M1(x) dx

+

l
2ˆ

l1+a1

κ2M1(x) dx+

lˆ
l
2

κB3B5M2(x) dx,

where κB1B2 and κB3B5 are, respectively, the curvatures in beam portions B1B2

and B4B5, and M1(x) and M2(x) are the bending moments induced by the unit
loading for obtaining w in beam portions B1B4 and B4B5, respectively. Since

(2.26) M1(x) =
x

2

and

(2.27) M2(x) =
l

2
− x

2
,

the integrals (2.25) take the following form:

(2.28) w =

l1ˆ

0

κB1B2

x

2
dx+

l1+aˆ

l1

κ1
x

2
dx+

l
2ˆ

l1+a1

κ2
x

2
dx+

lˆ
l
2

κB3B5

(
l

2
− x

2

)
dx.

In view of the fact that in formula (2.24) w is differentiated with respect to
the crack length a, it is not necessary to determine the curvatures κB1B2 and
κB3B5 , since the first and the last terms in the right-hand side of (2.28) do not
depend on a.

The strain energy involved in (2.24) is written as:

(2.29) U = U1 + U2,

where U1 and U2 are, respectively, the strain energies in the upper crack arm and
in the beam portion B3B4. The strain energy in the lower crack arm is zero since
this crack arm is free of stresses. The strain energies in beam portions B1B2 and
B4B5 are not involved in (2.29) since these energies do not depend on a.

The strain energy in the upper crack is obtained by applying formula (2.5).
For this purpose, u∗01 is replaced with the strain energy density u01. Formula (2.9)
is used to determine the strain energy density. Formula (2.20) is then applied
to derive the strain energy cumulated in beam portion B3B4 by replacing u∗02
with the strain energy density u02.
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Finally, by substituting w and U in formula (2.24), and expressing the bound-
aries of integration σsr and σuc, one derives the following solution for the strain
energy release rate:

(2.30) G =
F

b

l1 − a
2

(κ1 − κ2)−
σsrˆ

−σsr

u01 dz1 +

σucˆ

−σuc

u02 dz2,

where κ1, σsr, κ2 and σuc are obtained by Eqs. (2.18) and (2.19) at x = l1 + a.
The MATLAB computer program is used to perform the integration in (2.30).
It should be noted that the strain energy release rate obtained by (2.30) matches
that found by using (2.22). This fact serves as a verification of the solution for
the strain energy release rate derived in this section of the paper.

3. Beam with asymmetrical creep behaviour in tension
and compression

The strain energy release rate for the lengthwise crack in the beam configu-
ration shown in Fig. 1 is also obtained for the case when the material exhibits
asymmetrical creep behaviour in tension and compression. For this purpose,
the creep in tension and compression is described by the following non-linear
stress-strain-time relationships:

ε = A0t sinh (β0tσt) +Antt t
nt sinh (βtσt),(3.1)

ε = A0c sinh (β0cσc) +Ancc t
nc sinh (βcσc),(3.2)

where σt and σc are the normal stresses, respectively, in tension and compression,
t is the time, A0t, β0t, At, βt, and nt are material constants in tension. The
material constants in compression are denoted by A0c, β0c, Ac, βc, and nc. Since
the material is inhomogeneous, A0t, At, A0c, and Ac vary continuously along the
beam length according to the following laws:

(3.3)
A0t = A0tKRe

ϕ0t
x
l , At = AtKRe

ϕt
x
l ,

A0c = A0cKRe
ϕ0c

x
l , Ac = AcKRe

ϕc
x
l ,

where A0tKR, AtKR, A0cKR, and AcKR are the values of A0t, At, A0c, and Ac at
the left-hand end of the beam, and ϕ0t, ϕt, ϕ0c, and ϕc are material constants.

