rozprawy IN $\mathbb{Z} Y \mathrm{Y} I \mathrm{ERSKIE}$

XI

WITOLD WIERZBICKI
Dźwigary zalamane w planie

witold wierzbicki

DŹWIGARY ZAŁAMANE W PLANIE

R O Z PRAWY
IN ŻYNIERSKIE
XI

W A R S Z A W A 1954
PANSTWOWEWYDAWNICTWO NAUKOWE

PRZEDMOWA

Rozprawa niniejsza została opracowana przede wszystkim na podstawie następujących moich dawniejszych publikacji:
(1) Teoria dźwigarów załamanych w planie, Warszawa 1926,
(2) Sur le calcul des poutres à axe brisé, Paryż 1927,
(3) Zastosowanie różnic skończonych do obliczenia dźwigarów załamanych w planie, Przegląd Techniczny, Warszawa 1930,
(4) Dźwigary załamane w planie o zmiennym kqcie załamania, Przegląd Techniczny, Warszawa 1931,
(5) Belki ciagłe załamane w planie, Czasopismo Techniczne, Lwów 1931,
(6). De l'application des équations simultanées à différences finies en statique des constructions, Zurych 1936.
Z zagadnień zawartych w tych pracach opuściłem takie, które staly się już obecnie przedmiotem łatwo osiągalnych podręczników z różnych dziedzin techniki, musiałem natomiast uwypuklić zagadnienia, które wysunęła technika lat ostatnich.

Przy redagowaniu niniejszej rozprawy dokonałem, w porównaniu z treścią prac wymienionych wyżej, nieuniknionej kompresji wywołanej koniecznością zachowania wspólnej skali przy traktowaniu zagadnień poprzednio rozpatrywanych niezależnie od siebie.

I. CHARAKTERYSTYKA DŻWIGARA ZAモAIMANEGO W PLANIE

Praktyka inżynierska narzuca nieraz konieczność statycznego obliczenia dźwigara, którego oś podłużna w stanie nieodkształconym jest linią łamañą położoną w płaszczyźnie prostopadłej do kierunku działania sil (rys. 1). Dźwigar tego rodzaju nazywamy dźwigarem załamanym w planie, przy czym ${ }^{\text {n płaszczyz- }}$ nę podłużnej jego osi będziemy w dalszych rozważaniach przyjmowali za pozioma.

Przykład dźwigara załamanego przedstawiony jest w planie na rys. 2. Koniec A dźwigara jest w tym wypadku utwier-

Rys. 1 dzony, a koniec B swobodnie podparty; punkt P oznacza jednocześnie sile prostopadłą do płaszczyzny dźwigara (pionową) i punkt jej zaczepienia. Punkty załamania sié osi dźwigara w planie nazywamy węztami (na rys. 2 punkty 1, 2 i 3), odległości między węzłami - przedziałami, a kąty β między osiami poszczególnych przedziałów - katami załamania.

Dźwigary załamane w planie mogą

Rys. 2 być podparte w sposób przedstawiony na rys. 2 w punkcie B również i w innych węzłach; mogą byé też utwierdzone w jednym końcu, a na drugim swobodne (rys. 1, perspektywa).

Cechę charakterystyczna dźwigarów załamanych ẇ planie stanowi okoliczność, że dźwigary tego rodzaju ulegają przy ich obciążeniu nie tylko zginaniu, lecz również skręcaniu poszczególnych elementów prostych.

Ponieważ poszczególne przedziały dźwigara załamanego w planie przecinają się pod kątem ostrym i ponieważ szerokość w planie tych przedziałów ma wartość skończoną, to w węzłach wytwarzaja się kliny sas' a^{\prime}, które wprowadzają pewną niejasność w obliczenie długości teoretycznej przedziałów (rys. $3 a$).

W klinie sas'á proste $a s^{\prime}$ i $a^{\prime} s^{\prime}$ są do krawędzi dźwigara i do jego osi prostopadłe. W klinie tym rozróżniamy jako jego części kliny ass' i $a^{\prime} s s^{\prime}$. W teorii dźwigarów załamanych w planie kliny ass' i a'ss' uważamy za ciała sztywne tworzące jak gdyby niesprężyste przedłużenie $K B$ sprężystych części $A K$ i $K C$ przedziałów $A B$ i $B C$ (powiększenie na rys. $3 b$).

Rys. 3

Rozmiary części sztywnych dźwigara w węźle zależą od jego kształtu i wymiarów poprzecznych, ocenę zaś wplywu tych części na odkształcenia dźwigara załamanego w planie można przeprowadzić w prosty sposób na obliczeniach belek prostych w dwóch punktach swobodnie podpartych, odpowiadających pod względem rozpiętości i wymiarów poprzecznych poszczególnym przedziałom (np. $A B$ i $B C$). W tym celu wykonujemy obliczenia odkształceń z jednej strony dla belek sprężystych na calej długości (rys. 4a), z drugiej zaś dla belek majacych końce ($A K$
 i $K B$) niesprężyste (rys. 4b). Wyniki tego rodzaju obliczeń porównawczych wykonane w warunkach przeciętnych praktyki budowlanej wykazały, że wpływ końców niesprężystych poszczególnych przedziałów na ich odkształcenia jest znikomy.

Wobec tego w dalszym ciągu będziemy pomijali wplyw klinów ass' i $a^{\prime} s s^{\prime}$ na odkształcenia dźwigarów załamanych w planie i będziemy rozpatrywali długości poszczególnych przedziałów dźwigara jako odcinki ich osi przecinające się w węzłach.

Teoria dźwigarów załamanych w planie znajduje między innymi zastosowanie przy obliczeniach statycznych belek balkonowych, przy obliczaniu na działanie wiatru załamanych pasów kratownic mostowych, w szeregu konstrukcji przemysłowych i w wielu przypadkach, kiedy obliczenie dźwigarów załamanych może zastąpić obliczenie niekolistych dźwigarów zakrzywionych w planie.

Literatura przedmiotu nie jest na ogół bogata, a praca wymieniona pod (1) w przedmowie była pierwsza pracą w tej dziedzinie w powszechnej literaturze technicznej.

W pracy niniejszej mowa jest głównie o reakcjach i odkształceniach dźwigarów załamanych w planie, gdyż sprawa obliczenia naprężeń różni się tu niewiele od zagadnienia naprężen w innych konstrukcjach jednocześnie zginanych i skręcanych.

Obliczenia wykonywane są prawie wyłącznie dla dźwigarów o wypukłości zwróconej w jedną stronę, tzn. dla konstrukcji mających największe znaczenie praktyczne.

Obliczenie odkształceń będzie tu się od.bywało przeważnie sposobem geometrycznego dodawania odkształceń, jako sposobem bezpośrednio wypływającym z właściwości mechanicznych rozpatrywanych układów.

Rysunki będą podawane dalej przeważnie w jednym tylko rzucie, w planie.
II. STATYCZNIE WYZNACZALNE DŹWIGARY ZAŁAIMANE W PLANIE

1. Sily poprzeczne, momenty zginające i skręcajace w dźwigarach-wspornikach załamanych w planie

Dźwigar-wspornik przedstawiony jest w planie na rys. 5. W punkcie O mamy tu utwierdzenie, a układ osi współrzędnych XOY określa położenie płaszczyzny dźwigara zalamanego w planie.

Definicja sily poprzecznej i momentu zginajacego w przypadku dźwigarów załamanych w planie pozostaje 'ta sama, co w przypadku belek prostych. A więc rozumiemy jako siłę poprzeczną w danym przekroju $\alpha \alpha$ dźwigara (rys. 6) sume sił działajazcych z jednej strony prze-

Rys. 5
 kroju, a jako moment zginający w tym przekroju sumę momentów sił uogólnionych działających z jednej strony tego przekroju względem jego środlka.

Stąd siła poprzeczna T_{α} w przekroju aa dźwigara przedstawionego na rys. 6 wyraża się wzorem

$$
\begin{equation*}
T_{\alpha}=\sum_{\alpha}^{n} P_{i} \tag{1}
\end{equation*}
$$

gdzie siły P_{i} są to siły prostopadłe do płaszczyzny $X O Y$ i zaczepione w poszczególnych węzłach posiadających numery i, a zawarte między przekrojem αa i końcem dźwigara. Przy obciążeniu pionowym poszczególnych przedziałów prawa stro-

Rys. 6 na równania (1) powinna być powiększona o obciążenie zawarte między przekrojem $\alpha \alpha$ i końcem dźwigara.

Dla momentu zginającego w przekroju a a mamy wzór

$$
\begin{equation*}
M_{\alpha}=\sum_{\alpha}^{n} P_{i} a_{i} \tag{2}
\end{equation*}
$$

gdzie a_{i} oznacza ramię momentu zginającego siły P_{i} (rys. 6). Przy obciążeniu pionowym poszczególnych przedziałów dźwigara prawa strona wzoru (2) powinna byé powiększona o moment statyczny względem śodka przekroju $\alpha \alpha$ obciążenia zawartego między tym przekrojem a końcem dźwigara.

Moment skręcający w przekroju a α wyraża się odpowiednio wzorem

$$
\begin{equation*}
m_{a}^{0}=-\sum_{i+1}^{n} P_{i} b_{i} \tag{3}
\end{equation*}
$$

gdzie b_{i} oznacza ramię momentu skręcającego $P_{i} b_{i}$. Przy obciążeniu poszczególnych przedziałów dźwigara należy prawa stronę równania (3) uzupełnić w podobny sposób jak dla momentu zginającego.

Momenty zginające M_{i} w poszczególnych węzłach i możemy poza wzorem (2) wyznaczyć na podstawie momentów obliczonych względem osi $i i^{\prime}$ i $i^{\prime} n$ odpowiednio równoległych do osi $O Y$ i $O X$, czyli na podstawie momentów wyrażających się wzorami (rys. 5):

$$
\begin{align*}
& M_{x}=-\Sigma P a_{0 y} \tag{4}\\
& M_{y}=\Sigma P a_{0 x} \tag{5}
\end{align*}
$$

W tym celu przedstawiamy momenty M_{i}, M_{x}, M_{y} i moment $9 M_{i}^{0}$ skręcający przedział $i-1, i$ wektorowo (rys. 7) oznaczając je odpowiednio liniami przerywanymi. Kierunek wektora momentu m_{i}^{0} pokrywa się z kierunkiem osi przedziału. Za dodatnie przyjmujemy w obliczeniach momenty prawoskrętne.

Ponịeważ w każdym wężle i rozumianym w sensie omówionym w rozdziale poprzednim układ momentów M_{i}, M_{i}^{0} jest równoważny z układem
momentów M_{x}, M_{y}, dochodzimy na podstawie reguły równoległoboku do wzorów

$$
\begin{align*}
& M_{i}=M_{y} \sin \gamma_{i}-M_{x} \cos \gamma_{i}, \tag{6}\\
& \mathfrak{M}_{i}^{0}=M_{y} \cos \gamma_{i}+M_{x} \sin \gamma_{i} \tag{7}
\end{align*}
$$

gdzie kąty γ_{i} określają położenie przedziałów $i-1, i \mathrm{w}$ stosunku do osi Y-ów.

Ze względu na małe wymiary węzłów w stosunku do długości przedzialów możemy uważać, że punkt i na rys. 5 pokrywa się zarówno z punktem B, jak i z punktem K na rys. $3 b$.

Rys. 7

Rys. 8

Przypuśćmy dalej, że na dźwigar-wspornik załamany w planie nie działają siły pionowe, lecz same tylko momenty M_{n} i M_{n}^{0} przedstawione wektorowo na rys. 8. Wyznaczenie momentów M_{i} i $\operatorname{MP}_{i}^{0}$ odbywa się tu drogą rozkładania na kierunki wektorów M_{i} i. Min momen- $_{0}^{0}$ tu M_{n} czy momentu \mathfrak{M}_{n}^{0}. Kąt nachylenia wektorów $\operatorname{Mn}_{n}^{0}$ i M_{i}^{0} wynosi $\sum_{i}^{n-1} \beta_{i}$, wobec czego

Rys. 9

$$
\begin{array}{ll}
M_{i}=M_{n} \cos \sum_{i}^{n-1} \beta_{j}, & m_{i}^{0}=-M_{n} \sin \sum_{i}^{n} \beta_{j} \\
M_{i}=M_{n}^{0} \sin \sum_{i}^{n-1} \beta_{j}, & M_{i}^{0}=9_{n}^{0} \cos \sum_{i}^{n-1} \beta_{j} \tag{9}
\end{array}
$$

Przy kształcie dźwigara załamanego w planie przedstawionym na rys. 9, a więc w przypadku, kiedy oś dźwigara nie jest jednostronnie wypukła, wszystkie rozumowania i wzory tego paragrafu zachowują swoja moc, oczywiście przy uwzględnieniu właściwych znaków dla momentów.
2. Odkształ̉cenie dźwigarów-wsporników załamanych w planie

Odkształcenia wszelkich typów dźwigarów załamanych w planie można sprowadzić drogą geometrycznego dodawania odkształceń do odkształcenia dźwigarów-wsporników. Stąd obliczenie odkształceń dźwigarówwsporników stanowi punkt wyjścia do obliczeń dźwigarów załamanych w planie w ogóle.

Do wyznaczenia odkształceń dźwigarów załamanych w planie potrzebna jest przede wszystkimi znajomość odkształceń poszczególnych przedzialów dźwigara. Zasadniczymi ele-

Rys. 10 mentami tych odkształceń sa pionowe przesunięcia końców poszczególnych przedziałów względem ich początków, kąty obrotu końcowych przekrojów względem przekrojów początkowych i kąty skręcenia poszczególnych przedziałów.

Bierzemy więc przedzial $j-1, j$ dźwigara (rys. 10) i rozpa*rujemy go jako belkę prostą pozioma utwierdzoną w przekroju $j-1$ i swobodną w przekroju j, o płaszczyznach przekrojów prostopadlych do osi podłużnej belki.

Pionowe przesunięcie z_{j} punktu j w stosunku do punktu $j-1$ będzie wywołane siłą pionową zaczepioną w punkcie j, momentem zaczepionym do przekroju j oraz pionowym obciążeniem przedziału $j-1, j$. Siła, o której mowa, jako suma wszystkich sił działajacych w tym wypadku na prawo od przekroju poprzecznego j dźwigara załamanego w planie, przedstawia siłe po-

Rys. 11 przeczną T_{j} [wzór (1) po zastąpieniu znaczka a przez znaczek j], moment zaś M_{j} wyraża się bądź wzorem (2), bądź wzorem (6).

W tych warunkach (rys. 11)

$$
\begin{equation*}
z_{j}=\frac{T_{j} l_{j}^{3}}{3 E J}+\frac{M_{j} l_{j}^{2}}{2 E J}+\frac{9 u_{j}^{\prime}}{E J} \tag{10}
\end{equation*}
$$

gdzie E oznacza współczynnik sprężystości przy rozciąganiu i ściskaniu, J moment bezwładności przekroju poprzecznego dźwigara względem osi poziomej, l_{j} długość przedziału $j-1, j$ zaś \prod_{j}^{\prime} moment statyczny obciążenia wtórnego w przedziale $j-1, j$ względem środka przekroju j.

Odpowiedni kąt obrotu przekroju j względem przekroju $j-1$ wyniesie

$$
\begin{equation*}
\varphi_{j}=\frac{T_{j} l_{j}^{2}}{2 E J}+\frac{M_{j} l_{j}}{E J}+\frac{\frac{3}{j}_{j}^{E J}}{E} \tag{11}
\end{equation*}
$$

gdzie $\mathfrak{T}_{j}^{\prime}$ oznacza wypadkową obciążenia wtórnego w przedziale $j-1, j$.
Jeżeli założymy, że przekrój j - 1 nie obraca się w swej płaszczyźnie, wówczas kąt obrotu przekroju j względem przekroju $j-1$ będzie równy

$$
\begin{equation*}
\Theta_{j}=\frac{9_{j}^{0} l_{j}}{G J_{0}^{-}}, \tag{12}
\end{equation*}
$$

gdzie G oznacza współczynnik sprężystości przy przesuwaniu, a J_{0} bądź biegunowy moment bezwładności przekroju poprzecznego belki, bądź inną wielkość zastępującą tę wielkość we wzorach na skręcanie typu (12).

Wielkości z_{j}, φ_{j} i Θ_{j} otrzymane dla poszczególnych przedziałów dźwi-gara-wspornika zalamanego w planie stosujemy do wyznaczenia przesunięcia pionowego w_{i} pewnego węzła i jako kolejnego węzła całego dźwigara. Na podstawie wzoru

$$
\begin{equation*}
w_{i}=\sum_{1}^{i} z_{j}+\sum_{1}^{i} \varphi_{j}^{\prime} l_{j} \tag{13}
\end{equation*}
$$

gdzie z_{j} oznacza przesunięcia poszczególnych węzłów dźwigara obliczone na podstawie wzoru (10), a φ_{j}^{\prime} kąt obrotu przekroju poprzecznego przedziału $j-1, j$ przeprowadzonego przez punkt $j-1$ względem płaszczyzny - pionowej przechodzącej przez ten punk't prostopadle do osi $j — 1, j$ (rys. 12). Sumy dotyczą wszystkich węzłów dźwi-gara-wspornika zawartych między węzłem 0 a węzłem i.

Aby należycie uzmysłowić sobie znaczenie kata φ_{j}^{\prime} i drugiej sumy wzoru (13)

Rys. 12 załóżmy, że poszczególne przedziały dźwigara załamanego w planie (rys. 10) są nieodkształcalne (sztywne) i że połączone są w sposób sprężysty, zresztą dowolny. W tych warunkach iloczyn kąta φ_{j}^{\prime} nachylenia przekroju poprzecznego w punkcie $j-1$ wzgledem płaszczyzny pionowej prostopadłej do osi $j-1$, j przez długość l_{j} przedziału $j-1, j$ wyraża przy małych przesunięciach pionowe przesunięcie punktu j wzgledem punktu j - 1 , a suma $\Sigma p_{j}^{\prime} l_{j}$ — pionowe przesunięcie punktu i. Znajdujemy więc w tym wypadku, że

$$
\begin{equation*}
w_{i}=\sum_{1}^{i} \varphi_{j}^{\prime} l_{j} \tag{14}
\end{equation*}
$$

Wzór (14) zachowuje moc swoją niezależnie od tego, w jaki sposób powstal kat φ_{j}^{\prime}.

Dla dźwigarów spreżystych kąt ' $\ddot{\varphi}_{j}^{\prime}$ jest wynikiem zginania i skrẹcania poszczególnych przedziałów, przy czym ugięcia tych przedziałów składają się wówczas na pierwszą sumę wzoru (13).

Równanie (13) ma zastosowanie i w przypadku dźwigara prostego, gdy wszystkie kąty $\beta=0$, przy czym obliczenie kątów φ^{\prime} upraszcza się w tym wypadku wobec tego, że belka nie ulega skręcaniu. Równaniu temu, po rozwinięciu w nim drugiej sumy, możemy nadać w przypadku dźwigara prostego postać

$$
\begin{equation*}
w_{i}=\sum_{0}^{i} z_{j}+\sum_{0}^{i} \Lambda \varphi_{j} \lambda_{j} \tag{15}
\end{equation*}
$$

gdzie $\Delta \varphi_{j}$ (rys. 13) oznacza przyrost kąta nachylenia przekroju poprzecznego belki prostej w punkcie $j \mathrm{w}$ stosunku do odpowiedniego kąta nachylenia przekroju poprzecznego w punkcie $j-1$, a λ_{j} sumę długości przedziałów belki w granicach od punktu j do punktu i, którego przesunięcie pionowe wyznaczamy. Przy dłu-

Rys. 13 gości przedziału l_{j} zmierzającej do zera wzór (15) doprowadza do znanego w statyce budowli wzoru Bresse'a.

Przechodząc do wyrażenia wchodzących do równania (13) kątów φ_{j}^{\prime} przez katty φ_{j}. i Θ_{j}, obliczone ze wzorów (10) i (11), uciekamy się dla wszystkich wehodzących do obliczeń kątów obrotu do oznaczzeń wektorowych i do dodawania odpowiednich wektorów. Chodzi o to, że węzel s dźwigara załamanego w planie, traktowany na rys. $3 b$ jako klin nieodkształcalny, może wziąć udział w obrotach następujących (rys. 14):
(1) względem osi $j, j+1$ (obrót Θ_{j+1}^{\prime}),
(2) względem osi $j-1, j$ (obrót $\bar{\Theta}_{j}$),
(3) względem osi prostopadłej do $j, j+1$ (obrót φ_{j+1}^{\prime}),
(4) względem osi prostopadłej do $j-1, j$ (obrót $\bar{\varphi}{ }_{j}$).

Ponieważ wymiary każdego z węzłów są małe w porównaniu z wymiarami dźwigara, możemy przyjąć, że wszystkie cztery wektory Θ_{j+1}^{\prime}, $\Theta_{j}, \varphi_{j+1}^{\prime}$ i φ_{j} przechodzą przez ten sam punkt j (rys. 14) lub B (rys. $3 b$), który uważamy za środek węzła. Dochodzimy tą drogą do schematu według rys. 15.

Kąty $\dddot{\varphi}_{j}, \varphi_{j}^{\prime}$, i φ_{j} uważamy za dodatnie, o ile obserwator patrzaçy na dźwigar z jego strony wklęsłej widzi, że odpowiednie przekroje poprzeczne dźwigara obracaja się względem swych poziomysh osi obojętnych na
prawo. Kąty $\bar{\Theta}_{j}, \Theta_{j}^{\prime}$ i Θ_{j} uważamy za dodatnie, kiedy obserwator posuwając się tyłem wzdłuż dźwigara od jego końca utwierdzonego widzi, że odpowiednie przekroje poprzeczne dźwigara obracają się na prawo względem osi poszczególnych przedziałów.

Obroty $\bar{\varphi}_{j}$ i $\bar{\Theta}_{j}$ składaja się odpowiednio na obroty φ_{j+1}^{\prime} i Θ_{j+1}^{\prime}. Wobec tego droga rzutowania wektorów $\bar{\varphi}_{j}$ i $\bar{\Theta}_{j}$ na kierunki wektorów φ_{j+1}^{\prime} i Θ_{j+1}^{\prime} znajdujemy:

$$
\begin{align*}
& \varphi_{j+1}=\bar{\varphi}_{j} \cos \beta_{j}-\bar{\Theta}_{j} \sin \beta_{j}, \tag{16}\\
& \Theta_{j+1}^{\prime}=\bar{\varphi}_{j} \sin \beta_{j}+\bar{\Theta}_{j} \cos \beta_{j} . \tag{17}
\end{align*}
$$

Sa to wzory rekurencyjne, którym można nadać postać

$$
\begin{align*}
& \varphi_{j}^{\prime}=\bar{\varphi}_{j-1} \cos \beta_{j-1}-\bar{\Theta}_{j-1} \sin \beta_{j-1} \tag{18}\\
& \Theta_{j}^{\prime}=\bar{\varphi}_{j-1} \sin \beta_{j-1}+\bar{\Theta}_{j-1} \cos \beta_{j-1} \tag{19}
\end{align*}
$$

Rys. 14

Między kątem nachylenia $\varphi_{j, r 1}^{\prime}$ początkowego (bliższego do punktu utwierdzenia dźwigara) przekroju poprzecznego przedziału $j, j+1$ a kątem nachylenia $\bar{\varphi}_{j+1}$ jego przekroju końcowego (rys 16) istnieje zależność

$$
\begin{equation*}
\bar{\varphi}_{i+1}=\varphi_{j+1}^{\prime}+\varphi_{j+1}, \tag{20}
\end{equation*}
$$

gdzie kąt φ_{j+1} jest to kąt obliczony ze wzoru (10), czyli kąt obrotu końcowego przekroju $j+1$ wyznaczony w założeniu, że przedział $j, j+1$ jest belką utwierdzoną w koñcu j,

Rys. 15 a swobodnaz w koncu $j+1$, wyrażający więc nachylenie przekroju poprzecznego $j+1$ względem przekroju poprzecznego j.

Odpowiednio do zależności (20) znajdujemy (rys. 17)

$$
\begin{equation*}
\bar{\Theta}_{j+1}=\Theta_{j+1}^{\prime}+\Theta_{j+1}, \tag{21}
\end{equation*}
$$

co oznaczá, że kąt obrotu węzza $j+1$ względem osi $j, j+1$ wyraża się sumą kąta obrotu węzła j wzgleedem osi $j, j+1$ oraz kata skręcenia przedziału $j, j+1$ obliczonego według wzoru (12).

Wstawiając w równania (20) i (21) odpowiednio wyrażenia (16) i (17) znajdujemy

$$
\begin{align*}
& \bar{\varphi}_{j+1}=\bar{\varphi}_{j} \cos \beta_{j}-\bar{\Theta}_{j} \sin \beta_{j}+\varphi_{j+1} \tag{22}\\
& \bar{\Theta}_{j+1}=\bar{\varphi}_{j} \sin \beta_{j}+\bar{\Theta}_{j} \cos \beta_{j}+\Theta_{j+1} . \tag{23}
\end{align*}
$$

We wzory (22) i (23) jako wzory rekurencyjne wprowadzamy $j-1$ zamiast j, skąd znajdujemy

$$
\begin{align*}
& \bar{\varphi}_{j}=\bar{\varphi}_{j-1} \cos \beta_{j-1}-\bar{\Theta}_{j-1} \sin \beta_{j-1}+\varphi_{j} \tag{24}\\
& \bar{\Theta}_{j}=\bar{\varphi}_{j-1} \sin \beta_{j-1}+\bar{\Theta}_{j-1} \cos \beta_{j-1}+\bar{\Theta}_{j} \tag{25}
\end{align*}
$$

Możemy stąd wyznaczyć kąt nachylenia przekroju poprzecznego w punkcie j i kąt obrotu tego przekroju względem osi $j-1, j$ kolejno

Rys. 16

Rys. 17
ustawiając wzory (24) i (25) dla zmniejszających się o 1 wartości j, aż do $j=1$ włącznie, i następnie dla wzrastających o 1 wartości j, od znanych wartości kątów $\bar{\varphi}_{1}$ i $\bar{\Theta}_{1}$ aż do kątów poszukiwanych.

Przytoczone wzory na odkształcenia zachowują swą moc i dla dźwigarów typu przedstawionego na

Rys. 18 rys. 9 przy uwzględnieniu właściwych znaków wektorów momentów i obrotów.

Rachunkowa strone obliczenia przesunięcia pionowego pewnego punktu dźwigara-wspornika załamanego w planie sprecyzujemy na przypadku dźwigara trójprzedziałowego podanego na rys. 18. Tu $l_{1}=l, l_{2}=1,1 l, l_{3}=1,2 l$ oraz $\beta_{1}=10^{\circ}$ i $\beta_{2}=15^{\circ}$; pionowa siła P zaczepiona jest w swobodnym końcu dźwigara, w punkcie 3 .

Wzory rekurencyjne (24) i (25) oraz (16) i (17) przybieraja w danym. razie postać następującą:

$$
\begin{gather*}
\bar{\varphi}_{3}=\bar{\varphi}_{2} \cos \beta_{2}-\bar{\Theta}_{2} \sin \beta_{2}+\varphi_{3}, \\
\bar{\Theta}_{3}=\bar{\varphi}_{2} \sin \beta_{2}+\bar{\Theta}_{2} \cos \beta_{2}+\Theta_{3}, \\
\bar{\varphi}_{2}=\bar{\varphi}_{1} \cos \beta_{1}-\bar{\Theta}_{1} \sin \beta_{1}+\varphi_{2}, \tag{26}\\
\bar{\Theta}_{2}=\bar{\varphi}_{1} \sin \beta_{1}+\bar{\Theta}_{1} \cos \beta_{1}+\Theta_{2}, \\
\bar{\varphi}_{1}=\varphi_{1}, \quad \bar{\Theta}_{1}=\Theta_{1} ;
\end{gather*}
$$

$$
\begin{align*}
& \phi_{3}^{\prime}=\varphi_{2} \cos \beta_{2}-\bar{\Theta}_{2} \sin \beta_{2} \\
& \Theta_{3}^{\prime}=\bar{\varphi}_{2} \sin \beta_{2}+\bar{\Theta}_{2} \cos \beta_{2} \\
& \varphi_{2}^{\prime}=\bar{\varphi}_{1} \cos \beta_{1}-\bar{\Theta}_{3} \sin \beta_{1} \tag{27}\\
& \Theta_{2}^{\prime}=\bar{\varphi}_{1} \sin \beta_{1}+\bar{\Theta}_{1} \cos \beta_{1} \\
& \phi_{1}^{\prime}=0, \quad \Theta_{1}^{\prime}=0
\end{align*}
$$

Na podstawie rys. 18 wyznaczamy momenty M i 90° :

$$
\begin{align*}
& M_{1}=P\left(1,1 l \cos 10^{\circ}+1,2 l \cos 25^{\circ}\right) \\
& M_{1}^{0}=P\left(1,1 l \sin 10^{\circ}+1,2 l \sin 25^{\circ}\right) \tag{28}\\
& M_{2}=P \cdot 1,2 l \cos 15^{\circ} \\
& M_{2}^{0}=P \cdot 1,2 l \sin 15^{\circ} .
\end{align*}
$$

W tych warunkach i przy $G J_{0}=E J$ wzory (10), (11) i (12) doprowadzają do wyrażeń

$$
\begin{align*}
& z_{1}=\frac{P l^{3}}{3 E J}+\frac{P\left(1,1 l \cos 10^{\circ}+1,2 l \cos 25^{\circ}\right) l^{2}}{2 E J}=\frac{1,41876 P l^{3}}{E J} \\
& z_{2}=\frac{P(1,1 l)^{3}}{3 E J}+\frac{P \cdot 1,2 l \cos 15^{\circ} \cdot(1,1 l)^{2}}{2 E J}=\frac{1,14493 P l^{3}}{E J}, \\
& z_{3}=\frac{P(1,2 l)^{3}}{3 E J}=\frac{0,57600 P l^{3}}{E J}, \\
& \varphi_{1}=\frac{P l^{2}}{2 E J}+\frac{P\left(1,1 l \cos 10^{\circ}+1,2 l \cos 25^{\circ}\right) l}{E J}=\frac{2,67086 P l^{2}}{E J}, \\
& q_{2}=\frac{P(1,1 l)^{2}}{2 E J}+\frac{P \cdot 1,2 l \cos 15^{\circ} \cdot 1,1 l}{E J}=\frac{1,88003 P l^{2}}{E J}, \tag{29}\\
& \varphi_{3}=\frac{P(1,2 l)^{2}}{2 E J}=\frac{0,72000 P l^{3}}{E J}, \\
& \Theta_{1}=\frac{P\left(1,1 l \sin 10^{\circ}+1,2 l \sin 25^{\circ}\right) l}{E J}=\frac{0,69816 P l^{2}}{E J} \\
& \Theta_{2}=\frac{P \cdot 1,2 l \sin 15^{\circ} \cdot 1,1 l}{E J}=\frac{0,34164 P l^{2}}{E J}, \\
& \Theta_{3}=0
\end{align*}
$$

a wobec tego wyrażenia (26) i (27) dają

$$
\begin{gather*}
\bar{\varphi}_{2}=\frac{4,63156}{E J} \cdot \frac{l^{3}}{E}, \quad \varphi_{2}^{\prime}=\frac{2,7515 P l^{2}}{E J}, \quad \bar{\Theta}_{2}=-\frac{0,5654 P l^{2}}{E J} \\
\bar{\varphi}_{3}=\frac{5,34020 P l^{2}}{E J}, \quad \varphi_{3}^{\prime}=-\frac{4,62010 P l^{2}}{E} \frac{J}{J} \tag{30}
\end{gather*}
$$

Obliczając obie cęeści wzoru (13) odpowiednio mamy

$$
\begin{aligned}
& \sum_{1}^{3} z_{j}=\frac{P l^{3}}{E J} \cdot(1,41876+1,14493+0,57600)=\frac{3,13970 P l^{3}}{E J} \\
& \sum_{1}^{3} \varphi_{j}^{\prime} l_{j}=\frac{P l^{2}}{E J}(2,75153 \cdot 1,1 l+4,62010 \cdot 1,2 l)=\frac{8,57080 P l^{3}}{E J}
\end{aligned}
$$

skąd znajdujemy poszukiwane pionowe przesunięcie punktu 3 :

$$
\begin{equation*}
w_{3}=\frac{11,71050 P l^{3}}{E J} . \tag{31}
\end{equation*}
$$

3. Dźwigary na trzech podporach

Dźwigar załamany w planie i swobodnie podparty w trzech punktach przedstawiony jest na rys. 19. Podpory A, B i C leżą w płaszczyźnie dźwi-

Rys. 19 gara i są podporami przegubo-wo-przesuwnymi, co nie naraża dźwigara na ruch przy siłach obciążających, skierowanych prostopadle do płaszczyzny $A B C$. Przyjmujemy, że podpory mogą dawać reakcje posiadajace dwa różne zwroty.

Przedstawiony w ten sposób dźwigar załamany w planie na trzech podporach jest układem statycznie wyznaczalnym, gdyż dla wyznaczenia trzech reakcji podporowych R_{A}, R_{B} i R_{C} możemy "u ustawić trzy równania. Będą to trzy równania spośród sześciu równań równowagi ciała stałego w przestrzeni:

$$
\begin{array}{ll}
\Sigma X=0, & \sum M_{x}=0 \\
\Sigma Y=0, & \sum M_{y}=0 \\
\Sigma Z=0, & \Sigma M_{z}=0
\end{array}
$$

a mianowicie równania

$$
\begin{equation*}
\Sigma Z=0, \quad \sum M_{x}=0, \quad \sum M_{y}=0 \tag{32}
\end{equation*}
$$

które przybierają w tym wypadku odpowiednio postac

$$
\begin{array}{r}
R_{A}+R_{B}+R_{C}-P=0 \\
R_{B} y_{1}-P b=0 \\
R_{B} x_{1}+R_{C} x_{2}-P a=0 \tag{35}
\end{array}
$$

Znając wszystkie 3 reakcje dźwigara w trzech punktach swobodnie podpartego wyznaczamy poszczególne momenty węzłowe M_{i} i M_{i}^{0} oraz międzywęzłowe M_{α} i M_{α}^{0} według wzorów (2) i (3) lub (6) i (7) paragrafu 1 tego rozdziału. Znajdujemy w ten sposób, np. dla przekroju ad na rys. 19 i dla podanych na tym rysunku oznaczen, że

$$
\begin{align*}
& M_{\alpha}=R_{A} c \tag{36}\\
& \mathfrak{M}_{\alpha}^{0}=R_{A} d \tag{37}
\end{align*}
$$

Przy wyznaczeniu odksztalcen dźwigara w trzech punktach swobodnie podpartego opieramy się na omówionym wyżej schemacie dźwigarawspornika załamanego w planie. Przypuśćmy, że chodzi o wyznaczenie pionowego przesunięcia punktu k dźwigara przedstawionego na rys. 19.

Plan postępowania w tym wypadku jest następujący.
Ponieważ reakcje R_{B} i R_{C} mogą być wyznaczone ze wzorów (33) - (35), przyjmujemy je tu za znane. Zastępujemy dalej w punkcie A podporę przegubowo-przesuwna przez całkowite utwierdzenie dźwigara w tym punkcie.

Dochodzimy w ten sposób do schematu dźwigara-wspornika obciążonego siłą P i siłami R_{B} i R_{C}. Na podstawie równań podanych w paragrafie 2 tego rozdzialu wyznaczamy pionowe przesunięcia punktu k oraz przesunięcia punktów B i C. Znając te ostatnie możemy łatwo wyznaczyć kąt, o który należy obrócić dźwigar względem osi $A Y$, oraz katt, o który należy obrócić go względem osi $A X$, aby przekrój A wrócił do swègo pierwotnego położenia. W związku z tym należy do pionowego przesunięcia punktu k jako punktu wspornika dodać przesunięcia tego punktu spowodowane obrotami dźwigara względem osi $A Y$ i $A X$, co doprowadza w rezultacie do prawdziwej wartości poszukiwanego przesunięcia.
III. ZASTOSOWANIE ROZNIC SKOŃCZONYCH DO OBLICZENIA

1. Dźwigary o stalym kącie zalamania

W przypadku gdy liczba przedziałów dźwigara załamanego w planie jest duża, stosowanie wzorów rekurencyjnych rozdziału II do ich obliczenia nasunąć może trudności rachunkowe. Narzuca się w związku z tym mysl, aby tam, gdzie to się da zrobić, ujać zagadnienie dźwigarów załamanych w planie, które jest niewatpliwie nieciaglym zadaniem mechariki budowli, w sposób ciągły i doprowadzić do wzorów zamkniętych. Tendencja tego rodzaju przeciwstawia sie jakby tendencji odwrotnej, znacznie częściej ujawniającej się w mechanice budowli, a polegającej na dażeniu do przedstawiania zagadnień ciagłych jako nieciągłe. W obydwóch wymienionych przypadkach uciekamy się do teorii różnic skończonych.

Z formalnego punktu widzenia równania różnicowe teorii dźwigarów załamanych w planie należą do tzw. równań różnicowych jednoczesnych, którym nadać możemy postać następującą:

$$
\left.\begin{array}{l}
F_{1}\left(x, y_{x}, \Delta y_{x}, \Delta^{2} y_{x}, \ldots, z_{x}, \Delta z_{x}, \Delta^{2} z_{x}, \ldots\right)=0, \tag{38}\\
F_{2}\left(x, y_{x}, \Delta y_{x}, \Delta^{2} y_{x}, \ldots, z_{x}, \Delta z_{x}, \Delta^{2} z_{x}, \ldots\right)=0,
\end{array}\right\}
$$

gdzie y_{x} i z_{x} oznaczajaz funkcje tej samej zmiennej niezależnej x, a $\Delta y_{x}, \Delta z_{x}, \Delta^{2} y_{x}, \Delta^{2} z_{x}, \ldots$ różnice pierwszego i drugiego rzędu tych funkcji.

Rozpatrzymy tu przede wszystkim przypadek dźwigara-wspornika za-

Rys. 20 łamanego w planie o równych przedziałach i o równych kątach załamania β (rys. 20a i 20b) i wyznaczymy ugięcia tego rodzaju dźwigara.

Przyjmujemy, że obciazżenie stanowi jedna siła zaczepiona w końcu dźwigara. Ze wzgledu na cel przedstawienia ugięc rozpatrywanego dźwigara w postaci zamkniętej, i w związku z tym ze względu na konieczność całkowania równania różnicowego, właściwiej jest zastąpić w obliczeniach litery j przez symbol x. Stąd oznaczenia na rys. 20. W zwiazku z tymi oznaczeniami wzory rekurencyjne (24), (25) i (18) rozdziału poprzedniego przybierajá postać

$$
\begin{align*}
& \bar{\varphi}_{x}=\bar{\varphi}_{x-1} \cos \beta_{x-1}-\bar{\Theta}_{x-1} \sin \beta_{x-1}+\varphi_{x} \tag{39}\\
& \bar{\Theta}_{x}=\bar{\varphi}_{x \cdots 1} \sin \beta_{x-1}+\bar{\Theta}_{x-1} \cos \beta_{x-1}+\Theta_{x} \tag{40}\\
& \varphi_{x}^{\prime}=\bar{\varphi}_{x-1} \cos \beta_{x-1}-\bar{\Theta}_{x-1} \sin \beta_{x-1} \tag{41}
\end{align*}
$$

gdzie x ma to samo znaczenie co poprzednio j.
Wzór (13) na pionowe przesunięcia poszczególnych węzów wspornika przybiera wobec tego postać

$$
\begin{equation*}
w_{m}=\sum_{i}^{m} z_{x}+\sum_{i}^{m} \varphi_{x}^{\prime} l_{x} \tag{42}
\end{equation*}
$$

Przy stałych kątach załamania należy we wzorach (39) - (42) przyjmować $\beta_{x}=\beta=$ const. Poza tym $l_{x}=l=\mathrm{const}$.

Zgodnie z przytoczonym wyżej określeniem równań różnicowych jednoczesnych należy równania (39) i (40) po rozwinięciu wchodzących do nich różnic uważać za takie właśnie równania. W tym wypadku kąty $\bar{\varphi}_{x}$ i Θ_{x} należy uważać za funkcje tej samej zmiennej niezależnej x, a $\sin \beta$ i $\cos \beta$ za niezmienne współczynniki układu równań.

Mając na widoku rozwiązanie równań jednoczesnych (39) i (40) zmierzamy do zastąpienia ich przez jedno równanie różnicowe wyższego rzędu.

W tym celu wyznaczamy przede wszystkim z równania (39) kąt $\bar{\varphi}_{x+1}$:

$$
\begin{equation*}
\bar{\varphi}_{x: 1}=\varphi_{x} \cos \beta-\bar{\Theta}_{x} \sin \beta+\varphi_{x} \tag{43}
\end{equation*}
$$

Wstawiamy tu w dalszym ciągu zamiast $\bar{\Theta}_{x}$ wyrażenie (40)

$$
\begin{equation*}
\bar{\varphi}_{x ; 1}=\bar{\varphi}_{x} \cos \beta-\ddot{\varphi}_{x-1} \sin ^{2} \beta-\bar{\Theta}_{x-1} \cos \beta \sin \beta-\Theta_{x} \sin \beta+\varphi_{x-1} \tag{44}
\end{equation*}
$$

Z drugiej strony rozwiązujemy równanie (39) względem Θ_{x-1} :

$$
\begin{equation*}
\bar{\Theta}_{x-1} \sin \beta=-\bar{\varphi}_{x}+\varphi_{x-1} \cos \beta+\varphi_{x} \tag{45}
\end{equation*}
$$

i wstawiamy otrzymane wyrażenie w równanie (44)

$$
\begin{align*}
\bar{\varphi}_{x+1}=\bar{\varphi}_{x} \cos \beta-\bar{\varphi}_{x-1} \sin ^{2} \beta+\bar{\varphi}_{x} \cos \beta & -\bar{\varphi}_{x-1} \cos ^{2} \beta- \tag{46}\\
& -\varphi_{x} \cos \beta-\Theta_{x} \sin \beta+\varphi_{x+1}
\end{align*}
$$

W ten sposób dochodzimy do następującego równania różnicowego z jedną niewiadomą funkcją $\bar{\varphi}_{x}$:

$$
\begin{equation*}
\bar{\varphi}_{x+1}-2 \bar{\varphi}_{x} \cos \beta+\bar{\varphi}_{x-1}=Q_{x}, \tag{47}
\end{equation*}
$$

Wprowadzając kąty φ_{x} i Θ_{x} we wzór (48) nadajemy mu postać następującą:

$$
\begin{equation*}
Q_{x}=C_{1} \cos x \beta+C_{2} \sin x \beta+C_{3} \tag{58}
\end{equation*}
$$

gdzie współczynniki C_{1}, C_{2} i C_{3} równają się odpowiednio

$$
\begin{align*}
& C_{1}=\frac{1}{\sin \frac{\beta}{2}\left(f l \sin \frac{2 n-1}{2} \beta-f l \cos \beta \sin \frac{2 n+1}{2} \beta-\right.} \begin{aligned}
&\left.-e l \sin \beta \cos \frac{2 n+1}{2} \beta\right) \\
& C_{2}=-\frac{1}{\sin -\frac{1}{2}}\left(-f l \cos \frac{2 n-1}{2} \beta+f l \cos \beta \cos \frac{2 n+1}{2} \beta-\right. \\
&\left.-e l \sin \beta \sin \frac{2 n+1}{2} \beta\right) \\
& C_{3}=2 e l \cos ^{2} \frac{\beta}{2} .
\end{aligned} \tag{59}
\end{align*}
$$

$$
\begin{align*}
& C_{2}=-\frac{2 f l \sin \beta \sin \frac{2 n+1}{2} \beta}{\sin \frac{\beta}{2}}, \tag{63}\\
& C_{3}=2 f l \cos ^{2} \frac{\beta}{2} \tag{64}
\end{align*}
$$

Wyprowadzone równanie różnicowe kątów $\bar{\varphi}_{x}$:

$$
\begin{equation*}
\bar{\varphi}_{x+1}-2 \bar{\varphi}_{x} \cos \beta+\bar{\varphi}_{x-1}=C_{1} \cos x \beta+C_{2} \sin x \beta+C_{3} \tag{65}
\end{equation*}
$$

posiada rozwiązanie, które może być przedstawione jako suma

$$
\begin{equation*}
\bar{\varphi}_{x}=\psi_{x}^{0}+\psi_{x} \tag{66}
\end{equation*}
$$

gdzie ψ_{x}^{0} oznacza pewne dowolne rozwiązanie szczególne tego równania, ψ_{x} zaś rozwiązanie odpowiedniego równania beż ostatniego wyrazu Q_{x},

Rys. 21 czyli równania

$$
\begin{equation*}
\bar{\varphi}_{x ; 1}-2 \bar{\phi}_{x} \cos \beta+\bar{\varphi}_{x-1}=0 \tag{67}
\end{equation*}
$$