It should be noted that stress-strain-time relationships (3.1)–(3.3) are used
here to illustrate how to apply the analysis when the beam exhibits asymmetrical
creep behaviour in tension and compression (other stress-strain-time relation-
ships can also be used in a similar manner depending on the particular problem
under consideration).
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A solution for the strain energy release rate is derived by applying formula
(2.3). The complementary strain energies in the compression and the tension
zones in the upper crack arm are written, respectively, as:

(3.4) U∗1c = b

l1+aˆ

l1

z1nˆ

−h1
2

u∗01c dx dz1

and

(3.5) U∗1t = b

l1+aˆ

l1

h1
2ˆ

z1n

u∗01t dx dz1,

where u∗01c and u∗01t are the complementary strain energy densities in the com-
pression and tension zones, respectively, and z1n is the coordinate of the neutral
axis (Fig. 2). It should be noted that the neutral axis shifts from the centroid
since the material has asymmetrical creep behaviour in tension and compres-
sion. In formulas (3.4) and (3.5), it is taken into account that the upper fibres
are loaded in compression in the beam under consideration. The complemen-
tary strain energy densities in the compression and tension zones are expressed,
respectively, as:

(3.6) u∗01c =
A0c

β0c
cosh (β0cσc) +

Ancc
βc

tnc cosh (βcσc)

Fig. 2. Cross-section of the upper crack arm
(the position of the neutral axis is marked by n− n).
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and

(3.7) u∗01t =
A0t

β0t
cosh (β0tσt) +

Antt
βt

tnt cosh (βtσt) .

The distribution of strains along the thickness of the upper crack arm is writ-
ten as:

(3.8) ε = κ1(z1 − z1n),

where z1n is the coordinate of the neutral axis (it should be noted that the
neutral axis shifts from the centroid since the material exhibits asymmetrical
behaviour in tension and compression). The curvature and the coordinate of the
neutral axis are determined in the following manner. First, the equations for the
equilibrium of the cross-section of the upper crack arm are written as:

N = b


z1nˆ

−h1
2

σc dz1


in compression zone

+ b


h1
2ˆ

z1n

σt dz1


in tension zone

,(3.9)

M = b


z1nˆ

−h1
2

σcz1 dz1


in compression zone

+ b


h1
2ˆ

z1n

σtz1 dz1


in tension zone

,(3.10)

where N is the axial force (apparently, N = 0). By substituting (3.8) into (3.1),
one obtains

(3.11) κ1 (z1 − z1n) = A0t sinh (β0tσt) +Antt t
nt sinh (βtσt) .

For z1 and dz1 in the tension zone, from (3.11) one derives:

z1 =
1

κ1
[A0t sinh (β0tσt) +Antt t

nt sinh (βtσt)] + z1n,(3.12)

dz1 =
1

κ1
[A0tβ0t cosh (β0tσt) +Antt βtt

nt cosh (βtσt)] dσt.(3.13)

Analogously after substituting (3.8) into (3.3), one obtains the following
expressions for z1 and dz1 in the compression zone:

z1 =
1

κ1
[A0c sinh (β0cσc) +Ancc t

nc sinh (βcσc)]− z1n,(3.14)

dz1 =
1

κ1
[A0cβ0c cosh (β0cσc) +Ancc βct

nc cosh (βcσc)] dσc.(3.15)
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By substituting (3.12) and (3.13) in the tension zone and (3.14) and (3.15)
in the compression zone into (3.9) and (3.10) and integrating from σsrup to 0 in
the compression zone and from 0 to σsrlo in the tension zone, one obtains

(3.16) N =
b

κ1

{
A0c [−σsrup sinh (−β0cσsrup)]−

1

β0c
[1− cosh (β0cσsrup)]

}

+
b

κ1

{
Ancc t

nc [−σsrup sinh (−βcσsrup)]−
1

βc
[1− cosh (βcσsrup)]

}

+
b

κ1

{
A0t [σsrlo sinh (β0tσsrlo)]−

1

β0t
[ cosh (β0tσsrlo) −1]

}

+
b

κ1

{
Antt t

nt [σsrlo sinh (βtσsrlo)]−
1

βt
[ cosh (βcσsrlo) −1]

}
,

(3.17) M = A2
0c

b

4κ21

[
−σsrup cosh (2β0cσsrup) +

1

2β0c
sinh (2β0cσsrup)

]

+Ancc A0ct
nc b

2κ21

{
−σsrup cosh [(β0c + βc)σsrup]

+
1

βc + β0c
sinh [(β0c + βc)σsrup]

}

+Ancc A0cβct
nc b

2κ21

{
− 1

β0c − βc
σsrup cosh [(β0c − βc)σsrup]

+
1

(β0c − βc)2
sinh [(β0c − βc)σsrup]

}

+Ancc A0cβ0ct
nc b

2κ21

{
− 1

βc − β0c
σsrup cosh [(βc − β0c)σsrup]

+
1

(βc − β0c)2
sinh [(βc − β0c)σsr]