Wobec otrzymanej wyżej postaci wzoru na Q_{x} rozwiazanie szczególne równania (65) mogłoby mieć postać trójmianu

$$
\begin{equation*}
\psi_{x}^{0}=D_{1} \sin x \beta+D_{2} \cos x \beta+D_{3}, \tag{68}
\end{equation*}
$$

gdyby nie okoliczność, że równanie to jest równaniem symetrycznym. Stosujemy więc inną, następującą postać rozwiązania szczególnego:

$$
\begin{equation*}
\psi_{x}^{0}=D_{1} x \sin x \beta+D_{2} x \cos x \beta+D_{3} . \tag{69}
\end{equation*}
$$

Wstawiając to rozwiązanie w równanie (65) otrzymujemy, że

$$
\left.\begin{array}{rl}
\psi_{x+1}^{0} & =D_{1}(x+1) \sin (x+1) \beta+D_{2}(x+1) \cos (x+1) \beta+D_{3}, \\
2 \psi_{x}^{0} \cos \beta & =2 D_{1} x \cos \beta \sin x \beta+2 D_{2} x \cos \beta \cos x \beta+2 D_{3} \cos \beta, \\
\psi_{x-1}^{0} & =D_{1}(x-1) \sin (x-1) \beta+D_{2}(x-1) \cos (x-1) \beta+D_{3} \tag{71}
\end{array}\right\}
$$

W związku z tym dochodzimy do równości
$2 D_{1} \sin \beta \cos x \beta-2 D_{2} \sin \beta \sin x \beta+4 D_{3} \sin \frac{\beta}{2}=$

Obie strony wyrażenia (71) będą sobie tożsamościowo równe, jeżeli będzie

$$
\begin{equation*}
D_{1}=\frac{C_{1}}{2 \sin \beta}, \quad D_{2}=-\frac{C_{2}}{2 \sin \beta}, \quad D_{3}=\frac{C_{3}}{4 \sin ^{2} \frac{\beta}{2}-} . \tag{72}
\end{equation*}
$$

W związku z tym, w przypadku gdy $e=f$, mamy

$$
\begin{align*}
D_{1} & =-\frac{f l \cos \frac{2 n+1}{2} \beta}{\sin \frac{\beta}{2}}- \\
D_{2} & =\frac{f l \sin \frac{2 n+1}{2} \beta}{\sin \frac{\beta}{2}}, \tag{73}\\
D_{3} & =\frac{f l}{2 \operatorname{tg}^{2} \frac{\beta}{2}}
\end{align*}
$$

Aby otrzymać rozwiązanie równania (67), tzn. równania różnicowego kątów $\vec{\varphi}_{x}$ bez wyrazu swobodnego, rozwiązujemy przede wszystkim równanie charakterystyczne

$$
\begin{equation*}
\xi^{2}-2 \xi \cos \beta+1=0 \tag{74}
\end{equation*}
$$

Równanie to należy do typu równań

$$
\begin{equation*}
y^{2}-p y+q=0 \tag{75}
\end{equation*}
$$

i w danym wypadku ma pierwiastki zespolone typu

$$
\begin{equation*}
y=\sqrt{q}(\cos \vartheta \pm i \sin \vartheta) \tag{76}
\end{equation*}
$$

gdzie $q=1$, a

$$
\cos \vartheta=-\frac{p}{2} \frac{\sqrt{q}}{\sqrt{q}}=-\frac{2 \cos \beta}{2 \sqrt{1}}=-\cos \beta .
$$

Jeżeli pierwiastki równania charakterystycznego (74) typu (76) oznaczymy odpowiednio przez ξ_{1} i ξ_{2}, wówczas rozwiązanie ogólne równania różnicowego bez wyrazu swobodnego przybierze postać

$$
\begin{equation*}
\psi_{x}=K_{1} \xi_{1}^{x}+K_{2} \xi_{2}^{x} \tag{77}
\end{equation*}
$$

lub postac

$$
\begin{equation*}
\psi_{x}=B_{1} \sin x \beta+B_{2} \cos x \beta \tag{78}
\end{equation*}
$$

Wstawiając wyrażenia (68) i (78) we wzór (66) otrzymujemy poszukiwane rozwiązanie równania (65). Wypisujemy je tutaj dla przypadku, gdy $e=f$:

$$
\begin{align*}
\bar{\varphi}_{x}=B_{1} \sin x \beta+B_{2} \cos x \beta & -\frac{f l \cos \frac{2 n+1}{2} \beta}{\sin \frac{\beta}{2}} x \sin x \beta+ \tag{79}\\
& +\frac{f l \sin \frac{2 n+1}{2} \beta}{\sin \frac{\beta}{2}} x \cos x \beta+\frac{f l}{2 \operatorname{tg}^{2} \frac{\beta}{2}} .
\end{align*}
$$

Aby wyznaczyć stale B_{1} i B_{2}, bierzemy pod uwage, że kąt $\varphi_{0}=0$ i że kąt $\bar{\varphi}_{1}$ wyraża się na podstawie wzorów (49) i (53) w sposób następujacy:

$$
\begin{equation*}
\bar{\varphi}_{1}=-f l+\frac{2 \cos \frac{n-1}{2} \beta \cdot \sin \frac{n}{2} \beta}{\sin \frac{\beta}{2}} f l \tag{80}
\end{equation*}
$$

Zakładając kolejno w równaniu (79) $\bar{\varphi}_{x}=\bar{\varphi}_{0}$ i $\quad \bar{\varphi}_{x}=\bar{\varphi}_{1}$ znajdujemy z warunków brzegowych zadania

$$
B_{1}=-\frac{f l}{2 \operatorname{tg} \frac{\beta}{2}}, \quad B_{2}=-\frac{f l}{2 \operatorname{tg}^{2} \frac{\beta}{2}} .
$$

W związku z tym wzór (79) przybiera następującą postać zamkniętą:

$$
\begin{align*}
\bar{\varphi}_{x}=--\frac{f l}{2 \operatorname{tg} \frac{\beta}{2}} \sin x \beta- & \frac{f l}{2 \operatorname{tg}^{2} \frac{\beta}{2}} \cos x \beta-\frac{f l \cos \frac{2 n+1}{2} \beta}{\sin \frac{\beta}{2}}-x \sin x \beta+ \\
& +\frac{f l \sin \frac{2 n+1}{2} \beta}{\sin \frac{\beta}{2}} x \cos x \beta+-\frac{f l}{2 \operatorname{tg}^{2} \frac{\beta}{2}} . \tag{82}
\end{align*}
$$

Po znalezieniu funkcji $\bar{\varphi}_{x}$ funkcję $\bar{\Theta}_{x}$ obliczyć możemy z równania (40), a funkcję φ_{x}^{\prime} z równania (41) lub też ze wzoru

$$
\begin{equation*}
\varphi_{x}^{\prime}=\bar{\varphi}_{x}-\varphi_{x} \tag{83}
\end{equation*}
$$

Biorac pod uwage zależność (83) nadajemy wzorowi (42) na pionowe przesunięcie punktu m dźwigara załamanego postać

$$
\begin{equation*}
w_{m}=\sum_{1}^{m} z_{x}+l \sum_{1}^{m} \bar{\varphi}_{x}-l \sum_{1}^{m} \varphi_{x} \tag{84}
\end{equation*}
$$

Na wielkość z_{x}, ugięcia przedziału $x-1, x$, mamy wzór (11), który przybiera w danym razie postać

$$
\begin{equation*}
z_{x}=\frac{P l^{3}}{3 E J}+\frac{M_{x} l^{2}}{2 E J} \tag{85}
\end{equation*}
$$

Mając na uwadze wyrażenie (51) na moment zginający i. wyrażenie (56) na ramię tego momentu znajdujemy, że suma $\sum_{1}^{m} z_{x}$ wynosi przy jednej sile P zaczepionej do końca dźwigara i przy $e=f$

$$
\begin{equation*}
\sum_{1}^{m} z_{x}=\frac{2}{3} m f l^{2}+f l^{2} \sum_{i}^{m-1}\left(\frac{\cos \frac{m-x}{2} \beta \sin \frac{m-x+1}{2} \beta}{\sin \frac{\beta}{2}}-1\right) \tag{86}
\end{equation*}
$$

Obliczenie iloczynu $l \sum_{1}^{m} \bar{\varphi}_{x}$ odbywa się tu w porzadduu kolejnych wyrazów wzoru (79):

$$
\begin{align*}
l \sum_{i}^{m} \bar{p}_{x}= & -\frac{f l^{2}}{2 \operatorname{tg} \frac{\beta}{2}} \sum_{1}^{m} \sin x \beta-\frac{f l^{2}}{2 \operatorname{tg}^{2} \frac{\beta}{2}} \sum_{l}^{m} \cos x \beta+ \tag{87}\\
& +\frac{f l^{2}}{\sin \frac{\beta}{2}} \sum_{1}^{m} x \sin \left(n \beta+\frac{1}{2} \beta-x \beta\right)+\frac{m f l^{2}}{2 \operatorname{tg}^{2} \frac{\beta}{2}} .
\end{align*}
$$

Sume $\sum \varphi_{x}$ obliczamy na podstawie wzoru (53)

$$
\begin{equation*}
l \sum_{i}^{m} \varphi_{x}=m f l^{2}+2 f l^{2} \sum_{1}^{m-1}\left(\frac{\cos \frac{m-x}{2} \beta \sin \frac{m-x+1}{2} \beta}{\sin \frac{\beta}{2}}-1\right) . \tag{88}
\end{equation*}
$$

Przy niewielkiej liczbie przedziałów dźwigara załamanego w planie najprościej jest ze wzorów (86), (87) i (88) korzystać bezpośrednio, przy większej zaś liczbie przedziałów należy wsta--

Rys. 22 wić w nie wyrażenia na poszczególne sumy. Wzory (84)-(88) zastosujemy dalej do dźwigara przedstawionego na rys. 22 i 23 (pers-pektywa). W tym wypadku $n=m=3$, a $\beta=90^{\circ}$.

Rys. 23

Wzory (86) - (88) daja tu przy $e=f$ wyniki następujące:

$$
\begin{align*}
\sum_{1}^{3} z_{x}= & \frac{2}{3} m f l^{2}+f l^{2}(-1+1-1)=f l^{2}, \\
l \sum_{1}^{3} \bar{\varphi}_{x}= & -f l^{2}(1+0-1)-\frac{f l^{2}}{2}(0-1-0)+ \tag{89}\\
& +f l^{2}\left(\frac{-1 \sin 45^{\circ}+2 \sin 45^{\circ}+3 \sin 45^{\circ}}{\sin 45^{\circ}}\right)+\frac{3}{2} f l^{2}, \\
l \sum_{1}^{3} \varphi_{x}= & 3 f l^{2}+2 f l^{2}(-1+1-1)=f l^{2} .
\end{align*}
$$

W rezultacie ze wzoru (84) otrzymujemy

$$
\begin{equation*}
w_{3}=f l^{2}+6 f l^{2}-f l^{2}=6 f l^{2}=\frac{3 P l^{3}}{E J} \tag{90}
\end{equation*}
$$

Zastosowanie równań różnicowych do obliczenia dźwigarów załamarych w planie jest szczególnie wygodne, gdy chodzi o dużą liczbę przedziałów, np. w przypadku gdy zastępujemy w obliczeniach dźwigar zakrzywiony w planie przez dźwigar załamany.

2. Dźwigary o zmiennym kącie zalamania

W przypadku dźwigarów o zmiennym kącie załamania sinusy i cosinusy kątów β wchodzące do równań (39) i (40) są funkcjami x, czyli rów-" nania te stają się równaniami różnicowymi o zmiennych współczynnikach. Układ równań jest w dalszym ciagu układem równań pierwszego rzędu, ponieważ największa różnica wskaźników przy każdej z niewiadomych funkcji wynosi 1.

Zarówno kąty φ_{x} i Θ_{x}, jak również $\sin \beta_{x-1}$ i $\cos \beta_{x-1}$ są znanymi funkcjami x, podczas gdy kształt funkcji $\bar{\varphi}_{x}$ i $\bar{\Theta}_{x}$ jest dopiero poszukiwany. Podobnie jak w przypadku dźwigarów o stałym kacie załamania rugujemy z układu równań (39) i (40) niewiadomą $\bar{\Theta}_{x}$ i dochodzimy do równania różnicowego z jedną tylko niewiadomą φ_{x}, które będzie równaniem drugiego rzędu. Przytaczamy tu więc ponownie równania (39) i (40):

$$
\begin{aligned}
& \bar{\varphi}_{x}=\bar{\varphi}_{x-1} \cos \beta_{x-1}-\bar{\Theta}_{x-1} \sin \beta_{x-1}+\varphi_{x}, \\
& \bar{\Theta}_{x}=\bar{\varphi}_{x-1} \sin \beta_{x-1}+\bar{\Theta}_{x-1} \cos \beta_{x-1}+\Theta_{x} .
\end{aligned}
$$

Obliczamy przede wszystkim, podobnie jak w paragrafie 1 tego rozdziału, z równania (39) funkcje $\bar{\varphi}_{x+1}$:

$$
\begin{equation*}
\bar{\varphi}_{x+1}=\bar{\varphi}_{x} \cos \beta_{x}-\bar{\Theta}_{x} \sin \beta_{x}+\varphi_{x+1} \tag{91}
\end{equation*}
$$

Funkcję $\bar{\Theta}_{x}$ zastępujemy przez wyrażenie (40)

$$
\begin{aligned}
\bar{\varphi}_{x+1}= & \bar{\varphi}_{x} \cos \beta_{x}-\bar{\varphi}_{x-1} \sin \beta_{x-1} \sin \beta_{x}- \\
& -\bar{\Theta}_{x-1} \cos \beta_{x-1} \sin \beta_{x}-\bar{\Theta}_{x} \sin \beta_{x}+\varphi_{x+1}
\end{aligned}
$$

Zamiast funkcji $\bar{\Theta}_{x-1}$ wstawiamy tu wyrażenie otrzymane dla niej z równania (39)

$$
\begin{align*}
& \bar{\Theta}_{x-1} \sin \beta_{x-1}=-\bar{\varphi}_{x}+\bar{\varphi}_{x-1} \cos \beta_{x-1}+\varphi_{x} \tag{93}\\
& \bar{\Theta}_{x-1}=\frac{1}{\sin \beta_{x-1}}\left(-\bar{\varphi}_{x}+\bar{\varphi}_{x-1} \cos \beta_{x-1}+\varphi_{x}\right) \tag{94}
\end{align*}
$$

W ten sposób znajdujemy

$$
\begin{aligned}
\varphi_{x+1} & =\bar{\varphi}_{x} \cos \beta_{x}-\bar{\varphi}_{x-1} \sin \beta_{x-1} \sin \beta_{x}+\bar{\varphi}_{x} \operatorname{ctg} \beta_{x-1} \sin \beta_{x}- \\
& -\bar{\varphi}_{x-1} \operatorname{ctg} \beta_{x-1} \cos \beta_{x-1} \sin \beta_{x}-\varphi_{x} \operatorname{ctg} \beta_{x-1} \sin \beta_{x}-\Theta_{x} \sin \beta_{x}+\varphi_{x+1} .
\end{aligned}
$$

Równaniu temu możemy nadać postać

$$
\begin{equation*}
A \bar{\varphi}_{x+1}+B \bar{\varphi}_{x}+C \bar{\varphi}_{x-1}=Q_{x}, \tag{96}
\end{equation*}
$$

gdzie

$$
\begin{align*}
A & =1, \quad B=-\frac{\sin \left(\beta_{x}+\beta_{x-1}\right)}{\sin \beta_{x-1}}, \quad C=\frac{\sin \beta_{x}}{\sin \beta_{x-1}} \tag{97}\\
Q_{x} & =\frac{\varphi_{x+1} \sin \beta_{x-1}-\varphi_{x} \sin \beta_{x} \cos \beta_{x-1}-\Theta_{x} \sin \beta_{x} \sin \beta_{x-1}}{\sin \beta_{x-1}}
\end{align*}
$$

Po odrzuceniu wspólnego mianownika $\sin \beta_{x-1}$ doprowadzamy równanie (96) do następującej postaci:

$$
\begin{align*}
\bar{\varphi}_{x+1} \sin \beta_{x-1} & -\bar{\varphi}_{x} \sin \left(\beta_{x}+\beta_{x-1}\right)+\bar{\varphi}_{x-1} \sin \beta_{x}= \tag{98}\\
& =\varphi_{x+1} \sin \beta_{x-1}-\varphi_{x} \sin \beta_{x} \cos \beta_{x-1}-\Theta_{x} \sin \beta_{x} \sin \beta_{x-1}
\end{align*}
$$

Aby umożliwić rozwiązanie tego równania, musimy tu wstawic na miejsce współczynników przy niewiadomych wyrażenia przedstawiające te współczynniki jako pewne funkcje x. Należy przy tym zauważyć, że o ile kształt dźwigara załamanego w planie nie jest jeszcze w projekcie budowli szczegółowo ustalony, możemy przy jego projektowaniu kształt ten tak dobrać, aby kąty β_{x} odpowiadały regule pozwalającej nadać równaniu (98) postać możliwie łatwą do rozwiązania.

Rozpatrzymy tu przypadek, kiedy kąty załamania są nieduże i kiedy czynią zadość warunkowi

$$
\begin{equation*}
\frac{\sin \beta_{x}}{\sin \beta_{x-1}}=q \tag{99}
\end{equation*}
$$

Równanie (99) wyraża, że sinusy kątów załamania zmieniają się według postępu geometrycznego; stąd wynika, że

$$
\begin{equation*}
\sin \beta_{x}=q^{x} \sin \beta_{0} \tag{100}
\end{equation*}
$$

gdzie β_{0} oznacza pewien kąt wyjściowy.
Oznaczając przez Q_{x}^{\prime} drugą stronę równania (98), której poszczególne wyrazy są znanymi funkcjami x, nadajemy temu równaniu postać

$$
\begin{equation*}
\bar{\varphi}_{x-1} \sin \beta_{x-1}-\bar{\varphi}_{x} \sin \left(\beta_{x}+\beta_{x-1}\right)+\bar{\varphi}_{x-1} \sin \beta_{x}=Q_{x}^{\prime} \tag{101}
\end{equation*}
$$

Przekształcenie równania (101) rozpoczynamy od rozwinięcia wchodzącego tu $\sin \left(\beta_{x}+\beta_{x-1}\right)$. Ponieważ zastrzegliśmy się, iż kąty β_{x} są małe, przyjmujemy, iż $\cos \beta_{x}=\cos \beta_{x-1}=1$, a więc

$$
\begin{equation*}
\sin \left(\beta_{x}+\beta_{x-1}=\sin \beta_{x}+\sin \beta_{x-1}\right. \tag{102}
\end{equation*}
$$

Błąd, który popełniamy zakładając, że $\cos \beta_{x}=1$, wynosi przy 10 bokach dźwigara na ćwierci zamkniętego obwodu okolo $1 \% \%$.

Wprowadzając do równania (101) wyrażenie (100) dochodzimy do równania

$$
\begin{equation*}
\bar{\varphi}_{x+1} q^{x-1} \sin \beta_{0}-\bar{\varphi}_{x}\left(q^{x}+q^{x-1}\right) \sin \beta_{0}+\bar{p}_{x-1} q^{x} \sin \beta_{0}=Q_{x}^{\prime} \tag{103}
\end{equation*}
$$

lub do równania

$$
\begin{equation*}
\bar{\varphi}_{x+1} q^{x}-\bar{p}_{x} q^{x}(q+1)+\bar{p}_{x-1} q^{x+1}=\frac{Q_{x}^{\prime} q}{\sin \beta_{0}} \tag{104}
\end{equation*}
$$

Wykonujemy dalej następujące podstawienia:

$$
\left.\begin{array}{cc}
\bar{\varphi}_{x}=y_{x} q^{\frac{x}{2}}, & \bar{p}_{x} q^{x}=y_{x} q^{\frac{3}{2}}, \\
\bar{\varphi}_{x+1}=y_{x+1} q^{\frac{x \cdot 11}{2}}, & \bar{\varphi}_{x+1} q^{x}=y_{x i 1} q^{\frac{3 x+1}{2}} \tag{105}\\
\bar{\varphi}_{x-1}=y_{x-1} q^{\frac{x-1}{2}}, & \bar{p}_{x-1} q^{x-1}=y_{x-1} q^{\frac{3 x+1}{2}}
\end{array}\right\}
$$

Podstawienia te nadają równaniu (104) postać

$$
\begin{equation*}
y_{x \mid 1}-y_{x} \frac{q+1}{\sqrt{q}}+y_{x-1}=\frac{Q_{x}^{\prime} q^{\frac{1-3 x}{2}}}{\sin \beta_{0}} \tag{106}
\end{equation*}
$$

W ten sposób zastępujemy równanie drugiego rzędu o zmiennych współczynnikach przez równanie różnicowe drugiego rzędu o współczynnikach stałych, którego lewa strona jest w dodatku symetryczna. Poważną trudność w rozwiązywaniu tego równania stanowi złożona postać jego prawej strony, wobec czego znalezienie jakiegokolwiek szczególnego rozwiązania tego równania natrafia na trudności, dla których przezwyciężenia należy uciekać się do przybliżeń dosyé daleko posuniętych.