}

+A2nc
c t2nc

b

4κ21

[
−σsrup cosh (2βcσsrup) +

1

2βc
sinh (2βcσsrup)

]

+
z1nb

κ1

{
A0c

[
−σsrup sinh (β0cσsrup) +

1

β0c
cosh (β0cσsrup)−

1

β0c

]
+Ancc t

nc

[
−σsrup sinh (βcσsrup) +

1

βc
cosh (βcσsrup) −

1

βc

]}



28 V.I. RIZOV

(3.17)[Cont.] +A2
0t

b

4κ21

[
σsrlo cosh (2β0tσsrlo)−

1

2β0t
sinh (2β0tσsrlo)

]

+Antt A0tt
nt b

2κ21

{
σsrlo cosh [(β0t + βt)σsrlo]

− 1

βt + β0t
sinh [(β0t + βt)σsrlo]

}

+Antt A0tβtt
nt b

2κ21

{
1

β0t − βt
σsrlo cosh [(β0t − βt)σsrlo]

− 1

(β0t − βt)2
sinh [(β0t − βt)σsrlo]

}

+Antt A0tβ0tt
nt b

2κ21

{
1

βt − β0t
σsrlo cosh [(βt − β0t)σsrlo]

− 1

(βt − β0t)2
sinh [(βt − β0t)σsrlo]

}

+A2nt
t t2nt

b

4κ21

[
σsrlo cosh (2βtσsrlo)−

1

2βt
sinh (2βtσsrlo)

]

+
z1nb

κ1

{
A0t

[
σsrlo sinh (β0tσsrlo)−

1

β0t
cosh (β0tσsrlo) +

1

β0t

]
+Antt t

nt

[
σsrlo sinh (βtσsrlo)−

1

βt
cosh (βtσsrlo) +

1

βt

]}
,

where σsrup and σsrlo are the normal stresses at the upper and lower surfaces of
the upper crack arm, respectively. Further, two equations are written by using
(3.1), (3.2), and (3.8):

κ1

(
h1
2
− z1n

)
= A0t sinh (β0tσsrlo) +Antt t

nt sinh (βtσsrlo) ,(3.18)

κ1

(
−h1

2
− z1n

)
= A0c sinh (β0cσsrup) +Ancc t

nc sinh (βcσsrup) .(3.19)

Equations (3.16)–(3.19) are solved with respect to κ1, z1n, σsrup, and σsrlo
by using the MATLAB computer program.

The complementary strain energies in the compression and tension zones of
the beam portion B3B4 are written, respectively, as:

(3.20) U∗2c = b

l
2ˆ

l1+a

z2nˆ

−h
2

u∗02c dx dz2
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and

(3.21) U∗2t = b

l
2ˆ

l1+a

h
2ˆ

z2n

u∗02t dx dz2.

By replacing κ1 with κ2 in (3.13), one obtains the following expression for
dz2 in the tension zone of the beam portion B3B4:

(3.22) dz2 =
1

κ2
[A0tβ0t cosh (βtσt) +Antt βtt

nt cosh (βtσt)] dσt.

The quantity dz2 in the compression zone of the beam portion B3B4 is found
by replacing κ1 with κ2 in (3.15):

(3.23) dz2 =
1

κ2
[A0cβ0c cosh (β0cσc) +Ancc βct

nc cosh (βcσc)] dσc.

Equations (3.15)–(3.19) are used to determine the unknowns κ2, z2n, σucup,
and σuclo, where z2n is the coordinate of the neutral axis, σucup and σuclo are
the normal stresses, respectively, at the upper and lower surface of the beam
in the portion B3B4. For this purpose, h1, κ1, z1n, σsrup, and σsrlo are replaced,
respectively, with h, κ2, z2n, σucup, and σuclo.

The complementary strain energy involved in (2.3) is written as:

(3.24) U∗ = U∗1c + U∗1t + U∗2c + U∗2t.

By substituting (3.4), (3.5), (3.20), (3.21) and (3.24) into (2.3) and expressing
the boundaries of integration through the stresses, σsrup, σsrlo, σucup, and σuclo,
one obtains:

(3.25) G =

0ˆ

σsrup

u∗01c dz1 +

σsrloˆ

0

u∗01t dz1 −
0ˆ

σucup

u∗02c dz2 −
σucloˆ

0

u∗02t dz2,

where formulas (3.22) and (3.23) are used to obtain dz1 in tension and com-
pression, respectively, and formulas (3.22) and (3.23) are used to obtain dz2 in
tension and compression zones, respectively. The quantitiesκ1, z1n, σsrup, σsrlo,
κ2, z2n, σucup, and σuclo are determined by (3.16)–(3.19) at x = l1 + a. The
integration in (3.25) is performed by the MATLAB computer program.