Inną droge w tym kierunku wskażemy nadając nową postać równaniu (98). Mając, mianowicie, na widoku równość (102) oraz założenie, że $\cos \beta=1$, znajdujemy

$$
\begin{align*}
&\left(\bar{\varphi}_{x+1}-\bar{\varphi}_{x}-\varphi_{x+1}\right) \sin \beta_{x-1}-\left(\bar{\varphi}_{x}-\bar{\varphi}_{x-1}-\varphi_{x}\right) \sin \beta_{x}= \tag{107}\\
&=-\Theta_{x} \sin \beta_{x} \sin \beta_{x-1}
\end{align*}
$$

co po przyjęciu

$$
\begin{equation*}
\eta_{x}=\bar{\varphi}_{x}-\bar{\varphi}_{x-1}-\varphi_{x} \tag{108}
\end{equation*}
$$

doprowadza do równania pierwszego rzędu względem η_{x} :

$$
\begin{equation*}
\eta_{x+1} \sin \beta_{x-1}-\eta_{x} \sin \beta_{x}=-\Theta_{x} \sin \beta_{x} \sin \beta_{x-1} \tag{109}
\end{equation*}
$$

czyli do równania

$$
\begin{equation*}
\eta_{x+1}-\frac{\sin \beta_{x}}{\sin \beta_{x-1}} \eta_{x}=-\Theta_{x} \sin \beta_{x} \tag{110}
\end{equation*}
$$

lub równania

$$
\begin{equation*}
\eta_{x+1}-q \eta_{x}=-\Theta_{x} q^{x} \sin \beta_{0} \tag{111}
\end{equation*}
$$

Kąt skręcenia Θ_{x} wchodzący do prawej strony równania (111) jest proporcjonalny do momentu skręcającego, a ramię momentu skręcającego w przypadku jednego ciężaru zaczepionego na końcu dźwigara wyraża się wzorem (por. rys. 21)

$$
\begin{equation*}
b_{x}=l\left[\sin \beta_{x}+\sin \left(\beta_{x}+\beta_{x+1}\right)+\ldots+\sin \left(\beta_{x}+\beta_{x+1}+\ldots+\beta_{n-1}\right)\right] \tag{112}
\end{equation*}
$$

Sumowanie szeregu (112) nasuwa trudności, które rosną wraz z liczbą sił obciążających dźwigar. Z tego powodu zastępujemy ten szereg przez pewną krzywą interpolacyjną typu

$$
\begin{equation*}
b_{x}=\sum_{0}^{n} A_{k} x^{k} \tag{113}
\end{equation*}
$$

wobec czego możemy nadać równaniu (111) przy trzech współczynnikach A_{k} we wzorze (113) - współczynnikach a, b i c — postać

$$
\begin{equation*}
\eta_{x+1}-q_{x} \eta_{x}=\mu\left(a x^{2}+b x+c\right) q^{x} \tag{114}
\end{equation*}
$$

gdzie

$$
\mu=2 e \sin \beta_{0}
$$

Nie nasuwające żadnych trudności rozwiązanie równania (114) będzie miało postać

$$
\begin{equation*}
\eta_{x}=\left(A x^{3}+B x^{2}+C x\right) q^{x}+D q^{x} \tag{115}
\end{equation*}
$$

wobec czego wyrażenie (108) da nam następujące równanie różnicowe pierwszego rzędu:

$$
\begin{equation*}
\bar{\varphi}_{x}-\bar{\varphi}_{x-1}=p_{x}+\left(A x^{3}+B x^{2}+C x\right) q^{x}+D q^{x} \tag{116}
\end{equation*}
$$

gdzie, jak wynika z rozumowań poprzednich, współczynniki A, B, C i D są wielkościami znanymi. Wchodząca tu wielkos̉ć φ_{x} zależy od momentu zginającego M_{x}, który jest proporcjonalny do ramienia a_{x} wyrażającego się szeregiem

$$
\begin{equation*}
a_{x}=l\left[\cos \beta_{x}+\cos \left(\beta_{x}+\beta_{x+1}\right)+\ldots+\cos \left(\beta_{x}+\beta_{x-1}+\ldots+\beta_{n-1}\right)\right] \tag{117}
\end{equation*}
$$

Musimy więc tu zastąpić wyrażenie a_{x}, podobnie jak to było wyżej z wyrażeniem na b_{x}, przez pewną krzywą interpolacyjną typu parabolicznego, po czym już bez trudności dochodzimy po rozwiązaniu równania (116) do poszukiwanego wyrażenia na $\bar{\varphi}_{x}{ }^{1}$).

Operacja przedstawiona na wzorach od (107) do (117) doprowadziła do zastąpienia jednego równania (107) o współczynnikach zmiennych przez dwa równania (111) i (116) o współczynnikach stałych, jednak trudności rachunkowe przy rozwiązywaniu równań różnicowych dźwigara załamanego w planie o zmiennym kącie załamania zmuszają nieraz do wyrzeczenia się w tym wypadku metody różnic skończonych i do oparcia się na wzorach rekurencyjnych podanych w rozdziale II.
IV. STATYCZNIE NIEWYZNACZALNE DZWIGARY ZAEAMANE W PLANIE

1. Dźwigary balkonowe

Przez dźwigary balkonowe rozumiemy przede wszystkim dźwigary typu przedstawionego w planie na rys. 24 , tj. dźwigary załamane o wypukłości zwróconej w jedną stronę i utwierdzone na końcach. Za dźwigary balkonowe uważać można również dźwigary załamane w planie podparte w szeregu węzłów, lecz nie we wszystkich, przy czym dźwigary takie moga być na końcach swobodnie podparte lub utwierdzone (rys. 33), moga wreszcie tworzyć obwody zamknięte (rys. 35). Innymi słowami, mówiąc o dźwigarach balkonowych mamy na myśli đźwigary załamane o wypukłości zwróconej w jedną strone, podparte w dwóch punktach lub w większej liczbie punktów i posiadające części niepodparte.

[^0]

Aby ustalić stopień statycznej niewyznaczalności dźwigara przedstawionego na rys. 24 , bierzemy przede wszystkim pod uwagę okoliczność, że spośród 6 równań równowagi w przestrzeni

$$
\begin{array}{ll}
\Sigma X=0, & \Sigma M_{x}=0 \\
\Sigma Y=0, & \Sigma M_{y}=0 \\
\Sigma Z=0, & \Sigma M_{z}=0
\end{array}
$$

w przypadku dźwigarów załamanych w planie, obciążonych prostopadle do płaszczyzny dźwigara, pierwsze dwa równania oraz równanie ostatnie są tożsamościami.

Z drugiej strony, sposób podparcia dźwigara balkonowego przedstawionego na rys. 24 daje sześć składowych reakcji dwóch płaskich podpór dźwigara, w postaci dwóch sił (R_{A} i R_{B}), dwóch momentów działających w płaszczyznach pionowych, przechodzących przez dwa skrajne przesła (M_{A} i M_{B}) i dwóch momentów działających w płaszczyznach utwierdzenia $\left(\mathscr{M}_{A}^{0}\right.$ i $\left.\mathscr{M}_{B}^{0}\right)$. Mamy tu więc ostatecznie do obliczenia trzy wielkości statycznie niewyznaczalne.

Rys. 25

Rys. 26

Dla wyznaczenia tych trzech wielkości robimy przekrój a a prostopadły do jednego z przedziałów dźwigara. Wzajemne oddziaływanie na siebie dwóch części dźwigara rozdzielonych przekrojem a a wyrażamy za pomoca sily pionowej T_{a} oraz dwu momentów, z których "wektor jednego M_{α}^{0} skierowany jest wzdluż osi podłużnej przedziału $i, i+1$, a wektor drugiego M_{a} prostopadle do tej osi. Na rysunkach 25 i 26 przedstawione są obie rozdzielone przekrojem a α części dźwigara, przy czym wektory momentów M_{α} i M_{α}^{0} maja na każdym z tych rysunkow zwrot odmienny. Odmienne zwroty mają też i siły T_{a} w zastosowaniu do każdej z dwóch części dźwigara. Wielkości T_{a}, M_{α} i M_{α}^{0} uważamy dalej za wielkości nadliczbowe zadania.

Oznaczamy przez w_{l} i w_{p} pionowe przesunięcia końców a lewej i prawej części dźwigara, traktowanych jako dźwigary-wsporniki załamane
w planie, utwierdzone w punktach O i n i swobodne w punktach α, przez φ_{l} i φ_{p} odpowiednie katy nachylenia przekrojów $\alpha \alpha$ względem płaszczyzny pionowej, wreszcie przez Θ_{l} i Θ_{p} kąty obrotu tych przekrojów względem osi $i, i+1$ prostopadłej do płaszczyzny $\alpha \alpha$. Każda z wielkości w, φ i Θ jest funkcja składowych T_{α}, M_{α} i M_{α}^{0} oddzialywania na siebie dźwigarów $O a$ i an.

Z powodu jednolitości rozpatrywanego dźwigara muszą mieć miejsce zależności

$$
\begin{align*}
w_{l} & =w_{p} \tag{118}\\
p_{l} & =-\varphi_{p} \tag{119}\\
\Theta_{l} & =\Theta_{p} \tag{120}
\end{align*}
$$

Wszystkie wchodzące do powyższych równań wielkości są funkcjami składowych reakcji T_{α}, M_{α} i M_{α}^{0}, a więc $n p$. $w_{i}=f_{1}\left(T_{\alpha}, \quad M_{a}, \quad M_{a}^{0}\right)$, $w_{p}=f_{2}\left(T_{\alpha}, M_{\alpha}, \mathfrak{M}_{\alpha}^{0}\right), \varphi_{l}=f_{3}\left(T_{\alpha}, M_{\alpha}, \mathfrak{M}_{\alpha}^{0}\right)$ itd. W ten sposób z równań (118)-(120) obliczymy wszystkie wielkości statycznie niewyznaczalne zadania T_{α}, M_{α} i \mathbb{M}_{α}^{0}. Sześć funkcji wchodzących do równań (118)-(120) ustalimy, zgodnie ze wskazaniami rozdziału II. 2, jako odkształcenia dźwi-garów-wsporników załamanych w planie, znajdujących się, poza przypadająca na nie częścią obciążenia dźwigara balkonowego, jeszcze pod działaniem nieznanych sil uogólnionych $\mathrm{T}_{\alpha}, M_{\alpha}$ i $M_{a}^{0 .}$.

W pewnych przypadkach okazuje się rzeczą celową przeprowadzenie. przekroju $a \alpha \mathrm{w}$ samym węźle i, a nie między węzłami $i-1$ a i. Wówczas płaszczyzna $\alpha \alpha$ (w danym razie płaszczyzna $\alpha_{1} \alpha_{1}$) będzie prostopadła do osi przedziału $i, i+1$, a z osią przedziału $i-1, i$ tworzyć będzie kąt $90^{\circ}-\beta_{i}$ (płaszczyzna $\alpha_{0} \alpha_{0}$). Równania (119) i (120) muszą byé w tych warunkach zastapione przez równania

$$
\begin{gather*}
\varphi_{l} \cos \beta_{i}-\Theta_{l} \sin \beta_{i}=-\varphi_{p} \tag{121}\\
\varphi_{l} \sin \beta_{i}+\Theta_{l} \cos \beta_{i}=\Theta_{\rho} \tag{122}
\end{gather*}
$$

gdzie φ_{l} i Θ_{l} rozumiemy jako kąty odpowiadające przekrojowi poprzecznemu $\alpha_{1} \alpha_{1}$, a φ_{p} i Θ_{p} jako kąty odpowiadające przekrojowi $\alpha_{0} \alpha_{0}$. Wzory (119) i (120) stanowią w tych warunkach przypadek szczególny wzorów (121) i (122).

Obliczenia szczególowe przeprowadzamy na przykładzie.
Jako przykład bierzemy dźwigar w kształcie połowy kwadratu (rys 27). Oba końce dźwigara 0 i 3 są utwierdzone, a przekrój poprzeczny jest stały. W środku przedziału 12 zaczepiona jest siła skupiona P.

Z powodu symetrii kształtu i obciążenia dźwigara względem jego środka mamy tu do czynienia z układem jednokrotnie statycznie niewyznaczalnym, gdyż z warunków symetrii wynika bezpośrednio, że $T_{\alpha}=0$ i $M_{\alpha}^{0}=0$.

Robimy przekrój $\alpha \alpha$ przez środek dźwigara (punkt s) i dochodzimy w ten sposób ze względów symetrii do dźwi-gara-wspornika załamanego w planie $01 s$, obciążonego w punkcie s siłą pionową równą $P / 2$ i nieznanym momentem M_{α}, który uważamy w danym razie za wielkość nadliczbowa. Moment ten wyraża oddziaływanie jednej z roz-

Rys. 27 dzielonych przekrojem αa części dźwigara balkonowego na drugą, tj. oddziaływanie dźwigara s23 na dźwigar 01s.

Obliczamy kąt $\bar{\varphi}_{\alpha}$ nachylenia przekroju poprzecznego au względem płaszczyzny pionowej; w tym celu korzystamy ze wzoru (24) z rozdzialu II. 2 mając na widoku, że w danym razie kąt $\beta=90^{\circ}$.

$$
\begin{equation*}
\bar{\varphi}_{\alpha}=-\bar{\Theta}_{p}+\varphi_{\alpha} \tag{123}
\end{equation*}
$$

lub wobec $\bar{\Theta}_{1}=\Theta_{1}$

$$
\begin{equation*}
\bar{\varphi}_{\alpha}=-\Theta_{1}+\varphi_{\alpha} \tag{124}
\end{equation*}
$$

Kąt Θ_{1} jako kąt skręcenia przedziału 01 równa się

$$
\begin{equation*}
\Theta_{1}=-\frac{P}{2} l \frac{l}{G J_{0}}-\frac{M_{0} l}{G J_{0}} \tag{125}
\end{equation*}
$$

a kąt φ_{a} jako kąt nachylenia przekroju $\alpha \alpha$ względem płaszczyzny pionowej wyraża się wzorem

$$
\begin{equation*}
\varphi_{\alpha}=\frac{P}{2} l \frac{l}{2 E J}+\frac{M_{\alpha} l}{E J} . \tag{126}
\end{equation*}
$$

W tych warunkach równanie (123) przybiera postać

$$
\begin{equation*}
\varepsilon M_{\alpha} l+0,5 \varepsilon P l^{2}+M_{\alpha} l+0,25 P l^{2}=0 \tag{1.27}
\end{equation*}
$$

$\operatorname{Przy} \varepsilon=E J / G J_{0}=1$ znajdujemy stąd

$$
\begin{equation*}
M_{\alpha}=-0,375 \mathrm{Pl} \tag{128}
\end{equation*}
$$

Wzór (13) z rozdziału II. 2 doprowadza w tym wypadku do następującej wartości pionowego przesunięcia punktu s dźwigara:

$$
\begin{equation*}
w_{s}=\frac{0,1665 P l^{3}-0,375 P l^{3}+0,5 P^{3}}{E J}=\frac{0,2915 P^{3}}{E J} \tag{129}
\end{equation*}
$$

Przy obliczeniu dźwigarów balkonowych można by przekrój aa wykonać na jednej z podpór dźwigara, co pozwoliłoby na zastąpienie równań (118) - (120) np. przez równania

$$
\begin{equation*}
w_{l}=0, \quad \varphi_{l}=0, \quad \Theta_{l}=0 \tag{130}
\end{equation*}
$$

i uczyniłoby zbędnym obliczenie $w_{p}, \bar{\varphi}_{p}$ i Θ_{p}. Nie byłoby to jednak celowe, gdyż wobec algebraicznej zależności od siebie przesunięć kolejnych węzłów szybciej można obliczyć przesunięcia dwóch dźwigarówwsporników niż jednego o tej samej liczbie węzłów, co tamte dwa razem.

Wyznaczenie składowych reakcji podpór dźwigara balkonowego przedstawionego na rys. 24 ulega uproszczeniu, o ile jedna z podpór płaskich zostanie zastąpiona przez podpore przegubowo-przesuwna (rys. 28) lub przez podpore, która pozwala na

Rys. 28 przesuwanie się końca dźwigara, lecz uniemożliwia obrớt przekroju podporowego względem osi ostatniego przedziału $n-1, n$ dźwigara (rys. 29). Dźwigar balkonowy przedstawiony na rys. 28 jest jednokrotnie, a dźwigar przedstawiony na rys. 29 dwukrotnie statycznie niewyznaczalny. Do znalezienia składowych reakcji podpór korzystamy w pierwszym przypadku z pierwszego, a w drugim przypadku z pierwszego i trzeciego z równań (130).

W przypadku symetrii kształtu i obciążenia dźwigara balkonowego (rys. 24) liczba składowych reakcji jego podpór spada do trzech, a liczba równań równowagi różnych od tożsamości do dwóch i wobec tego dźwigar staje się jednokrotnie statycznie niewyznaczalny.

Rozpatrzmy dalej przypadek, gdy belka balkonowa, symetryczna względem środka i symetrycznie obciazżona, jest w pewnym punkcie podparta przez prosta

Rys. 29 belkę wspornikowa (rys. 30). O ile podparcie dźwigara w punkcie s belką as nie ma charakteru połączenia sztywnego, wówczas podparcie dźwigara balkonowego wspornikiem wprowadza do obliczenia dźwigara jedną nową niewiadomą, za jaką
przyjmujemy reakcję R_{s} dźwigara w punkcie s. Jeżeli jednak mamy w punkcie s sztywne połączenie dźwigara ze wspornikiem, wówczas w miejscu połączenia s występuje moment \mathfrak{M}_{s}^{0} skręcający przedział 22^{\prime} dźwigara balkonowego; moment ten wywołuje zginanie wspornika as w płaszczyźnie as, jako moment zaczepiony do końca s tego wspornika.

W tym. wypadku możemy obrać za wielkości statycznie niewyznaczalne wielkości $M_{0}^{0}=M_{n}^{0}, R_{s}$ oraz $M_{s}^{0} \mathrm{i}$ możemy wyznaczyć je z równań wyraża-

Rys. 30 jących, że kąty obrotów przekrojów 0 i n (kąty $\Theta_{0}=\Theta_{n}$) są równe zeru ($\Theta_{s}=0$), że kąt obrotu przekroju s przedzialu 22^{\prime}. jest równy kątowi nachylenia przekroju s wspornika as względem płaszczyzny pionowej (Θ_{s} dźw. $=\varphi_{s}$ wsp.) oraz że w punkcie s równe są ugięcia dźwigara i wspornika (w_{s} dźw. $=\tilde{w}_{s}$ wsp.).

Podobny do powyższego sposób rozumowania możemy zastosować i do obliczenia dźwigarów balkonowych w rodzaju przedstawionych na rys. 31 i na rys. 32 , a więc do dźwigarów posiadających, poza utwierdzeniem lub swobodnym podparciem końców, jeszcze między nimi podpory przegu-

Rys. 31

Rys. 32
bowo-przesuwne. Uogólnienie tych schematów stanowi dźwigar przedstawiony na rys. 33, który można by nazwać dźwigarem balkonowym ciaglym w przeciwienstwie do dźwigara ciagtego zalamaniego w planie, tzn. dźwigara podpartego w każdym węźle.

Aby obliczyć reakcje dźwigara przedstawionego na rys. 33, dzielimy przede wszystkim dźwigar myślowo na odcinki zawierające po trzy podpory, a więc na odcinki $A C, C E$ i $E G$, przeprowadzając na podporach C i E, nad którymi się te odcinki stykaja, przekroje αa i $\alpha_{1} a_{1}$ prostopadłe do osi końcowych przedziałów danego odcinka. Przekroje te dzielą cały dźwigar na szereg dźwigarów trzypodporowych, a więc statycznie wyznaczalnych. Gdy liczba podpór całego dźwigara nie pozwala na rozdzielenie go na grupy trzypodporowe, np. przy liczbie podpór sześé, robimy przekrój aa między podporami (rys. 34) i dochodzimy w ten sposób do dźwigarów
trzypodporowych ze wspornikami, które też są układami statycznie wyznaczalnymi. Możemy w tym wypadku wyodrębnić również i trzy dźwigary statycznie wyznaczalne, mianowicie, dwa dźwigary trzypodporowe $A C$ i $C E$ oraz jedną belkę $E F$ podpartą w dwóch punktach.

Rys. 33
Przebieg obliczenia statycznego omówionego tu rodzaju dźwigarów balkonowych przedstawimy przede wszystkim na schemacie prostszym, na schemacie według rys. 34. Wzajemne oddziaływanie na siebie dwu części tego dźwigara - statycznie wyznaczalnego dźwigara wspornikowego $A B C \alpha$ i statycznie wyznaczalnego dźwigara-wspornikowego $a D E F$ - wyraża się za pomocą dwu momentów, z których jeden M_{α}^{0} ma wektor skierowany wzdłuż osi przedziału Cs, a drugi wektor M_{α} prostopadły do tej osi i pewnej siły pionowej T_{α}. Jeżeli w dalszym ciągu oznaczymy odpowiednio przez $\varphi_{\alpha}^{\prime}$ i $\varphi_{a}^{\prime \prime}$ kąty nachylenia przekrojów αa względem płaszczyzny pionowej koncowego przekroju a dźwigara ABC α i końcowego przekroju a dźwigara $a D E F$, to przyrównując do siebie katy $\varphi_{\alpha}^{\prime}$ i $\varphi_{\alpha}^{\prime \prime}$ dojdziemy do równania zawierającego momenty M_{α} i M_{α}^{0} oraz siłę T_{α}. Drugie równanie potrzebne do wyznaczenia tych momentów da nam przyrównanie kątów obrotu Θ_{α}^{\prime} i $\Theta_{\alpha}^{\prime \prime}$ przekrojów ac wzglę-

Rys. 34
dem osi przedziału Cs, również jako końcowych przekrojów dźwigara $A B C \alpha$ i dźwigara $\alpha D E F$. Trzecie wreszcie równanie da nam przyrównanie do siebie pionowych przesunięć konców α obydwóch dźwigarów, tj. przesunąc w_{a}^{\prime} i $w_{\alpha}^{\prime \prime}$.

O ile przekrój a α będzie przeprowadzony nie między węzłami, lecz przez sam węzeł, a podpory dźwigara są stałe, wówczas oddziaływanie na siebie poszczególnych części ciagłego dźwigara bálkonowego będą się wyrażały za pomoca samych tylko momentów M_{α} i M_{α}^{0}.

Weźmy wreszcie pod uwagę dźwigar załamany w planie z osiac w kształcie zamkniętego wieloboku (rys. 35), podparty swobodnie w trzech punktach i obciążony w dowolny sposób. Układ taki jest zewnętrznie statycznie wyznaczalny, gdyż reakcje jego podpór dają się obliczyć z równań równowagi.

Rys. 35

Rys. 36

Aby wyznaczyć wielkości statycznie nadliczbowe dźwigara w kształcie wieloboku zamkniętego jako układu wewnętrznie statycznie niewyznaczalnego, przeprowadzamy przekrój $\alpha \alpha$ przez jeden z prętów wieloboku . Powstaje w ten sposób dźwigar ciagy typu balkonowego $a A B C \alpha \mathrm{z}$ dwoma wspornikami $A \alpha$ i $C \alpha$. Oddziaływanie jednego z pokrywających się przekrojów a na drugi wyraża się za pomocą siły poprzecznej pionowej T_{α} oraz dwu momentów \prod_{α}^{0} i M_{a}, z których pierwszy ma wektor pokrywający się z kierunkiem $A a$ boku wieloboku, a wektor drugiego jest do tego boku prostopadły. Znajdujemy w dalszym ciągu, w myśl rozważań rozdziału II. 3, pionowe przesunięcie się wzajemne w_{a} dwóch przekrojów a jako funkcje wielkości $T_{a}, \mathrm{M}_{\alpha}^{0}$ i M_{α} i przyrównywamy ja do zera. Przyrównywamy dalej do siebie dwa kąty nachylenia φ_{u}^{\prime} i $\varphi_{u}^{\prime \prime}$ obydwóch przekrojów a α względem płaszczyzny pionowej oraz dwa kąty obrotu Θ_{a}^{\prime} i $\Theta_{\alpha}^{\prime \prime}$ tych przekrojów względem osi $A \alpha$. Ponieważ zarówno kąty φ_{α}, jak i kąty Θ_{α} są funkcjami wielkości T_{a}, $\mathfrak{M}_{\alpha}^{0}$ i M_{α}, to dochodzimy do trzech równań, z których te wielkości wyznaczamy.

Obliczenie ugięć dźwigara balkonowego odbywa się na podstawie wzoru (13).

Obliczenie to przeprowadzamy na przypadku szczególnym dźwigara przedstawionego na rys. 36. Chodzi tu o wyznaczenie pionowego przesunięcia punktu zaczepienia siły P. Wobec symetrii dźwigara względem tego punktu wzór (13) powinien być zastosowany do polowy 012 P roz-
patrywanego dźwigara przy obciążeniu składającym się z sily $P / 2$ zaczepionej w końcu P dźwigara 012P oraz z momentu M_{α} wyrażającego oddziaływaṇie jednej połowy dźwigara na druga, który według obliczeń przytoczonych na początku rozdziału VI wynosi $M_{\alpha}=-0,3955 \mathrm{Pr}$ (r - promień półkoła wpisanego w oś dźwigara). Wzór (13) przybiera postać

$$
\begin{equation*}
w_{\alpha}=\sum_{1}^{3} z_{j}+\sum_{1}^{3} \varphi_{j}^{\prime} l_{j} . \tag{131}
\end{equation*}
$$

Na podstawie wzoru (10) dla omówionego obciążenia znajdujemy

$$
\left.\begin{array}{c}
z_{1}=0,06503 \frac{P l^{3}}{E J}, \quad z_{2}=0,11521 \frac{P l^{3}}{E J}, \\
z_{\alpha}=-0,02861 \frac{P l^{3}}{E J} \tag{132}
\end{array}\right\}
$$

Wzory (11) i (12) dają w tym wypadku (przy $G J_{0}=E J$)

$$
\left.\begin{array}{c}
\varphi_{1}=0,23920 \frac{P l^{2}}{E J}, \quad \Theta_{1}=-0,10401 \frac{P l^{2}}{E J}, \tag{133}\\
\varphi_{\alpha}=0,37454 \frac{P l^{2}}{E J},
\end{array}\right\}
$$

skąd ze wzoru (18) mamy

$$
\left.\begin{array}{r}
\varphi_{2}^{\prime}=0,70711\left(\varphi_{1}-\Theta_{1}\right)=0,24274 \frac{\mathrm{Pl}}{\mathrm{EJ}}, \\
\varphi_{a}^{\prime}=\varphi_{a}=0,37454-\frac{\mathrm{Pl}}{\mathrm{EJ}}, \tag{134}
\end{array}\right\}
$$

wobec czego

$$
\begin{equation*}
\varphi_{2}^{\prime} l=0,24274 \frac{P l^{3}}{E J}, \quad \varphi_{a}^{\prime} \frac{l}{2}=0,18727 \frac{P l^{3}}{E J} . \tag{135}
\end{equation*}
$$

W tych warunkach suma (131) daje ostatecznie

$$
\begin{equation*}
w_{\alpha}=0,58164 \frac{P l^{3}}{E J} \tag{136}
\end{equation*}
$$

Analogiczne obliczenia wykonane dla $G J_{0} \neq E J$ wykazuja, że stosunek $\varepsilon=E J / G J_{0}$ więcej wpływa na ugięcie dźwigara niź na momenty nadliczbowe. W miare wzrastania ε szybko wzrastają ugięcia.

Należy stąd wysnuć wniosek, że tam, gảzie można się obawiać znacznych odkształceń dźwigara załamanego w planie, trzeba stosować przekroje o mniejszym ε.

2. Dźwigary ciagle zalamane w planie

Będziemy dalej nazywali, zgodnie z umową przyjętą w paragrafie poprzednim, dźwigarami ciągłymi załamanymi w planie dźwigary załamane w planie, podparte we wszystkich węzłach. Dźwigar taki przedstawiony

Rys. 37
jest na rys. 37. Tu w punktach $1,2,3, \ldots, i, i+1, \ldots, n-1$ mamy podpory wielokierunkowo-przesuwne w płaszczyźnie równoległej do płaszczyzny, w której leży oś pozioma dźwigara, a w punktach 0 i n mamy całkowite utwierdzenie konców.

Dźwigar przedstawiony na rys. 37 jest $n+2$-krotnie statycznie niewyznaczalny, gdyż dźwigar załamany w planie, utwierdzony na końcach daje trzy wielkości nadliczbowe, a każda z podpór wielokierunkowo-przesuwnych dodatkowo po jednej.

Wyobraźmy sobie, że pewien przedział $i-1, i$ dźwigara ciagłłego został wycięty za pomoca dwu płaszczyzn prostopadłych do

Rys. 38 osi przedziału (rys. 38). Oddziaływanie na węzeł i odrzuconego przesła $i, i+1$ zastępujemy przez pewien moment, którego składowe M_{i}^{\prime} i M_{i}^{0} przedstawiamy sobie w postaci wektorów leżących w płaszczyźnie poziomej dźwigara, z których jeden jest prostopadły do osi $i-1$, i, a drugi ma kierunek tej osi (rys. 38 i 39). Momenty M_{i}^{\prime} i $3 \mathrm{Mi}_{i}^{0}$ uważamy za prawoskrętne.

Wytnijmy dalej z dźwigara przedział $i, i+1$, podobnie jak to miało miejsce wyżej z przedziałem $i-1, i$. Oddziaływanie węzła i na przedział $i, i+1$ sprowadzi się wówczas do pewnego momentu, którego składowe M_{i+1} i M_{i+1}^{0} przedstawione są wektorowo na rys. 39 i na rys. 40. W tych warunkach oddziaływanie przedziału $i, i+1$ na węzeł i wyraża się momentami $-M_{i+1} \mathrm{i}-M_{i \mid 1}^{0}$.

Wobec małych wymiarów węzłów w stosunku do długości przedziałów możemy tu, podobnie jak w rozdziale II, uważać, że wektory wszyst-

Rys. 39 kich momentów działających na dany węzeł przechodzą przez środek węzła. Należy podkreślić, że momenty skręcające \mathfrak{M}^{0} zachowuja stałe wartości na całej długości przedziałów.

Dla rôwnowagi poszczególnych węzłów i potrzeba, aby suma wektorowa momentów działających na dany węzeł, a więc momentów $M_{i}^{\prime}, M_{i}^{0},-M_{i+1}$ i - M_{i+1}^{0}, była równa zeru, czyli aby suma rzutów tych wektorów na dwie prostopadłe osie była równa zeru. Rzutując wobec tego wymienione momenty na kierunki M_{i}^{\prime} i M_{i}^{0} (rys. 37, 39 i 41) dochodzimy do wzorów następujących:

$$
\begin{align*}
& M_{i}^{\prime}=M_{i+1}^{0} \sin \beta_{i}+M_{i+1} \cos \beta_{i} \tag{137}\\
& M_{i}^{0}=M_{i+1}^{0} \cos \beta_{i}-M_{i+1} \sin \beta_{i} \tag{138}
\end{align*}
$$

Momenty te pozwalaja na obliczenie odkształceń poszczególnych przedziałów dźwigara ciągłego. Odkształcenia, których wprowadzenie jest po--

Rys. 40

Rys. 41
trzebne do wyznaczenia wielkości nadliczbowych zadaniạ, są następujace (rys. 42):
φ_{i} kąt nachylenia przekroju poprzecznego przedziału $i-1, i$ w punkcie $i-1$ względem płaszczyzny pionowej,
φ_{i}^{\prime} kąt nachylenia przekroju poprzecznego przedziału $i-1, i$ w punkcie i względem płaszczyzny pionowej,
φ_{i}^{0} kąt nachylenia przekroju ukośnego przedziału $i-1$, i w punkcie i prostopadłego do osi przedziału $i, i+1$ (ściślej przekroju $o^{\prime} s^{\prime}$ na rys. 39) względem płaszczyzny pionowej,
Θ_{i} kąt skręcenia przedziału $i-1, i$,
Θ_{i}^{0} kąt obrotu przekroju poprzecznego przedziału $i, i+1$ w punkcie i, prostopadłego do osi przedziału $i, i+1$ względem tej osi,
Θ_{i}^{*} kąt obrotu przekroju ukośnego przedziału $i-1, i$ w punkeie i, prostopadłego do osi przedziału $i, i+1$ (inaczej kąt obrotu węzła i) względem osi $i-1, i$.
Obroty $\varphi_{i}, \varphi_{i}^{0}, \varphi_{i}^{\prime}, \Theta_{i}^{0}$ i Θ_{i}^{\prime} przedstawiamy w sposób wektorowy (rys. 42) i przyjmujemy co do ich zwrotów umowę odpowiednią do przyjętej dla dźwigara-wspornika w rozdziale II.2, tzn. kąty $\varphi_{i}, \varphi_{i}^{0}$ i φ_{i}^{\prime} uważamy za dodatnie, jeżeli obserwator patrzący na dźwigar z jego strony wklęsłej widzi, że odpowiednie przekroje dźwigara obracają się na prawo, a kąty Θ_{i}^{\prime} i Θ_{i}^{0} uważamy za dodatnie, kiedy obserwa-

Rys. 42 tor posuwający się tyłem wzdłuż dźwigara ciągłego od jego lewego konca do prawego widzi, że odpowiednie przekroje dźwigara obracaja się na prawo względem osi poszczególnych przedziałów.

Z powodów omówionych w rozdziale II. 2 przyjmujemy, że wektory $\varphi_{i}^{0}, \varphi_{i}^{\prime}, \Theta_{i}^{0}$ i Θ_{i}^{\prime} przechodzą przez środek węzła i.

Obroty φ_{i}^{\prime} i Θ_{i}^{\prime} składają się odpowiednio na obroty φ_{i}^{0} i Θ_{i}^{0}. Wobec tego rzutując wektory' φ_{i}^{\prime} i Θ_{i}^{\prime} na kierunki φ_{i}^{0} i Θ_{i}^{0} otrzymujemy

$$
\begin{align*}
& \varphi_{i}^{0}=\varphi_{i}^{\prime} \cos \beta_{i}-\Theta_{i}^{\prime} \sin \beta_{i} \tag{139}\\
& \Theta_{i}^{0}=\varphi_{i}^{\prime} \sin \beta_{i}+\Theta_{i}^{\prime} \cos \beta_{i} \tag{140}
\end{align*}
$$

przy czym, jak wynika z przyjetych oznaczeń,

$$
\begin{equation*}
\Theta_{i}^{\prime}=\Theta_{i-1}^{0}+\Theta_{i} . \tag{141}
\end{equation*}
$$

Aby ustawić potrzebną liczbę $n+2$ równań brakujących do wyznaczenia $n+2$ wielkości nadliczbowych zadania, bierzemy przede wszystkim pod uwagę, że pomimo dokonanych myślowo nad podporami przecięć, dźwigar musi pozostać ciągły i wobec tego nad każdą podporą suma kąta nachylenia przekroju ukośnego przedziału $i-1, i$ w punkcie i, jako przekroju prostopadłego do osi przedziału $i, i+1$, względem płaszczyzny pionowej, i kąta nachylenia przekroju poprzecznego przedzialu $i, i+1$ w punkcie i, względem płaszczyzny pionowej, musi być równa zeru. Dochodzimy w ten sposób do równań

$$
\begin{equation*}
\varphi_{i}^{0}+\varphi_{i+1}=0 . \tag{142}
\end{equation*}
$$

Równań takich mamy do rozporządzenia tyle, ile jest podpór pośrednich w dźwigarze ciągłym, tj. n-1.

W punktach utwierdzenia dźwigara kat nachylenia przekroju poprzecznego względem płaszczyzny pionowej jest równy zeru, wobec czego dochodzimy do dwu równań

$$
\begin{equation*}
\varphi_{0}=0 \quad \text { i } \quad \varphi_{n}^{\prime}=0 \tag{143}
\end{equation*}
$$

Wreszcie ostatnie ($n+2$-gie) równanie brakujące do rozwiązania zadania uzyskamy z warunku, że kąt obrotu przekroju utwierdzenia dźwigara w punkcie n równa się zeru:

$$
\begin{equation*}
\Theta_{n}^{0}=0 . \tag{144}
\end{equation*}
$$

Należy zauważyć, że równania (139), (140), (141) i (142) znajdują zastosowanie również i w przypadku dźwigarów ciagłych balkonowych, tzn. dźwigarów podpartych nie we wszystkich węzłach.

Wyrażenie kątów zawartych w równaniach (142) - (144) przez poszukiwane momenty opieramy na wzorach rekurencyjnych (137), (138), (139) i (140) oraz na wzorach dotyczących odkształceń przedziału $i-1, i$ dźwigara ciąglego uważanego za belkę w dwóch punktach swobodnie podpartą. A więc

$$
\begin{align*}
\varphi_{i} & =\frac{M_{i} l_{i}}{3 E J}-\frac{M_{i}^{\prime} l_{i}}{6 E J}+\frac{\mathfrak{I}_{i-1}}{E J} \tag{145}\\
\varphi_{i}^{\prime} & =\frac{M_{i}^{\prime} l_{i}}{3 E J}-\frac{M_{i} l_{i}}{6 E J}+\frac{\mathfrak{I}_{i}}{E J}, \tag{146}
\end{align*}
$$

gdzie l_{i} oznacza długość przedziału $i-1, i$, a \mathbb{I}_{i-1} i \mathbb{I}_{i} saz siłami poprzecznymi od obciążenia wtórnego przedziału, odpowiednio na koncach $i-1$ oraz i. Kąt skręcenia przedziału $i-1, i$ momentem $9 \mathcal{M}_{i}^{0}$ wynosi

$$
\begin{equation*}
\Theta_{i}=\frac{M_{i}^{0} l_{i}}{G J_{0}} \tag{147}
\end{equation*}
$$

przy czym bierzemy pod uwage, że skręcanie przedziału $i-1$, i, dzięki należycie wykonanemu przegubowemu połączeniu przedziału $i-1, i$ z przedziałem $i-2, i-1$, jest możliwe nawet pomimo to, że przedział został wycięty z dźwigara ciagłłego.

Liczba momentów niezbędnych do wyznaczenia naprężeń w poszczególnych przedziałach $i-1, i$ dźwigara ciagłego wynosi trzy. Są to momenty M_{i}, M_{i}^{\prime} oraz $9 M_{i}^{0}$. Ogólna liczba potrzebnych momentów dla całego dźwigara jest więc $3 n$. Równania rekurencyjne (137) i (138) mogą być ustawione dla każdej podpory pośredniej, czyli że liczba ich wynosi
$2(n-1)$, przy czym nie wprowadzają one nowych niewiadomych, gdyż momenty utwierdzenia M_{i}, M_{n}^{\prime} i M_{n}^{0} zawarte są juź w liczbie $3 n$. Równania te łącznie z równaniami (142)-(144) dają liczbę zależności konieczną do wyznaczenia wszystkich potrzebnych momentów.

Znając momenty nad poszczególnymi podporami i obliczamy momenty zginające w przekrojach $\alpha \alpha$ przeseł $i-1, i$ jak dla belki w dwóch punktach swobodnie podpartej za pomoca wzoru

$$
\begin{equation*}
M_{\alpha}^{i-1, i}=M_{0, u}+M_{i} \frac{l_{i}-\alpha}{l_{i}}-M_{i}^{\prime} \frac{\alpha}{l_{i}}, \tag{148}
\end{equation*}
$$

gdzie $M_{0 \alpha}$ oznacza moment zginający wywołany w przekroju a α siłami zaczepionymi w przęśle. Wzór ten, tak samo jak i następny, dotyczy każdej belki w dwóch punktach swobodnie podpartej i obciążonej momentami na końcu (rys. 43 przedstawiający przęsło w widoku).

Siła poprzeczna w przekroju $\alpha \alpha$ przedziału $i-1, i$ wyraźa się wzorem

$$
\begin{equation*}
\mathrm{T}_{a}^{i-1, i}=T_{0_{a}}^{i-1, i}-\frac{M_{i}^{\prime}+M_{i}}{l_{i}}, \tag{149}
\end{equation*}
$$

Rys. 43
gdzie $T_{0_{a}}^{i-1, i}$ oznacza siłe poprzeczną spowodowaną tylko obciążeniem znajdującym się między węzłami.

Reakcja podpory i jako podpory belki $i-1, i \mathrm{w}$ dwóch punktach swobodnie podpartej wyraża sie. wzorem

$$
\begin{equation*}
R_{i}^{i-1, i}=R_{0 i}^{i-1, i}-\frac{M_{i}^{\prime}+M_{i}}{l_{i}} \tag{150}
\end{equation*}
$$

Odpowiednio reakcja podpory i jako podpory belki $i, i+1 \mathrm{w}$ dwóch punktach swobodnie podpartej równa się

$$
\begin{equation*}
R_{i}^{i, i+1}=R_{0 i}^{i, i+1}+\frac{M_{i+1}^{\prime}+M_{i+1}}{l_{i+1}} \tag{151}
\end{equation*}
$$

Całkowitą reakcję podpory i znajdujemy jako różnice sił poprzecznych w punktach położonych bezpośrednio na prawo (tzn. od strony podpory 0) i na lewo (tzn. od strony podpory n) od punktu i :

$$
\begin{equation*}
R_{i}=R_{0 i}^{i, i+1}-R_{0 i}^{i, i-1}+\frac{M_{i!1}^{\prime}+M_{i+1}}{l_{i * 1}}-\frac{M_{i}^{\prime}+M_{i}}{l_{i}} \tag{152}
\end{equation*}
$$

Powyższe obliczenie dźwigara ciągłego załamanego w planie ulega . uproszczeniu, jeżeli w punktach 0 i n podpory płaskie (utwierdzenia) zastąpimy przez podpory przegubowe. Istotnie, w tym wypadku liczba wiel-
kości statycznie niewyznaczalnych jest o cztery mniejsza niz poprzednio, ezyli równa $n-2$, ponieważ nad podporami przegubowymi mamy

$$
\left.\begin{array}{ll}
M_{1}=0, & M_{1}^{0}=0 \tag{153}\\
M_{n}^{\prime}=0, & M_{n}^{0}=0
\end{array}\right\}
$$

Wyznaczenie wielkości nadliczbowych oprzeć tu należy na równaniach typu (142).

W przypadku kiedy końcowe przekroje dźwigara ciągłego nie mogac się obracać względem osi końcowych przedziałów, lecz mogą się nachylać względem płaszczyzn pionowych, momenty

$$
\begin{equation*}
M_{1}=0 \quad . \quad \mathrm{i} \quad M_{n}^{\prime}=0 \tag{154}
\end{equation*}
$$

momenty jednak M_{1}^{0} i M_{n}^{0} różne są od zera. Liczba niewiadomych zmniejszy się tu o dwie w porównaniu z zadaniem dźwigara ciąglego o końcach utwierdzonych, będzie więc równa n, a do znalezienia tych niewiadomych służyć będą w dalszym ciągu równania typu (142) oraz równania wyrażające, że obrót przekroju poprzecznego dźwigara na końcu n równa się zeru, czyli że

$$
\begin{equation*}
\Theta_{n}^{\prime}=0 \tag{155}
\end{equation*}
$$

Weźmy dla przykładu dźwigar ciągly załamany w planie na czterech podporach (rỵs. 44) obciążony w sposób ciagły i równomierny (obciążenie jednostkowe $q \mathrm{~kg}$ na mb). W pun-

Rys. 44 ktach 1 i 2 mamy podpory wielokie-runkowo-przesuwne, podpory zaś 0 i 3 są wprawdzie przegubowo-przesuwne, nie pozwalają jednak na obrót przekrojów 0 i 3 względem osi 01 i 23.

Wobec symetrii obciążenia i kształtu dźwigara możemy przeprowadzić obliczenie tylko dla połowy dźwigara. Liczba wielkości statycznie niewyznäczalnych spada przy tym $z n=3$ do $n=1$.

Zależność między momentami przedstawionymi wektorowo na rys. 44 znajdujemy na podstawie równań (137):

$$
\begin{align*}
& M_{1}^{\prime}=M_{2} \cos \beta \tag{156}\\
& M_{1}^{0}=-M_{2} \sin \beta, \tag{157}
\end{align*}
$$

ponieważ ze względu na warunki symetrii środkowy przedział dźwigara nie będzie skręcany i moment $\mathfrak{N O}_{2}^{0}$ równy będzie zeru.

Kąty obrotu końcowych przekrojów poprzecznych poszczególnych przedziałów dźwigara ciągłego przedstawione są wektorowo na rys. 45. Do wyznaczenia kątów φ_{1}^{\prime} i Θ_{1} stużą wzory (145) i (146), skąd

$$
\begin{align*}
& \varphi_{1}^{\prime}=\frac{M_{1}^{\prime} l}{3 E J}+\frac{q l^{3}}{24 E J}=\frac{M_{2}^{\prime} l}{3 E J} \cos \beta+\frac{q l^{3}}{24 E J} \tag{158}\\
& \Theta_{1}=\frac{M_{1}^{0} l}{G J_{0}}=-\frac{M_{2} l}{G J_{0}} \sin \beta \tag{159}
\end{align*}
$$

Odpowiednio

$$
\begin{equation*}
\varphi_{2}=\frac{M_{2} l}{2 E J}+\frac{q l^{3}}{24 E J} \tag{160}
\end{equation*}
$$

Momenty - M_{i}^{\prime} i — Ml_{i}^{3} są tu, w myśl znakowania momentów przyjętego wyżej, momentami oddziaływania węzła 1 na przęsło 01.