The time-dependent strain energy release rate is also derived by considering
the balance of energy in order to verify (3.25). For this purpose, formula (2.25)
is applied. The vertical displacement of the application point of the external
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force F is determined by using expression (2.29) where, in this case, the curva-
tures are determined by Eqs. (3.16)–(3.19). The strain energy involved in (2.28)
is written as:

(3.26) U = U1c + U1t + U2c + U2t,

where U1c and U1t are, respectively, the strain energies in the compression and
tension zones of the upper crack arm, and U2c and U2t are the strain energies,
respectively, in the compression and tension zones of the beam portion B3B4.

The strain energies in the compression and tension zones of the upper crack
arm are found, respectively, as:

(3.27) U1c = b

l1+aˆ

l1

z1nˆ

−h1
2

u01c dx dz1

and

(3.28) U1t = b

l1+aˆ

l1

h1
2ˆ

z1n

u01t dx dz1.

By using formula (2.9), the strain energy densities in the compression and
tension zones involved in (3.27) and (3.28) are obtained, respectively, as:

(3.29) u01c = A0c

[
σc sinh (β0cσc)−

1

β0c
cosh (β0cσc)

]
+Ancc t

nc

[
σc sinh (βcσc)−

1

βc
cosh (βcσc)

]
and

(3.30) u01t = A0t

[
σt sinh (β0tσt)−

1

β0t
cosh (β0tσt)

]
+Antt t

nt

[
σt sinh (βtσt)−

1

βt
cosh (βtσt)

]
.

The strain energies cumulated in the compression and tension zones of the
beam portion, B3B4 are written, respectively, as:

(3.31) U2c = b

l
2ˆ

l1+a

z2nˆ

−h
2

u02c dx dz2
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and

(3.32) U2t = b

l
2ˆ

l1+a

h
2ˆ

z2n

u02t dx dz2.

By substituting (2.28), (3.26), (3.27), (3.28), (3.31), and (3.32) into (2.24)
and expressing the boundaries of integration through the stresses σsrup, σsrlo,
σucup, and σuclo, one obtains the following solution of the strain energy release
rate:

(3.33) G =
F

b

l1 − a
2

(κ1 − κ2)−
0ˆ

σsrup

u01c dz1 −
σsrloˆ

0

u01t dz1

+

0ˆ

σucup

u02c dz2

σucloˆ

0

u02t dz2,

where κ1, z1n, σsrup, σsrlo, κ2, z2n, σucup, and σuclo, are determined by (3.16)–
(3.19) at x = l1+a. The integration in (3.33) is performed by using the MATLAB
computer program. The strain energy release rate found by (3.33) matches that
obtained by (3.25), which is a verification of the analysis for the case when the
material exhibits asymmetrical creep behaviour in tension and compression.

It should be mentioned that the solutions (2.22), (2.3), (3.25), and (3.33)
are time-dependent since the strain energy densities are continuous functions
of time due to the creep (refer to formulas (2.9) and (2.10)). Therefore, these
solutions can be applied to evaluate the creep-induced continuous change in the
strain energy release rate with time.

4. Numerical results

This section presents the results obtained by applying the solutions of the
strain energy release rate derived in the previous Sections 2 and 3. The strain
energy release rate is expressed in non-dimensional form by using the formula
GN = Gβ0/b. The changes in the strain energy release rate over time, as well as
the influence of the crack’s location along the thickness of the beam, crack length,
bending moment value, and ratios of material properties in tension and compres-
sion are investigated. It is assumed that b = 0.0020 m, h = 0.004 m, l = 0.130 m
and F = 4 N. For a beam that exhibits identical creep behaviour in tension and
compression, it is assumed that A0KR = 0.0015, β0 = 0.1 · 10−7 Pa−1, ϕ0 = 0.4,
ϕ = 0.4, and n = 0.0012 (the remaining parameters are varied for the purpose
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of the parametric analysis). It should be noted that in the case of asymmet-
rical creep behaviour, the parameters in tension are chosen to be 30% higher
compared to the values in the symmetrical case. Additionally, the parameters
in compression are varied for the purpose of the parametric analysis. It should
be underlined that the parameters used in the present study are mainly for illus-
trative purposes. Other parameters can also be used depending on the particular
problem.