Wzór (139) na kąt p_{1}^{0} daje w tych warunkach

Rys. 45

$$
\begin{equation*}
\varphi_{1}^{0}=\left(\frac{M_{2} l}{3 E J} \cos \beta+\frac{q l^{3}}{24 E J}\right) \cos \beta+\frac{M_{2} l}{G J_{0}} \sin \beta \tag{161}
\end{equation*}
$$

a równanie (142) przybiera tu postać

$$
\begin{equation*}
\left(\frac{M_{2} l}{3 E J} \cos \beta+\frac{q l^{3}}{24 E J}\right) \cos \beta+\frac{M_{2} l}{G J_{0}} \sin ^{2} \beta+\frac{M_{2} l}{2 E J}+\frac{q l^{3}}{24 E J}=0 \tag{162}
\end{equation*}
$$

Iub przy oznaczeniù $\varepsilon=E J / G J_{0}$ postać

$$
\begin{align*}
-0,33333 M_{2} \cos ^{2} \beta+0,04167 q l^{2} \cos \beta & +\varepsilon M_{2} \sin ^{2} \beta+ \tag{163}\\
& +0,5 M_{2}+0,04167 q l^{2}=0
\end{align*}
$$

Obliczone stąd momenty M_{2} przybieraja dla $\varepsilon=1,2$ i 10 i dla różnych kątów β wartości nas tępujące:

β	$\varepsilon=1$	$\varepsilon=2$	$\varepsilon=10$
90°	$-0,0272 q l^{2}$	$-0,0167 \mathrm{q} l^{2}$	$-0,00378 \mathrm{q} l^{2}$
60°	$-0,0468 \mathrm{q} l^{2}$	$-0,0300 \mathrm{q} l^{2}$	$-0,00774 \mathrm{q} l^{2}$
45°	$-0,0600 \mathrm{q} l^{2}$	$-0,0422 \mathrm{q} l^{2}$	$-0,01235 \mathrm{q} l^{2}$
30°	$-0,0777 \mathrm{q} l^{2}$	$-0,0618 \mathrm{q} l^{2}$	$-0,02390 \mathrm{q} l^{2}$
10°	$-0,0964 \mathrm{q} l^{2}$	$-0,0930 \mathrm{q} l^{2}$	$-0,07320 \mathrm{q} l^{2}$
0°	$-0,1000 \mathrm{q} l^{2}$	$-0,1000 \mathrm{q} l^{2}$	$-0,10000 \mathrm{q} l^{2}$

Z powyższego zestawienia można wyciagnąć wniosek, że wplyw wspólczynnika ε na momenty zginające zmniejsza sie przy zmniejszaniu kąta β. Może to mieć znaczenie

Rys. 46 dla obliczenia na wiatr zakrzywionych górnych pasów mostów stalowych, których poszczególne przedziały tworzą ze sobą zwykle kąty wahajace sies około 10°, pasy takie bowiem mogą być uważane za załamane w planie dźwigary ciągłe, o ile tylko most ma w płaszczyźnie pasów rozpórki wiatrowe.

Rozpatrzmy w dalszym ciągu dźwigar o pięciu przęsłach przedstawiony na rys. 46, obciążony w sposób ciągły i równomierny. Dźwigar jest symetryczny i symetrycznie obciążony względem środka w sposób ciągły i równomierny. Kąt $\beta=30^{\circ}$, długość przęseł równa l.

Dźwigar jest w zasadzie pięciokrotnie statycznie niewy-

Rys. 47 znaczalny, ze względu jednak na warunki symetrii liczba wielkości nadliczbowych spada tu do dwu. Ogólna liczba niewiadomych momentów podporowych będzie w tym wypadku wynosiła sześć, a więc będą to momenty M_{1}^{\prime}, M_{2}, $M_{1}^{0}, M_{2}^{0}, M_{2}^{\prime}$ i M_{3} (rỳs. 46). Moment M_{3}^{0} ze względu na warunki symetrii równa się zeru.

Aby wyznaczyć wymienione wyżej momenty, korzystamy tu z czterech równań typu (137) i (138) oraz z dwu równań (142), dochodząc w ten sposób do dwóch następujących grup równań (rys. 47):
na pierwszą grupę składają się równania

$$
\begin{align*}
& M_{1}^{\prime}=M_{2}^{0} \sin \beta+M_{2} \cos \beta \\
& M_{1}^{0}=M_{2}^{0} \cos \beta-M_{2} \cos \beta \\
& M_{2}^{\prime}=M_{3} \cos \beta \tag{164}\\
& M_{2}^{0}=-M_{3} \sin \beta
\end{align*}
$$

druga grupę stanowią równania:

$$
\begin{equation*}
\varphi_{1}^{0}+\varphi_{2}=0, \quad \varphi_{2}^{n}+\varphi_{3}=0 \tag{165}
\end{equation*}
$$

gdzie kąty φ_{1}^{0} i φ_{2}^{0} obliczone są na podstawie wzorów

$$
\begin{align*}
& \varphi_{1}^{0}=\varphi_{1}^{\prime} \cos \beta-\Theta_{1}^{\prime} \sin \beta \\
& \Theta_{1}^{0}=\varphi_{1}^{\prime} \sin \beta+\Theta_{1}^{\prime} \cos \beta \\
& \varphi_{2}^{0}=\varphi_{2}^{\prime} \cos \beta-\Theta_{2}^{\prime} \sin \beta \tag{166}\\
& \Theta_{2}^{0}=\varphi_{2}^{\prime} \sin \beta+\Theta_{2}^{\prime} \cos \beta \\
& \Theta_{2}^{\prime}=\Theta_{1}^{0}+\Theta_{1}
\end{align*}
$$

Wprowadzamy tu momenty M i M^{0} na podstawie wzorów (145)-(147), po czym z równań (164) i (165) znajdujemy

$$
\left.\begin{array}{ll}
M_{3}=-0,0335 q l^{2}, & M_{2}^{\prime}=-0,0295 q l^{2} \\
M_{2}=-0,0900 q l^{2}, & M_{2}^{0}=-0,0168 q l^{2} \tag{167}\\
M_{1}^{\prime}=-0,0688 q l^{2}, & M_{1}^{0}=-0,0595 q l^{2} .
\end{array}\right\}
$$

Z tego rozwiązania wynika, że w okolicach środka dźwigara momenty skręcające maleją i warunki pracy poszczególnych przedziałów zbliżają się do warunków pracy belki prostej.

Poza obciążeniem dźwigara ciągłego załamanego w planie siłami pionowymi i momentami działającymi w płaszczyznach poszczególnych przęseł pewne przęsło $i-1, i$ bywa obciążone momentem działającym w płaszczyźnie prostopadłej do osi $i-1, i$ (rys. 48). Wektor \mathfrak{M}^{0} tego momentu zaczepiony w pewnym punkcie k odległym o a od podpory $i-1$ skierowany jest

Rys. 48 wzdłúz osi $i-1, i$.

W tych warunkach na węzeł $i-1$ poza momentem \mathbb{M}_{i}^{0} działa jeszcze moment M^{0}, wobec czego równania (137) i (138) w zastosowaniu do węzła i - 1 przybieraja postać

$$
\begin{align*}
& M_{i-1}^{\prime}=\left(M_{i}^{0}+M^{0}\right) \sin \beta_{i-1}+M_{i} \cos \beta_{i-1} \tag{168}\\
& M_{i-1}^{\prime}=\left(M_{i}^{0}+M_{i}^{0}\right) \cos \beta_{i-1}-M_{i} \sin \beta_{i-1} \tag{169}
\end{align*}
$$

Kąt obrotu Θ_{i} przekroju poprzecznego w punkcie i przedziału $i-1, i$ równa się tu

$$
\begin{equation*}
\Theta_{i}=\frac{M^{0} a}{G J_{0}}+\frac{M_{i}^{0} l_{i}}{G J_{0}} \tag{170}
\end{equation*}
$$

dalsze zaś obliczenie odkształceń i momentów odbywa się tak samo, jak przy pionowym obciążeniu dźwigara

Specjalny rodzaj dźwigarów ciagłych załamanych w planie przedstawia dźwigar ciągly o kształcie zamkniętego wieloboku (rys. 49).

Aby dźwigar taki obliczyć, przeprowadzamy przekrój $\alpha \alpha$ przez jeden z przedziałów, np. przez przedział $0 n$, i oznaczamy przez T_{α}, M_{α} i $9 M_{\alpha}^{0}$ trzy składowe oddziaływania na siebie dwu przekrojów $\alpha \alpha$, z których jeden stanowi końcowy przekrój wspornika 0α dźwigara ciągłego $\alpha 012 \ldots n \alpha$, a drugi koncowy przekrój wspornika na tegoż dźwigara.

Ponieważ dźwigar ciagły załamany w pla-

Rys. 49 nie na trzech podporach jest układem statycznie wyznaczalnym, dźwigar $\alpha 012 \ldots n a$ będzie układem o liczbie $n-3$ wielkości statycznie niewyznaczalnych. Dodając do tego liczibe trzech niewiadomych T_{α}, M_{α} i 9_{α}^{0} dochodzimy do wriosku, że dźwigar ciągły o kształcie zamkniętego wieloboku będzie układem o n wielkościach nadliczbowych, gdyż $(n-3)+3=n$.

Podobnie jak w przypadku dźwigara o kształcie zamkniętego wieloboku w dwóch punktach swobodnie podpartego (przedostatni ustęp paragrafu 1 tego rozdziału) przedstawiamy składowe przesunięć dwóch pr'zekrojów $\alpha \alpha$, mianowicie $w_{\alpha}, \varphi_{a}^{\prime}$ i $\varphi_{\alpha}^{\prime \prime}$ oraz Θ_{α}^{\prime} i $\Theta_{\alpha}^{\prime \prime}$ jako funkcje wielkości T_{α}, M_{α} i $\boldsymbol{M}_{\alpha}^{0}$ i ustawiamy równania

$$
\begin{equation*}
w_{\alpha}=0, \quad \varphi_{\alpha}^{\prime}=-\varphi_{a}^{\prime \prime}, \quad \Theta_{\alpha}^{\prime}=\Theta_{a}^{\prime \prime} \tag{171}
\end{equation*}
$$

które uzupełniają liczbę równań typu (137), (138) i (142) do liczby n i pozwalają na rozwiązanie zadania.

V. RÓWNANIE PIĘCIU MOMENTOW SKRĘCAJACYCH

Zastosowanie różnic skończonych do obliczenia dźwigarów ciągłych załamanych w planie pozwala na znalezienie w ich teorii pewnych uogólnień, które mają poważne znaczenie praktyczne.

W dziedzinie belek ciagłych prostych pierwszy korzystał z teorii różnic skończonych $\mathrm{Clebsch}{ }^{2}$), który potraktował równanie trzech momentów jako równanie różnicowe.

O ile jednak Clebsch miał w swych badaniach na widoku scałkowanie znanego mu równania trzech momentów jako równania różnico-

[^1]wego, o tyle w przypadku dźwigara ciągłego załamanego w planie teoria różnic skończonych pozwala na samo ustawienie równania odgrywającego w teorii tych dźwigarów rolę podobną do roli, jaką odgrywa równanie trzech momentów w teorii prostych belek ciagłych, mianowicie równania pięciu kolejnych momentọ́w skręcajacych.

Rys. 50
Rozpatrzmy dźwigar ciągły przedstawiony na rys. 50. Podpory jego są wielokierunkowo-przesuwne, podpory końcowe pozwalają na nachylenie się przekrojów koncowych względem płaszczyzny pionowej, wyłączaja natomiast obrót tych przekrojów względem osi podłużnej ostatnich przęseł. Dlugości poszczególnych przęseł dźwigara są równe l. Kąty załamania $\beta_{x}=\beta$ są również wielkością stałą.

Opieramy się dalej na wzorach wyprowadzonych w rozdziale IV.2. Potrzebne tutaj zależności (141), (139), (140) i (142) przybierają w danym wypadku postać

$$
\begin{align*}
& \Theta_{x}^{\prime}=\Theta_{x-1}^{0}+\Theta_{x} \tag{172}\\
& \varphi_{x}^{0}=\varphi_{x}^{\prime} \cos \beta-\Theta_{x}^{\prime} \sin \beta \tag{173}\\
& \Theta_{x}^{0}=\varphi_{x}^{\prime} \sin \beta+\Theta_{x}^{\prime} \cos \beta \tag{174}\\
& \varphi_{x}^{0}+\varphi_{x 1}=0 \tag{175}
\end{align*}
$$

Wzory (137) i (138) wyrażające momenty zginające i skręcające doprowadzają do wzorów

$$
\begin{align*}
& M_{x}^{\prime}=M_{x+1}^{0} \sin \beta+M_{x+1} \cos \beta \tag{176}\\
& M_{x}=M_{x+1}^{0} \cos \beta-M_{x+1} \sin \beta \tag{177}
\end{align*}
$$

Równanie (175) w związku z równaniem (173) daje

$$
\begin{equation*}
\varphi_{x}^{0} \cos \beta-\Theta_{x}^{\prime} \sin \beta=-\varphi_{x+1} \tag{178}
\end{equation*}
$$

Ponieważ

$$
\begin{equation*}
\Theta_{x}^{\prime}=\Theta_{x-1}^{0}+\Theta_{x}=\frac{\varphi_{x}^{\prime} \cos \beta+\varphi_{x+1}}{\sin \beta} \tag{179}
\end{equation*}
$$

więc z równania (174) znajdujemy

$$
\left.\begin{array}{l}
\Theta_{x}^{0}=\varphi_{x}^{\prime} \sin \beta+\frac{\varphi_{x}^{\prime} \cos \beta+\varphi_{x+1}}{\sin \beta} \cos \beta \tag{180}\\
\Theta_{x}^{0} \sin \beta=\varphi_{x}^{\prime}+\varphi_{x+1} \cos \beta
\end{array}\right\}
$$

Z równania tego wyznaczamy Θ_{x-1}^{0} :

$$
\begin{equation*}
\Theta_{x-1}^{0} \sin \beta=\varphi_{x-1}^{\prime}+\varphi_{x} \cos \beta \tag{181}
\end{equation*}
$$

w związku z czym równanie (178) otrzymuje postać

$$
\begin{equation*}
\varphi_{x}^{\prime} \cos \beta-\dot{\varphi}_{x-1}^{\prime}-\varphi_{x} \cos \beta-\dot{\Theta}_{x} \sin \beta=-\varphi_{x+1} \tag{182}
\end{equation*}
$$

Przyjmujemy dalej oznaczenia

$$
\begin{equation*}
\frac{l}{3 E J}=2 f, \quad \frac{l}{6 E J}=f, \quad \frac{l}{G J_{0}}=\frac{l}{3 E J}=2 f . \tag{183}
\end{equation*}
$$

Wzorom (145) i (146) poprzedniego rozdziału nadajemy postać

$$
\begin{align*}
& \varphi_{x}=M_{x} 2 f+M_{x}^{\prime} f+\psi_{x} \tag{184}\\
& \varphi_{x}^{\prime}=M_{x}^{\prime} 2 f+M_{x} f+\psi_{x}^{\prime} \tag{185}
\end{align*}
$$

gdzie przyjmujemy, że oba momenty działające na jedno przeşło wyginaja to przęsło w jedną stronę i gdzie

$$
\psi_{x}=\frac{\mathfrak{I}_{x-1}}{E J} \quad \text { i } \quad \psi_{x}^{\prime}=\frac{\mathfrak{I}_{x}}{E J}
$$

Odpowiednio do wzorów (184) i (185) mamy

$$
\begin{equation*}
\Theta_{x}=M_{x}^{0} \cdot 2 \mathrm{f} \tag{186}
\end{equation*}
$$

Mnożymy dalej równanie (176) przez $\cos \beta$, a równanie (177) przez $\sin \beta$ i odejmujemy je od siebie oraz mnożymy równanie (176) przez $\sin \beta$, a równanie (177) przez $\cos \beta$ i dodajemy je do siebie. W ten sposób dochodzimy do równań

$$
\begin{align*}
& M_{x}^{\prime} \cos \beta-M_{x}^{0} \sin \beta=M_{x+1} \tag{187}\\
& M_{x}^{\prime} \sin \beta+M_{x}^{0} \cos \beta=\mathfrak{M}_{x+1}^{0} \tag{188}
\end{align*}
$$

Z równania (188) wyznaczamy bezpośrednio

$$
\begin{equation*}
\left.M_{x}^{\prime}=M \sum_{x+1}^{0} \frac{1}{\sin \beta}-9\right)_{x}^{0} \operatorname{ctg} \beta, \tag{189}
\end{equation*}
$$

wstawiając zaś wyrażenie (188) w równanie (176) znajdujemy

$$
\begin{equation*}
M_{x+1}=M_{x+1}^{0} \operatorname{ctg} \beta-M_{x}^{0} \frac{1}{\sin \beta}, \tag{190}
\end{equation*}
$$

a więc

$$
\begin{equation*}
M_{x}=\mathrm{m}_{x}^{0} \operatorname{ctg} \beta-\mathrm{m}_{x-1}^{0} \frac{1}{\sin \beta} . \tag{191}
\end{equation*}
$$

W zwiazzu z otrzymanymi wyrażeniami na momenty zginajace wzory (184) i (185) przybierają postać

$$
\begin{align*}
& \varphi_{x}=M_{x+1}^{0} \frac{f}{\sin \beta}-M_{x}^{0} f \operatorname{ctg} \beta-M_{x-1}^{0} \frac{2 f}{\sin \beta}+\psi_{x} \tag{192}\\
& \varphi_{x}^{\prime}=M_{x+1}^{0} \frac{2 f}{\sin \beta}-M_{x}^{0} 2 f \operatorname{ctg} \beta-M_{x-1}^{0} \frac{f}{\sin \beta}+y_{x}^{\prime} \tag{193}
\end{align*}
$$

Wstawiamy wreszcie wyrażenia na kąty $\varphi_{x}, \varphi_{x}^{\prime}$ i Θ_{x} w równanie (182) i dochodzimy w ten sposób do równania

$$
\begin{equation*}
M_{x+2}^{0}+2 \cos \beta \cdot M M_{x+1}^{0}-6 M_{x}^{0}+2 \cos \beta \cdot M_{x-1}^{0}+M M_{x-2}^{0}=Q_{x} \tag{194}
\end{equation*}
$$

gdzie

$$
\begin{equation*}
Q_{x}=\frac{\sin \beta}{f}\left(-\psi_{x}^{\prime} \cos \beta+\psi_{x-1}^{\prime}+\psi_{x} \cos \beta-\psi_{x+1}\right) \tag{195}
\end{equation*}
$$

Równanie (194) jest poszukiwanym równaniem pięciu momentów skręcajacych. Jest to równanie różnicowe czwartego rzędu, którego całka ogólna przedstawia sume

$$
\begin{equation*}
M_{x}^{0}=\mu_{x}^{0}+\mu_{x} \tag{196}
\end{equation*}
$$

gdzie μ_{x}^{0} oznacza pewne dowolne rozwiązanie szczególne danego równania, μ_{x} zaśs rozwiązanie ogólne odpowiedniego równania bez wyrazu Q_{x}, tzn. równania

$$
\begin{equation*}
M_{x+2}^{0}+2 \cos \beta M_{x+1}^{0}-6 M_{x}^{0}+2 \cos \beta M_{x-1}^{0}+M_{x-2}^{0}=0 \tag{197}
\end{equation*}
$$

Równanie charakterystyczne w tym wypadku przedstawia się w sposób następujący:

$$
\begin{equation*}
r^{4}+2 \cos \beta \cdot r^{3}-6 r^{2}+2 \cos \beta \cdot r+1=0 \tag{198}
\end{equation*}
$$

lub

$$
\begin{equation*}
r^{2}+2 \cos \beta \cdot r-6+2 \cos \beta \cdot r^{-1}+r^{-2}=0 \tag{199}
\end{equation*}
$$

Niewiadomej r poszukujemy pod postacią

$$
r=e^{d},
$$

gdzie e jest to podstawa logarytmów naturalnych, a zaś pewna liczba niewiadoma. Mamy więc

$$
\begin{equation*}
e^{2 \alpha}+2 \cos \beta e^{\alpha}-6+2 \cos \beta e^{-\alpha}+e^{-2 \alpha}=0 \tag{200}
\end{equation*}
$$

W rezultacie równanie (200) przybiera postać

$$
\begin{equation*}
2 \cosh 2 \alpha+4 \cosh \alpha \cos \beta-6=0 \tag{201}
\end{equation*}
$$

lub postać

$$
\begin{equation*}
\cosh ^{2} \alpha+\cos \beta \cosh \alpha-2=0 \tag{202}
\end{equation*}
$$

skąd

$$
\begin{equation*}
\cosh a=-\frac{\cos \beta}{2} \pm \sqrt{\frac{\cos ^{2} \beta}{4}+2} \tag{203}
\end{equation*}
$$

przy czym pierwiastki równania

$$
\begin{equation*}
\alpha=a_{1}, \quad \alpha=-a_{1}, \quad \alpha=a_{2}, \quad a=-a_{2} \tag{204}
\end{equation*}
$$

Ogólna całka równania (197) przybiera w ten sposób postać

$$
\begin{equation*}
\mu_{x}=C_{1} e^{x \alpha_{1}}+C_{2} e^{-x a_{2}}+C_{3} e^{i \alpha_{2}}+C_{4} e^{-x \alpha_{2}} \tag{205}
\end{equation*}
$$

gdzie C_{1}, C_{2}, C_{3} i C_{i} saz to dowolne wielkości stałe.
Przechodząc do rozwiązania pełnego równania (194) musimy ustalić przede wszystkim ksztalt wyrazu Q_{x} zależny od obciążenia belki ciągłej.

Przypuśćmy, że wszystkie przęsła

Rys. 51 belki ciągłej obciążone są w jednakowy sposób i że obciążenie każdego z nich jest symetryczne względem środka przęsia. Przykład takiego obciazżenia podany jest na rys. 51 , na którym fragment belki ciagłej przedstawiony został w rozwinięciu na płaszczyzne pionową. Przy tego rodzaju obciążeniu

$$
\begin{equation*}
\psi_{x}^{\prime}=\psi_{x-1}^{\prime}=\psi_{x}=\psi_{x+1}, \tag{206}
\end{equation*}
$$

a więc wyrażenie (195) staje się równe zeru, czyli $Q_{x}=0$.
Do takiego samego wyniku dojdziemy również w razie obciążenia jednego z końców belki bądź przez moment działający w płaszczyźnie pionowej przechodzącej przez oś ostatniego przęsła dźwigara, bądź też przez moment dziạłający w płaszczyźnie prostopadłej do osi tego przęsła.

Jeżeli obciążenie wszystkich przęseł belki ciągłej jest takie samo, lecz nie jest symetryczne względem środków poszczególnych przęsel (rys. 52), wówczas

$$
\begin{equation*}
y_{x}^{\prime}=\psi_{x-1}^{\prime}, \quad \psi_{x}=\dot{\psi_{x}+1}, \quad \psi_{x}^{\prime} \neq \psi_{x} \tag{207}
\end{equation*}
$$

wyrażenie zaś (195) przẏbiera postać

$$
\begin{equation*}
Q_{x}=\sin _{f} \beta\left[\psi_{x}^{\prime}(1-\cos \beta)-\psi_{x}(1-\cos \beta)\right]=a \tag{208}
\end{equation*}
$$

gdzie a oznacza wielkość od x niezależną.