First, the change in strain energy release rate over time induced by non-linear
creep is analysed at different locations of the crack along the beam thickness. For
this purpose, the time-dependent solution for strain energy release rate, derived
for the case where the material exhibits identical creep behaviour in tension
and compression, is applied. Calculations of the strain energy release rate are
performed at the various time values for three h1/h ratios. One can get an idea
about the change of strain energy release rate over time in Fig. 3 where the
strain energy release rate in non-dimensional form is plotted against the non-
dimensional time for three h1/h ratios. The increase in strain energy release rate
over time, which can be observed in Fig. 3, is induced by the non-linear creep.
One can observe also in Fig. 3 that the strain energy release rate decreases with
increasing h1/h ratio.

Fig. 3. The non-dimensional strain energy release rate for identical creep behaviour in tension
and compression plotted against the non-dimensional time (curve 1 – at h1/h = 0.2, curve 2 –

at h1/h = 0.4, and curve 3 – at h1/h = 0.6).

The change of the strain energy release rate over time is investigated also for
the case where the material has asymmetrical creep behaviour in tension and
compression. The effect of crack length is investigated too (the crack length is
characterised by a/l ratio). The results of the calculations are illustrated in Fig. 4
where the strain energy release rate in non-dimensional form is plotted against
the non-dimensional time at three a/l ratios. The curves in Fig. 4 indicate
that the strain energy release rate increases over time.



LENGTHWISE CRACK STUDY OF A BEAM WITH NON-LINEAR CREEP 33

Fig. 4. The non-dimensional strain energy release rate for asymmetrical creep behaviour in
tension and compression plotted against the non-dimensional time (curve 1 – at a/l = 0.2,

curve 2 – at a/l = 0.3, and curve 3 – at a/l = 0.4).

The influence of the external force value on the strain energy release rate
is analysed. For this purpose, calculations are carried out at different external
force F values by applying the solutions of the strain energy release rate (2.22)
and (3.25). The strain energy release rates obtained from (2.22) and (3.25) are
plotted against the force value in Fig. 5. The curves in Fig. 5 demonstrate that
the strain energy release rate increases with an increase in force. It can also
be observed in Fig. 5 that the strain energy release rate for the case when the
material has identical creep behaviour in tension and compression is lower than
that for the case when the material has asymmetrical creep behaviour.

Fig. 5. The non-dimensional strain energy release rate plotted against the value of the force F
(curve 1 – at identical creep behaviour in tension and compression, curve 2 – at asymmetrical

creep behaviour in tension and compression).

The effect of AKR/A0KR and β/β0 ratios on the strain energy release rate
is studied too. Calculations are performed for various AKR/A0KR and β/β0
ratios by using the solution of strain energy release rate for the case when the
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material has identical creep behaviour in tension and compression. The effects
of AKR/A0KR and β/β0 ratios are illustrated in Fig. 6 where the strain energy
release rate in non-dimensional form is plotted against AKR/A0KR ratio for
three β/β0 ratios. One can observe in Fig. 6 that the strain energy release rate
increases with increasing AKR/A0KR ratio. The increase of β/β0 ratio also leads
to an increase in the strain energy release rate (Fig. 6).

Fig. 6. The non-dimensional strain energy release rate plotted against AKR/A0KR ratio
(curve 1 – at β/β0 = 0.5, curve 2 – at β/β0 = 1, and curve 3 – at β/β0 = 2).

The effect of the asymmetric creep behaviour of the material in tension
and compression is also evaluated. For this purpose, first, calculations of the
strain energy release rate are performed at various A0cKR/A0tKR and β0c/β0t
ratios. The strain energy release rate in non-dimensional form is plotted against
A0cKR/A0tKR ratio at three β0c/β0t ratios in Fig. 7. The curves in Fig. 7 indicate
that the strain energy release rate increases with increasing A0cKR/A0tKR ratio.

Fig. 7. The non-dimensional strain energy release rate plotted against A0cKR/A0tKR ratio
(curve 1 – at β0c/β0t = 0.5, curve 2 – at β0c/β0t = 1, and curve 3 – at β0c/β0t = 2).
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One can also observe in Fig. 7 that the strain energy release rate increases with
increasing β0c/β0t ratio.