Dla obciążenia zmieniającego się według prawa linii prostej (rys. 53) kąty ψ_{x} i ψ_{x}^{\prime} przybierają wartości

Rys. 52 następujace:

$$
\left.\begin{array}{l}
\psi_{x}^{\prime}=\frac{8 q l^{3}}{360 E J}+\frac{q l^{3}}{24 E J}(x-1) \\
\psi_{x}=\frac{7 q l^{3}}{360 E J}+\frac{q l^{3}}{24 E J}(x-1) \tag{209}
\end{array}\right\}
$$

Stąd

$$
\begin{align*}
\psi_{x}-\psi_{x}^{\prime} & =-\frac{q l^{3}}{360 E J} \tag{210}\\
\psi_{x-1}^{\prime}-\psi_{x+1} & =\frac{q l^{3}}{360 E J}-\frac{q l^{3}}{12 E J} \tag{211}
\end{align*}
$$

i $Q_{x}=a$, gdzie a oznacza wielkośé stałą.

Weźmy wreszcie pod uwage obciążenie belki zmieniające się wedlug prawa (rys. 54)

$$
\begin{equation*}
P_{x-1, x}=\frac{q l}{2} x+q l \frac{(x-1) x}{2} \tag{212}
\end{equation*}
$$

Rys. 53
Kąty ψ_{x} i ψ_{x}^{\prime} wyrażają się tu za pomoca wzorów następujących:

$$
\left.\begin{array}{l}
y_{x}^{\prime}=\frac{8 q l^{3}}{360 E J} x+\frac{q l^{3}}{24 E J} \frac{(x-1) x}{2}, \tag{213}\\
\psi_{x}=\frac{7 q l^{3}}{360 E J} x+\frac{q l^{3}}{24 E J} \frac{(x-1) x}{2}
\end{array}\right\}
$$

wobec czego

$$
\begin{equation*}
Q_{x}=a x+b, \tag{214}
\end{equation*}
$$

gdzie współczynniki a i b nie sa od x zależne.
Do podobnego wyrażenia na Q_{x} doprowadzają również wszystkie połączenia rozpatrywanych tu rodzajów obciążenia.

Wobec tego nadajemy równaniu (194) postać

$$
\begin{equation*}
\mathrm{Mi}_{x-2}^{0}+2 \cos \beta \mathrm{M}_{x+1}^{0}-6 \mathrm{M}_{x}^{0}+2 \cos \beta \mathrm{M}_{x-1}^{0}+\mathrm{M}_{x-2}^{0}=a x+b \tag{215}
\end{equation*}
$$

Poszukujemy całki szczególnej równania (215) pod postacią

$$
\begin{equation*}
\mu_{x}^{0}=A x+B \tag{216}
\end{equation*}
$$

gdzie współczynniki A i B są pewnymi wielkościami stałymi. Wstawiamy wyrażenie (216) w równanie (215):

$$
\begin{align*}
A(x+2)+ & B+A(x+1) 2 \cos \beta+B \cdot 2 \cos \beta-6 A x-6 B+ \tag{217}\\
& +A(x-1) 2 \cos \beta+B \cdot 2 \cos \beta+A(x-2)+B=a x+b .
\end{align*}
$$

Po przyrównaniu do siebie współczynników przy x w obydwóch częściach równania oraz wyrazów od x niezależnych znajdujemy

$$
\begin{equation*}
A=--\frac{a}{8 \sin ^{2} \frac{\beta}{2}}, \quad B=-\frac{b}{8 \sin ^{2} \frac{\beta}{2}} \tag{218}
\end{equation*}
$$

Rys. 54
skąd mamy

$$
\begin{equation*}
\mu_{x}^{0}=\frac{a x+b}{8 \sin ^{2} \frac{\beta}{2}} \tag{219}
\end{equation*}
$$

Ostatecznie dochodzimy, zgodnie ze wzorem (196), do następującego wyrażenia dla całki ogólnej równania (194) lub (215):

$$
\begin{equation*}
\mathrm{P}_{x}^{0}=C_{1} e^{x \alpha_{4}}+C_{2} e^{-x \alpha_{2}}+C_{3} e^{x \alpha_{3}}+C_{4} e^{-x a_{4}}-\frac{a x+b}{8 \sin ^{2} \frac{\beta}{2}} . \tag{220}
\end{equation*}
$$

Współczynniki C_{3}, C_{2}, C_{3} i C_{4} wyznaczamy z warunków podparcia końców dźwigara ciągłego.

Rozważmy tu niektóre przypadki tego podparcia.
Bierzemy pod uwagę dźwigar ciagły załamany w planie, czyniący zadość wszystkim założeniom wymienionym na początku tego rozdziału i obciążony jednakowo we wszystkich przęsłach w sposób symetryczny względem ich środków. Przyjmujemy dalej, że końce dźwigara są swobodnie podparte i mogą się swobodnie obracać względem osi podłużnych przęseł końcowych. Z warunków podparcia końca dźwigara wynika:

$$
\begin{equation*}
M_{0}^{0}=M_{n}^{0}=M_{1}=M_{n}^{\prime}=0 \tag{221}
\end{equation*}
$$

Ponieważ w rozpatrywanym przypadku $a=b=0$, więc na podstawie równania (220) oraz wzorów (189) i (191) warunki brzegowe zadania wyrażają się za pomocą równań:

$$
\begin{array}{ll}
M_{0}^{0}=0: & C_{1}+C_{2}+C_{3}+C_{4}=0, \\
M_{n}^{0}=0: & C_{1} e^{n a_{1}}+C_{2} e^{-n \alpha_{1}}+C_{3} e^{n \alpha_{2}}+C_{4} e^{-n a_{2}}=0, \tag{222}\\
M_{n}^{\prime}=0: & \frac{1}{\sin \beta}\left[C_{1} e^{(n+1) a_{1}}+C_{2} e^{(n, 1) a_{1}}+C_{3} e^{(n+1) \alpha_{2}}+C_{4} e^{-(n+1) a_{2}}\right]=0, \\
M_{n}=0: & \operatorname{ctg} \beta\left[C_{1} e^{\alpha_{1}}+C_{2} e^{-\alpha_{1}}+C_{3} e^{\alpha_{4}}+C_{4} e^{-a_{2}}\right]=0
\end{array}
$$

Z równań tych wynika, że wszystkie współczynniki C równają się zeru, jeżeli tylko nie ma miejsca równość.

$$
\left|\begin{array}{llll}
1 & 1 & 1 & 1 \tag{223}\\
e^{n \alpha_{1}} & e^{-n \alpha_{1}} & e^{n \alpha_{2}} & e^{-n \alpha_{3}} \\
\frac{e^{(n+1) \alpha_{1}}}{\sin \beta} & \frac{e^{-(n+1) \alpha_{1}}}{\sin \beta} & \frac{e^{(n 41) \alpha_{2}}}{\sin \beta} & \frac{e^{-(n+1) \alpha_{2}}}{\sin \beta} \\
e^{\alpha_{1}} \operatorname{ctg} \beta & e^{-\alpha_{1}} \operatorname{ctg} \beta & e^{\alpha_{2}} \operatorname{ctg} \beta & e^{-\alpha_{2}} \operatorname{ctg} \beta
\end{array}\right|=0
$$

Można stąd wyciągnąć wniosek, że poszczególne przęsła dźwigara ciągłego załamanego w planie o równych katach załamania β i o równych przęsłach l, czyli dźwigara, który jest w planie wpisany w odcinek koła, na końcach swobodnie podparty i obciążony jednakowo we wszystkich przęsłach w sposób symetryczny względem ich środków, zachowują się jak proste belki swobodnie podparte, gdyż będzie tu

$$
\begin{equation*}
M_{x}^{0}=M_{x}=M_{x}^{\prime}=0 . \tag{224}
\end{equation*}
$$

Wynika stąd między innymi, że skręcanie poszczególnych przedziałów pasów stalowych dźwigarów mostowych pod działaniem bocznego dzía-
łania wiatru nie jest duże, ponieważ pasy kratownic wielobocznych moga być uważane w tym wypadku za dźwigary załamane w planie.

Rozpatrzmy teraz dźwigar ciagły załamany w planie, mający jeden koniec (koniec 0) swobodnie podparty i swobodnie obracający się, drugi zaś (koniec n) swobodnie podparty, lecz nie ulegający obrotom; obciążenie dźwigara wyobrażamy sobie jako należace do jednego z omówionych wyżej rodzajów obciążeń.

Przedstawionemu tu dźwigarowi odpowiadają następujące warunki brzegowe:

$$
\begin{equation*}
m_{0}^{0}=0, \quad M_{1}=0, \quad M_{n}^{\prime}=0, \quad \Theta_{n}^{\prime}=0 \tag{225}
\end{equation*}
$$

Ostatnie z równań (225) wyraża, że przekrój poprzeczny w koñcu n dźwigara ciągłego nie może się obracać względem osi podłużnej przęsła $n-1, n$. Zamiast takiego ograniczenia obrotu możemy wprowadzić tu nieznany na razie moment $M_{n}^{0}=M^{0}$.

Moment \mathfrak{N}^{0} zaczepiony do końca dźwigara nie wpływa na katy ψ_{x} í ψ_{x}^{\prime}, które są spowodowane przez bezpóśrednie obciążenie poszczególnych przęseł, a przy $\psi_{x}^{\prime}=\psi_{x}^{\prime}=0$, a więc przy symetrycznym i jednakowym obciążeniu poszczególnych przęseł dźwigara ciagłego, mamy tu do czynienia z przypadkiem, gdy $Q_{x}=0$. W tym stanie rzeczy trzy pierwsze z warunków (225) przybierają postać trzech pierwszych równań (222).

Rozwiązujemy dalej względem współczynników C_{1}, C_{2}, C_{3} i C_{4} cztery równania liniowe

$$
\begin{equation*}
M_{0}^{0}=0, \quad M_{1}=0, \therefore \quad M_{n}=0, \quad M_{n}^{0}=M^{0} \tag{226}
\end{equation*}
$$

w wyniku czego możemy przedstawic poszczególne z tych współczynnikow jako znane funkcje nieznanego momentu $\mathbb{M i}^{0}$:

$$
\begin{equation*}
\left.C_{1}=f_{1}()^{0}\right), \quad C_{2}=f_{2}\left(M^{0}\right), \quad C_{3}=f_{3}\left(M^{0}\right), \quad C_{4}=f_{4}\left(M^{0}\right) \tag{227}
\end{equation*}
$$

Na podstawie równań (172) i (180) otrzymujemy wreszcie dla ostatniego z warunków (225) wyrażenie następujące:

$$
\begin{equation*}
\Theta_{n}^{\prime}=\varphi_{n-1}^{\prime} \sin \beta+\left(\Theta_{n-1}^{0}+\Theta_{n}\right) \cos \beta+\Theta_{n}=0 \tag{228}
\end{equation*}
$$

Wstawiając zamiast wchodzących tu kątów ich wyrażenia przez momenty, a zamiast współczynników C wyrażenia typu (227), będziemy mogli nadać warunkowi $\Theta_{n}^{\prime}=0$ postać

$$
\begin{equation*}
F\left(M^{0}\right)=0, \tag{229}
\end{equation*}
$$

skąd znajdujemy moment Mo co nam rozwiązuje zadanie.

Przyjęte przy wyprowadzeniu równania (194) założenie (183) nie wpływa na kształt samego równania, wpłynąć może tylko, jak to wynika ze wzoru (186), na wielkośc współczynnika przy M_{x}^{0}, a więc jedynie na wyraz środkowy równania (194).

We wszystkich rozpatrzonych przypadkach obciążenia i podparcia dźwigara ciągłego załamanego w planie możemy, po wyznaczeniu momentów \mathfrak{M}_{x}^{0} na podstawie równań (189) i (191), otrzymać również i wszystkie momenty M_{x} i M_{x}^{\prime} potrzebne do obliczenia momentów zginających M_{α} w poszczególnych przekrojach dźwigara.

VI. DZWIGAR ZAEAMANY W PLANIE JAKO SCHEMAT STATYCZNY

 DŹWIGARA ZAKRZYWIONEGOObliczeniem prętów zakrzywionych w planie zajmował się pierwszy, zresztą w formie bardzo ogólnej, Poisson wr. 1833. S a i n t-V enant wr. 1843, a następnie w bieżącym stuleciu Love i Timos̀ z e nko oraz kilku innych autorów zajmowało się obliczeniem dźwigarów kolistych, tzn. mających w planie kształt odcinka koła. Zagadnienie dźwigarów mających w planie inny kształt krzywoliniowy poza częścią koła nie zostało dotąd wyczerpująco rozwiązane. Nasuwa się wobec tego twierdzenie, że obliczenie dźwigarów zakrzywionych w planie, nie posiadających dotąd rozwiązania, można by zastąpić przez obliczenie dźwigarów załamanych w planie, których osie byłyby w stosunku do osi dźwigarów zakrzywionych wpisane, opisane lub też wpisano-opisane.

Słuszność takiego twierdzenịa opieramy na znacznej zgodności wyników obliczeń dźwigarów załamanych w planie z wynikami obliczeń dźwigarów zakrzywionych kolistych.

Zgodność tę niżej wykażemy.
Bierzemy przede wszystkim pod uwage dźwigar załamany w planie, omówiony w rozdziale IV. 1 i przedstawiony na rys. 36. Tu $l_{i}=l=$ const, a $\beta=45^{\circ}$. Siła P zaczepiona jest w środku dźwigara. Końce 0 i 5 są całkowicie utwierdzone. Dźwigar ten jest symetryczny i symetrycznie obciążony, jest więc jednokrotnie statycznie niewyznaczalny.

Przeprowadzamy przekrój $\alpha \alpha$ przez punkt P i rozdzielamy w ten sposób dźwigar załamany w planie 012345 na dwa dźwigary $012 P$ i P345. Wzajemne odidziaływanie na siebie tych dźwigarów wyraża się momentem zginającym M_{α}, który przedstawiony jest na rysunku wektorowo i który przyjmujemy za wielkośc nadliczbową. Moment skręcający przedział 23 dźwigara załamanego w planie równa się zeru ze względu na symetrię dźwigara i jego obciążenia względem punktu P (ściślej osi $a \alpha$). Na sku-
tek tej samej symetrii każdy z dźwigarów-wsporników 012P i P345 jest obciążony w punkcie P siłą równą $P / 2$.

Momenty przedstawione wektorowo na rys. 55 wyznaczamy w zależności od P ze wzorów (2) i (3) i w zależności od M_{α} ze wzorów (8) i (9). W związku z tym otrzymujemy $\left(\sin 45^{\circ}=\cos 45^{\circ}=0,70711\right)$

$$
\begin{align*}
& M_{1}=0,70711 \frac{P l}{2} \\
& M_{2}=0,70711\left(M_{\alpha}+\frac{P l}{4}\right) \tag{230}\\
& M_{1}^{0}=-\left(M_{\alpha}+1,20711 \frac{P l}{2}\right) \\
& M_{2}^{0}=-0,70711\left(M_{\alpha}+\frac{P l}{4}\right)
\end{align*}
$$

W zależności od tych momentów obliczamy ze wzorów (11) i (12) kąty φ_{i} i Θ_{i} (rys. 56) :

$$
\begin{align*}
& \Theta_{1}=-\frac{l}{2} \frac{l}{G J_{0}}\left(M_{a}+1,20711 \frac{P l}{2}\right) \\
& \varphi_{2}=\frac{P l^{2}}{4} \frac{l}{E J}+0,70711\left(M_{\alpha}+\frac{P l}{4}\right) \frac{l}{E J}, \tag{231}\\
& \Theta_{2}=-0,70711\left(M_{\alpha}+\frac{P l}{4}\right) \frac{l}{G J_{0}}, \\
& \varphi_{a}=\frac{P l}{16} \frac{l}{E J}+\frac{M_{a}}{2} \frac{l}{E J}
\end{align*}
$$

Wzory (24) i (25) przybierają w danym razie postać

$$
\left.\begin{array}{rl}
\bar{\varphi}_{2} & =0,70711\left(\varphi_{1}-\Theta_{1}\right)+\varphi_{2} \\
\bar{\Theta}_{2} & =0,70711\left(\varphi_{1}+\dot{\Theta}_{1}\right)+\Theta_{2} \tag{232}\\
\bar{\varphi}_{a} & =0,5\left(\varphi_{1}-\Theta_{1}\right)+0,70711 \varphi_{2}-0,5\left(\varphi_{1}+\Theta_{1}\right)-0,70711 \Theta_{2}+\varphi_{a}
\end{array}\right\}
$$

Ponieważ z warunku symetrii wynika, że kąt nachylenia $\bar{\varphi}_{a}$ przekroju poprzecznego w punkcie P względem płaszczyzny pionowej powinien być równy zeru, czyli $\bar{\varphi}_{a}=0$, dochodzimy stąd do równania

$$
\begin{equation*}
\bar{\varphi}_{a}=-\Theta_{1}+0,70711\left(\varphi_{2}-\Theta_{2}\right)+\varphi_{a}=0 \tag{233}
\end{equation*}
$$

czyli do równania

$$
\begin{align*}
& \frac{M_{\alpha} l}{2 G J_{0}}+1,20711 \frac{P l^{2}}{4 G J_{0}}+0,70711 \frac{P l^{2}}{4 E J}+\frac{0,5 M_{a} l}{E J}+ \tag{234}\\
& \quad+\frac{0,5 P l^{2}}{4 E J}+\frac{0,5 M_{a} l}{G J_{0}}+\frac{0,5 P l^{2}}{4 G J_{0}}+\frac{P l^{2}}{16 E J}+\frac{M_{a} l}{2 E J}=0
\end{align*}
$$

lub, przy $\varepsilon=E \bar{J} / G J_{0}$, do równania

$$
\begin{equation*}
1,5 M_{\sigma} l+0,5 \varepsilon M_{a} l+0,48927 P l^{2}+0,30178 \varepsilon P l^{2}=0 \tag{235}
\end{equation*}
$$

skąd

$$
\begin{equation*}
M_{\alpha}^{z}=-0,3955 \operatorname{Pr} \tag{236}
\end{equation*}
$$

Weźmy pod uwage w dalszym ciaggu dźwigar zakrzywiony w planie mający oś w kształcie półkola o promieniu r, wpisanego w oś dźwigara przedstawionego na rys. 55. Dźwigar kolisty jest utwierdzony, podobnie jak dźwigar załamany, w punktach 0 i 5 i obciążony ciężarem P w środku. Moment zginający M_{α} w punkcie P równa się w tym wypadku

$$
\begin{equation*}
M_{a}^{k}=-0,3183 \operatorname{Pr} . \tag{237}
\end{equation*}
$$

Z równania (238) natomiast, wobec zależności geometrycznej $l=0,8284 r$ i przy $\varepsilon=1$, znajdujemy

$$
\begin{equation*}
M_{a}^{z}=-0,3278 \mathrm{Pr} \tag{238}
\end{equation*}
$$

Momenty M_{α} obliczone dla dźwigara załamanego w planie i dla dźwigara półkolistego, przy ich wzajemnym rozmieszczeniu według rys. 55, różnią się od siebie o $3^{0 / 4}$.

O ile oś dźwigara załamanego jest wielobokiem wpisano-opisanym w stosunku do dźwigara kolistego, a więc gdy $l=0,7969 r$, wówczas otrzymujemy, że

$$
\begin{equation*}
M_{\alpha}^{k}=-0,3150 \operatorname{Pr} \tag{239}
\end{equation*}
$$

czyli że różnica między momenさa-
 $\mathrm{mi} M_{\alpha}^{k}$ i M_{α}^{z} spada tu do 1%.

W przypadku dźwigara załamanego w planie wpisanego w dźwigar półkolisty, tzn. przy $l=0,7659 r$, będziemy mieli

$$
\begin{equation*}
M_{\alpha}^{z}=-0,3027 \operatorname{Pr} \tag{240}
\end{equation*}
$$

przy czym różnica między M_{α}^{z} i M_{α}^{k} wynosi 5%.

Wahania stosunku ε przyjętego wyżej za równy 1 w małym tylko stopniu odibijają się na wartościach momentu M_{a}^{z}. Widać to z zestawienia następującego opartego na równaniu (235):

$$
\left.\begin{array}{ll}
\text { dla } \varepsilon=1 & R_{\alpha}^{z}=-0,315 \operatorname{Pr}, \\
\text { dla } \varepsilon=10 & R_{\alpha}^{z}=-0,335 \operatorname{Pr}, \\
\text { dla } \varepsilon=100 & R_{\alpha}^{z}=-0,338 \operatorname{Pr}, \\
\text { dla } \varepsilon=1000 & R_{\alpha}^{z}=-0,339 \operatorname{Pr}, \tag{241}
\end{array}\right\}
$$

z którego wynika też, że wplyw wartości stosunku ε na momenty M_{α} jest mniejszy przy dużych ε niż przy małych. Jest to szczególnie ważne z tego powodu, że dla przekrojów dwuteowych, często występujących w konstrukcjach budowlanych, stosunek ε dojść może do wartości 500.

Bardziej złożony typ obciążenia może spowodować większe rozbieżności między wartościami wielkości statycznie niewyznaczalnych dźwigara żałamanego w planie, a wpisanego dźwigara półkolistego. Ma to miejsce ż tego powodu, że w danym razie większość punktów zaczepienia obciążenia nie pokrywa się w obu dźwigarach ze sobą. Niezgodność wyników obliczenia nie jest jednak zbyt wielka i może być pokryta przez pewne przesunięcie osi dźwigara półkolistego w stosunku do osi dźwigara załamanego w planie. Wskazuje na to obliczenie następujące.

Rozpatrujemy, mianowicie, dźwigar przedstawiony na rys. 55, obciążony w sposób ciagly i równomierny przy natężeniu obciążenia $q \mathrm{~kg} / \mathrm{cm}$. Przypadek ten różni się więc od przypadku tylko co rozpatrzonego jedy' nie obciążeniem dźwigara.

Rozdzielamy dźwigar, jak poprzednio, przekrojem aa na dźwigarywsporniki 012α i $a 345$ i zaczepiamy do ich końców moment M_{α} przedstawiony na rysunku wektorowo. Moment M_{α} wyznaczamy tu, jak poprzednio, z równania (233). Dla kątów φ i Θ otrzymujemy wyrażenia następujące:

$$
\begin{align*}
& \Theta_{1}=-\frac{M_{a} l}{2 G J_{0}}-\left[0,70711 \frac{q l^{2}}{2}+(0,70711+0,25) \frac{q l^{2}}{2}\right] \frac{l}{2 G J_{0}}= \\
& =-0,5 \frac{M_{\alpha} l}{G J_{0}}-0,41605 \frac{q l^{3}}{G J_{0}}, \\
& p_{2}=\frac{q l^{3}}{4 E J}+0,70711 \frac{l}{E J}\left(M_{\alpha}+\frac{q l^{2}}{8}\right)+\frac{q l^{3}}{6 E J}= \tag{242}\\
& =0,70711 \frac{M_{\alpha} l}{E J}+0,50514 \frac{q l^{3}}{E J}, \\
& \Theta_{2}=-0,70711 \frac{M_{凶} l}{G J_{0}}-0,08839 \frac{q l^{3}}{G J_{0}}, \\
& \varphi_{\alpha}=\frac{q l^{3}}{48} \frac{M_{\alpha} l}{2}+\frac{0,5 M_{\alpha} l^{2}}{E J}+\frac{0,021 q l^{3}}{E J} .
\end{align*}
$$

Wstawiając wyrażenia (242) we wzór (233) dochodzimy przy $\varepsilon=1$ do równania

$$
\begin{equation*}
2 M_{u} l+0,8567 q l^{3}=0 \tag{243}
\end{equation*}
$$

skąd

$$
\begin{equation*}
M_{\alpha}=-0,428 q l^{2} . \tag{244}
\end{equation*}
$$

W przypadku dźwigara półkolistego, którego oś pozioma wpisana jest w oṣ dźwigara załamanego w planie, przedstawionego na rys. 55 , moment M_{α} W środku dźwigara wyniesie ${ }^{3}$)

$$
\begin{equation*}
M_{a}^{k}=-0,272 q r^{2} . \tag{245}
\end{equation*}
$$

Wstawiając $l=0,8284 r$ we wzór (244) znajdujemy

$$
\begin{equation*}
M_{a}^{z}=-0,293 q r^{2} \tag{246}
\end{equation*}
$$

Różnica między momentami M_{α}^{k} i M_{a}^{z}, tzn. między momentami obliczonymi, z jednej strony, dla dźwigara zakrzywionego, a z drugiej, dla dźwigara załamanego w planie, stanowi więc 6%. Jeżeli jednak porównamy ze sobą dźwigary o tym samym obwodzie, a więc dźwigary załamane w planie o boku $l=\pi r / 4$, to moment M_{α}^{z} stanie się wówczas równy

$$
\begin{equation*}
M_{\alpha}^{z}=-0,264 q r^{2} \tag{247}
\end{equation*}
$$

a różnica między M_{α}^{z} i M_{α}^{k} spadnie do 3%.
Jeżeli dźwigar załamany w planie jest wpisano-opisany w stosunku do dźwigara półkolistego, to wartość momentu M_{α}^{z} będzie tu równa wartości momentu M_{a}^{k}. Jeżeli dźwigar załamany jest wpisany w dźwigar pőłkolisty, wówczas

$$
\begin{equation*}
M_{\alpha}^{z}=-0,251 q r^{2} \tag{248}
\end{equation*}
$$

a różnica między M_{α}^{k} i M_{α}^{z} wynosi 7%.
Drugim środkiem do oceny, w jakim stopniu obliczenie dźwigarów zakrzywionych może być zastąpione przez obliczenie dźwigarów załamanych w planie, jest zastosowanie do wyznaczenia odkształceń dźwigarów, wpisanych w dźwigary koliste lub opisanych dookoła nich, teorii różnic skończonych.

Weźmy pod uwagę dźwigar-wspornik o kształcie ćwierci koła (rys. 57) obciążony siłą P zaczepioną w końcu wspornika prostopadle do płaszczyzny dźwigara.

[^2]Przy $e=f$ kąt nachylenia względem płaszczyzny pionowej przekroju poprzecznego dźwigara kolistego w m odpowiadającego kątowi ω wyraża się wzorem

$$
\begin{equation*}
\bar{\varphi}_{m}=\frac{P r^{2}}{E J}(1-\cos \omega+\omega \cos \omega) \tag{249}
\end{equation*}
$$

a pionowe przesunięcie w_{m} punktu m równa się

$$
\begin{equation*}
w_{m}=\frac{P r^{3}}{E J}(\omega-\sin \omega-1+\cos \omega+\omega \sin \omega) . \tag{250}
\end{equation*}
$$

Rozpatrzmy w dalszym ciągu dźwigar załamany w planie wpisany W ćwiartkę koła i porównajmy nachylenia końcowych, a więc dotyczących punktu zaczepienia siły P, przekrojów poprzecznych dźwigara załamanego w planie i dźwigara zakrzywionego.

Rys. 56

Rys. 57

Przy $n=10$ i $\beta=9^{\circ}$ ze wzorów (73) i (81) znajdujemy

$$
\begin{gather*}
D_{1}=f l, \quad D_{2}=12,70 f l, \quad D_{3}=80,84 f l \\
B_{1}=-6,44 f l, \quad D_{2}=-80,84 f l \tag{251}
\end{gather*}
$$

Wobec tego równanie (79) przybiera postać

$$
\begin{equation*}
\bar{\varphi}_{x}=-6,44 f l \sin x \beta-80,84 f l \cos x \beta+f l x \sin x \beta+ \tag{252}
\end{equation*}
$$

skąd ..

$$
\begin{equation*}
+12,70 f l x \cos x \beta+80,84 l f \tag{253}
\end{equation*}
$$

Wobec zależności geometrycznej między długością przedziału l dźwigara załamanego w planie a promieniem r dźwigara kolistego opisanego

$$
r=\frac{l}{2 \sin \frac{\beta}{2}},
$$

otrzymujemy dla dźwigara kolistego dla $\omega=90^{\circ}$, czyli dla punktu zaczepienia siły P,

$$
\begin{equation*}
\bar{\varphi}_{P}=81,84 \mathrm{fl} . \tag{254}
\end{equation*}
$$

Różnica między kątami wyrażonymi za pomocą wzorów (253) i (254) wynosi $3,5 \%$, a przy $n=20$ spada do 3%. Wreszcie przy $n=\infty$ różnica staje się równa zeru, tzn. ̇̇e kąty $\bar{\varphi}_{x}$ obliczone dla punktu zaczepienia siły P mają wartości te same niezależnie od tego, czy są obliczone ze wzoru (79), czy też ze wzoru (249). Przekonamy się o tym łatwo wstawiając w równanie (79)

$$
n \beta=\frac{\pi}{2}, \quad l=r \beta, \quad x=\frac{\omega}{\beta}
$$

i znajdując granicę kąta $\bar{\varphi}_{x}$, przy β dążącym do zera, jako sumę odpowiednich granic poszczególnych wyrazów równania (79). Mamy w ten sposób

$$
\begin{align*}
& \lim _{\beta \rightarrow 0} \frac{f l}{2 \operatorname{tg}^{2} \frac{\beta}{2}}=\lim _{\beta \rightarrow 0} \frac{P l^{2}}{2 E J 2 \operatorname{tg}^{2} \frac{\beta}{2}}=\frac{P r^{2}}{E J}, \\
& \lim _{\beta \rightarrow 0} \frac{f l \sin x \beta}{2 \operatorname{tg} \frac{\beta}{2}}=0, \tag{255}\\
& \lim _{\beta \rightarrow 0} \frac{f l \cos x \beta}{2 \operatorname{tg}^{2} \frac{\beta}{2}}=-\frac{P r^{2}}{E J} \cos \omega
\end{align*}
$$

$$
\lim _{\beta \rightarrow 0}\left\{\frac{f l x}{\sin \frac{\beta}{2}}\left[\sin \left(\frac{2 n+1}{2}\right) \beta \cos x \beta-\cos \left(\frac{2 n+1}{2}\right) \beta \sin x \beta\right]\right\}=\frac{P r^{2}}{E J} \omega \cos \omega
$$

W rezultacie znajdujemy, że wzór (79) przybiera postać wzoru (249).
W podobny sposób postępujemy również, aby wykazać, że i wzory na pionowe przesunięcie punktu zaczepienia siły P pokrywają się ze sobą przy β dążącym do zera, tzn. że wzór (84) doprowadza w tych warunkach do wzoru (250). Robimy to, jak poprzednio, dla $n \beta=\pi / 2$, czyli dla dźwigara w kształcie ćwierci koła obciążonego na koncu siłą skupioną P. Ponieważ w tym wypadku $l=r \beta$, pierwsza i trzecia suma we wzorze (84) ¡ porównaniu z sumą drugá powinny być uważane za zera, czyli że przesunięcia w powinniśmy tu szukać pod postacią granicy sumy następującej:

$$
\begin{equation*}
w_{m}=\lim _{\beta \rightarrow 0}\left(l \sum_{1}^{m} \bar{\varphi}_{x}\right) \tag{256}
\end{equation*}
$$

Na podstawie rozważań dotyczących porównania ze sobą obliczenia wielkości statycznie niewyznaczalnych i odkształceń w przypadku dźwigarów załamanych w planie i dźwigarów w kształcie odcinka koła, z których ważniejsze wyłożone zostały wyżej, dochodzimy do wniosków nastequjących:
(1) zastąpienie przy wyznaczaniu wielkości nadliczbowych dźwigarów kolistych przez wpisane lub wpisano-opisane dźwigary załamane jest możliwe nawet przy niewielkiej liczbie przedziałów;
(2) zastąpienie przy wyznaczaniu odkształceń dźwigarów kolistych przez dźwigary załamane w planie jest możliwe tylko przy znacznej liczbie przedziałów dźwigara załamanego, np. 10-20 na ćwiartke koła, gdyż przy małej liczbie przedziałów błąd w odkształceniach może być niedopuszczalnie duży.

Zarówno te wnioski, jak również wszystkie rozważania poprzednie pozwalają twierdzić, że obliczenie dźwigarów krzywoliniowych innego kształtu niż odcinek koła również może być zastąpione przez obliczenie dźwigarów załamanych w planie. Należy wtedy kierować się wskazówkami następującymi:
(1) jeżeli decydujemy się na dużą liczbę przedziałów dźwigara załamanego w planie, należy wpisać w oś dźwigara zakrzywionego oś dźwigara załamanego w ten sposób, aby obie osie jak najlepiej do siebie przylegały;
(2) jeżeli pragniemy ograniczyć liczbę przedziałọ́w dźwigara załamanego w planie, wówczas wykreślamy osie dźwigara załamanego wpisanego; opisanego oraz wpisano-opisanego, przeprowadzamy obliczenie wielkości nadliczbowych we wszystkich trzech wypadkach i ża prawdziwe przyjmujemy te ich wartości, które dają największą gwarancje bezpieczeństwa;
(3) momenty zginające, siły poprzeczne i naprężenia wskazane jest obliczać już na podstawie rzeczywistego krzywoliniowego kształtu dźwigara bỉorąc pod uwage wielkości statycznie niewyznaczalne obliczone dla dźwigara załamanego.

Zastąpienie obliczenia dźwigara zakrzywionego w planie przez obliczenie dźwigara załamanego o odpowiednim kształcie jest w wielu wypadkach jedynym sposobem obliczenia dźwigara krzywoliniowego, gdyż liczba rozwiązanych przypadków dźwigarów zakrzywionych w planie jest jeszeze mała. Dokładność obliczeń może tu być przystosowana do warunków konstrukcji; odpowiada ona na ogół dokładności obliczenia łuków na podstawie podziału ich osi na odcinki skończone.

VII. UWAGI DOTYCZĄCE WSZYSTKICH TYPOW DŹWIGARÓW ZAモAMANYCH W PLANIE

Wyznaczenie odkształceń dźwigarów załamanych w planie wykonane było wszędzie wyżej sposobem geometrycznego dodawania odkształceń jako najwłaściwszym do gruntownego zbadania pracy konstrukcji. Sposób ten daje z kolei podstawę do oceny możliwości zastosowania w przypadku dźwigarów załamanych w planie in nych znanych metod obliczenia odkształceń i wyznaczenia wielkości statyćznie niewyznaczalnych, w szczególności metody energii sprężys'tej oraz metody M a x we11a i Mohra.

Rys. 58

Obliczymy tu pierwszaz z tych metod odkształcenie dźwigara przedstawionego na rys. 58, a więc dźwigara-wspornika załamanego w planie o dwóch równych przedziałach l, obciążonego na końcu siłą P.

Na podstawie wzorów (1) i (2) rozdziału II ustalamy, że przedział 01 jest zginany siłą $T_{1}=P$ zaczepioną w węźle 1 oraz momentem $M_{1}=P l$ zaczepionym do końca przedziału 01. W tych warunkach momenty zginające w przedziałach 01 i 12 w odległościach s od końców 1 lub 2 wyrażają się wzorami

$$
M_{12}=P s, \quad M_{01}=P l \cos \beta+P s
$$

a odpowiednie momenty skręcające wynoszą tu

$$
\begin{equation*}
\mathfrak{F}_{12}^{0}=0, \quad \mathfrak{M}_{01}^{0}=P l \sin \beta \tag{258}
\end{equation*}
$$

W tych warunkach energia sprężysta zginania w obydwóch przęsłach dźwigara wynosi odpowiednio

$$
\begin{gather*}
V_{12}=\int_{0}^{l} \frac{(P s)^{2} d s}{2 E J} \tag{259}\\
V_{01}=\int_{0}^{l} \frac{(P l \cos \beta+P s)^{2} d s}{2 E J} \tag{260}
\end{gather*}
$$

Dla ustalenia energii sprężystej skręcania nagromadzonej w danym układzie musimy przyjąć pewien określony ksztalt przekroju poprzecznego dźwigara. W przypadku przekroju poprzecznego kolistego będziemy mieli (w przęśle 01)

$$
\begin{equation*}
V_{01}^{0}=\frac{\left(M^{9}\right)^{2} l}{2 G J_{0}}+\frac{(P l \sin \beta)^{2} l}{2 G J_{0}} \tag{261}
\end{equation*}
$$

Całość energii sprężystej nagromadzonej w dźwigarze-wsporniku wyraża się wobec tego sumą

$$
\begin{equation*}
V=V_{12}+V_{01}+V_{01}^{0} . \tag{262}
\end{equation*}
$$

Aby stąd wyznaczyć pionowe przesunięcie w_{2} punktu zaczepienia sily P, stosujemy równanie C astiglian a

$$
\begin{equation*}
w_{2}=\frac{\partial V}{\partial P} \tag{263}
\end{equation*}
$$

skąd znajdujemy (wobec $G J_{0}=2 E J$)

$$
\begin{equation*}
w_{2}=\frac{2}{3} \frac{P l^{3}}{E J}+\frac{P l^{3}}{E J} \cos ^{2} \beta+\frac{P l^{3}}{E J} \cos \beta+\frac{P l^{3}}{2 E J} \sin \beta \tag{264}
\end{equation*}
$$

co zgadza się całkowicie z wynikiem otrzymanym w drodze geometrycznego dodawania odkształceń.

W przypadku bardziej skomplikowanego kształtu przekroju poprzecznego metody energii sprężystej nasuwaja przy obliczeniu dźwigarów załamanych w planie pewne trudności, o ile chodzi o ustawianie wzorów na energię skręcania.

Stosując metode IM a x w ella i Mohria do wyznaczenia przesunięcia w_{2} obliczamy momenty zginające i skręcające w dźwigarze wywołane siłą 1 zaczepioną w punkcie 2 :

$$
\begin{align*}
& \bar{M}_{12}=1 \cdot s, \tag{265}\\
& \bar{M}_{01}=1 \cdot l \cos \beta+1 \cdot s, \tag{266}\\
& \bar{M}_{12}^{0}=-1 \cdot s . \tag{267}
\end{align*}
$$

Wzór Maxwella i Mohra dla dźwigarów-wsporników załamanych w planie przyjmuje w zastosowaniu do przesunięcia w_{2} postać następującą:

$$
\begin{equation*}
w_{2}=\int \frac{M \bar{M} d s}{E J}+\int \frac{m^{0} \bar{M}^{0} d s}{E J}, \tag{268}
\end{equation*}
$$

gdzie całki dotyczą całej dlugości dźwigara. Wstawiając tu momenty M i \mathscr{M}^{0} ze wzorów (257) i (258), a momenty \bar{M} i \bar{M}^{0} ze wzorów (265)-(267), i wykonując całkowanie w granicach długości poszczególnych przedziałów dźwigara dochodzimy znowu do wyniku (264).

Jak widzimy, nie może być zasadniczych zastrzeżeń również co do stosowania metody M a x w ella i M ohra do dźwigarów-
wsporników załamanych w planie, a tym samym, w myśl uwag paragrafu 2 rozdziału II, i do dźwigarów załamanych w planie w ogóle.

We wszystkich przykładach obliczonych w tej pracy przyjmowaliśmy, nie zmniejszając tym ogólności wysnuwanych wniosków, a skracając natomiast obliczenia, że $E J=G J_{0}$, lub że przekrój poprzeczny dźwigara ma kształt koła. Przy innych przekrojach poprzecznych należy zastosować dla obliczenia kąta skręcenia te wzory i teorie, które zagadnienie skręcenia rozwiązują w przypadku różnych typów prętów.

Poszczególne przedziały dźwigarów załamanych w planie doznaja jednocześnie zginania i skrẹcania. Wymiary ich należy wobec tego sprawdzać według reguł teorii wytrzymałości materiałów dotyczących prętów, w których występują złożone stany naprężenia, w szczególności prętów narażonych jednocześnie na naprężenia normalne i styczne.

Резıме

БАЈІКИ, НМЕЮЩИЕ В ПЛАНЕ ВИД ЛОМАНЫХ ЛНННИ

Работа основана на шести трудах автора, перечисленных в предисловии.

Балку, имеющую в плане вид ломаной линии, будем называть дальше просто мнногугольной балкой ил под этим термином будем пониимать балку, продольная ось которой в недеформированном состолнии является ломаной линией, лежащей в плоскости, перпендикулярной к направлению действия сил. Пример такой балки представлен в перспективе на фиг. 1 и в плане да фиг. 2. Её характерной чертой является то юбстоятельство, что при нагрузке она подвергается не только изгибу, но и скручиванию.

На фиг. 5 представлена многоугольная консольная балка. Поперечные силы, изгибающие и крутящие моменты в таких балках выражены формулами (1)-(9). Деформации всякого рода многоугольных балок можно свести к деформации многоугольных консольных балок. Отдельные узлы балки принимают участие в следующих оборотах, представленных в виде векторов на фит. 14:
(1) по отношению к оси $j, j+1$ (угол оборота Θ_{j+1}^{\prime}).
(2) по отношению к оси $j-1, j$ (унол оборота $\bar{\Theta}_{j}$).
(3) по отношению к оси перпендикулярной к оси $j, j+1$ (угол юборота φ_{j+1}^{\prime}).
(4) по отношению к оси перпендикулярной к оси $j-1, j$ (угол оборота $\bar{\varphi}_{j}$).

Для этих углов оборота установлены рекуррентные формулы (16)(25).. В связи с этим, прогибы балки в отдельных её узлах выражены формулюю (13). Дла расчета многоугольных балок удобно воспользоваться теорией конечных разностей.

Этот вопрос расмотрен в тлаве III.
Глава IV тосвящена статически неопределимытм многоугольным балкам. Это балконные (фит. 33) и неразрезные (фиг. 37) балки.

В тлаве V выведено уравнение (194) ляти последовательных крутящих моментов \mathfrak{M} в неразрезной балке. Это уравнение облегчает расчет неразрезных мнотоугольных балок, подобно тому, как уравнение трех моментов облетчает расчет прямых неразрезныхх балок. У равнение (194) является уравнением конечных разностей 4 -го порядка.

В главе VI доказано, что для расчета балки кривой в плане, можно воспользоваться расчетом многоугольной балки, ось которой является в отношении к оси кривой балки многоугольником вписанным, описаннытм или же вписано-описаннным.

Рассуждепия приведенные в отдельных главах сопровождаются численными примерами.

Summary

BEAMS HAVING A HORIZONTAL PROJECTION IN THE SHAPE

 OF A BROKEN LINEThis paper is based on the six treatises by the same author which are listed in the introduction.

Beams having a horizontal projection in the shape of a broken line, will be referred to in this paper, as broken line beams. A broken line beam is defined as beam whose axis represents, in non-deformed state, a broken line in the plane perpendicular to the direction of active forces. An example of such a beams is shown in perspective in Fig. 1, and in horizontal projection in Fig. 2. It is subjected not only to bending but also to torsion, which is its main feature.

Fig. 5 shows a broken line cantilever beam. Shearing forces as well as bending and twisting moments are expressed by Eqs. (1)-(9). The deformations of various types of broken line beams can be reduced to those of ordinary cantilever beams, each point undergoing rotations, represented vectorially in Fig. 14, about the following axes:
(1) $j, j+1$ (angle of rotation Θ_{j+1}^{\prime}),
(2) $j-1, j$ (angle of rotation $\bar{\Theta}_{j}$),
(3) perpendicular to $j, j+1$ (angle of ratation $\varphi_{j}^{\prime}+1$),
(4) perpendicular to $j-1, j$ (angle of rotation $\bar{\varphi}_{j}$).

For these angles of rotation the formulae of recurrence (16) - (25) are deduced. Thus the deflection at each point is represented by Eq. (13).

The theory of finite differences provides a good calculation method for broken line beams. This problem is discussed in chapter III.

Chapter IV deals with statically indeterminate broken line girders represented by «balcony» and continuous girders, Figs. 33 and 37 respectively.

In chapter V the equation of five successive twisting moments 9 , (194), for a continuous girder is deduced. This facilitates the calculation of a continuous broken line girder in a similar manner, as the equation of three moments facilitates the calculation of a straight continuous beam. This is a difference equation of the forth order.

In chapter VI the author shows, that the calculation of beams curved in the horizontal plane can be replaced by one pertaining to broken line beams, the axes of which are inscribed or circumscribed or representing a broken line, part of which is inscribed and the rest circumscribed

The considerations of each chapter are illustrated by numerous examples.

Praca została złożona w Redakcji dnia 1 października 1953 r.

[^0]: ${ }^{1}$) Przykład obliczenia numerycznego znalduje się w pracy autora wymienionej pod p. 4 w przedmowie (GEATHELSCl

[^1]: ${ }^{2}$) Clebsch, Theorie der Elastizität fester Körper, Lipsk 1862, str. 392.

[^2]: ${ }^{3}$) S. P. Timoszenko, Kurs tieorji uprugosti, t. 2.