The effects of AcKR/AtKR and βc/βt ratios on the strain energy release rate
are displayed in Fig. 8 where the strain energy release rate in non-dimensional
form is plotted against AcKR/AtKR ratio at three βc/βt ratios. The curves in
Fig. 8 demonstrate that the strain energy release rate increases with an increase
in AcKR/AtKR and βc/βt ratios.

Fig. 8. The non-dimensional strain energy release rate plotted against AcKR/AtKR ratio
(curve 1 – at βc/βt = 0.5, curve 2 – at βc/βt = 1, and curve 3 – at βc/βt = 2).

Variation of the non-dimensional strain energy release rate with increasing
ϕ0t and ϕt is depicted in Fig. 9. It can be observed that the strain energy release
rate reduces when ϕ0t and ϕt increase (Fig. 9).

Fig. 9. The non-dimensional strain energy release rate plotted against ϕ0t

(curve 1 – at ϕt = 0.3, curve 2 – at ϕt = 0.6, and curve 3 – at ϕt = 0.9).

5. Conclusion

The strain energy release rate for a lengthwise crack in a beam configuration
that exhibits non-linear creep behaviour was studied analytically. The material
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was continuously inhomogeneous along the beam length. The beam was loaded
in three-point bending by a vertical force applied in the mid-span. The length-
wise crack was arbitrarily located along the thickness of the beam cross-section.
Two cases (a beam with identical creep behaviour in tension and compression
and a beam with asymmetrical creep behaviour) were analysed. Time-dependent
solutions of the strain energy release rate were derived for the two cases under
consideration. For this purpose, the time-dependent complementary strain en-
ergy cumulated in the beam was analysed. The creep behaviour of the material
was described using a non-linear stress-strain-time relationship. Since the stress
cannot be determined explicitly from the non-linear stress-strain-time relation-
ship, an approach for analysis of the strain energy release rate was developed
by expressing the z-coordinate through the stress.

The time-dependent solutions of strain energy release rate were verified by
analysing the energy balance in the beam. These solutions were applied to eval-
uate the change in strain energy release rate over time. The analysis revealed
that the creep induced increase of the strain energy release rate overtime. It
was found that the strain energy release rate in the beam with asymmetrical
creep behaviour in tension and compression was higher than that in the beam
with identical creep behaviour. The analysis also revealed that the strain energy
release rate increased with increasing the crack length. The increase of h1/h
ratio induced a decrease in strain energy release rate. It was also found that
the strain energy release rate increases with increasing AKR/A0KR ratio. The
investigation showed that the increase of β/β0 ratio generated an increase in
strain energy release rate.

In order to evaluate the effects of the asymmetrical creep behaviour of the
material in tension and compression on the strain energy release rate, calcula-
tions were conducted for various A0cKR/A0tKR, β0c/β0t, AcKR/AtKR, and βc/βt
ratios. The analysis indicated that the strain energy release rate increased with
increasing A0cKR/A0tKR, β0c/β0t, AcKR/AtKR, and βc/βt ratios. This finding
suggests that the asymmetrical creep behaviour of the material induces an in-
crease of the strain energy release rate. Therefore, asymmetrical non-linear creep
behaviour is crucial in fracture-mechanics-based safety design of continuously in-
homogeneous structural members and components. These conclusions are valid
for the selected parameters. The conclusions for other parameters (or, for in-
stance, for other stress-strain-time relationships and other laws for distribution
of the properties along the beam length) may differ to some degree. It should
be underlined again that the parameters used here are mainly for illustrative
purposes.

A possible practical application of the present study is determining the time
value at which the lengthwise crack will begin to propagate. This can be done by
analysing the non-linear creep-induced evolution of the strain energy with time
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(the value of time at which the strain energy release rate falls in line with the
fracture toughness is the time of beginning of the crack propagation). It should
be specified further that the stress-strain-time relationships (2.1), (3.1), (3.2)
and exponential laws (2.2) and (3.3) used in this study illustrate the application
of the presented analysis. Other stress-strain-time relationships and laws of dis-
tribution of the properties in the beams can be used in a similar way depending
on the particular lengthwise fracture problem under consideration.
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8. Akbaş Ş.D., Nonlinear thermal displacements of laminated composite beams, Coupled
Systems Mechanics, 7(6): 691–705, 2018, doi: 10.12989/CSM.2018.7.6.691.
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