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In the paper we study the temperature boundary effect behavior in the dividing wall made
of a composite conductor in which every area parallel to the outside and the inside plane
areas has identical biperiodic structure. The proposed modeling approach is restricted to the
hexagonal case of bi-periodicity in which the hexagonal cell can be divided onto three rhombus
parts with different thermal properties. Considerations deal with anisotropic conductors.
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1. Introduction

In many problems of environmental engineering we deal with highly oscil-
lating heat transfer through walls built with different types of materials. An
example of this phenomena is the presence of disturbances of a constant tem-
perature in the external air boundary layer localized close to walls constructed
from materials with a dense microstructure. Unfortunately, to compare the con-
ductor responses on the different types of oscillating boundary thermal loads,
the approximated models are inadequate. That is why the investigation of ex-
act description of a heat conduction in composite materials is justified. The
tolerance modeling technique explained by prof. Cz. Woźniak and contributors
in [5, 12–14] may lead to the feasibility of this type of comparison, provided
that the used tolerance shape functions lead to situations in which the heat
flux vector generated by the temperature approximation given by micro-macro
hypothesis retain continuity of its component normal to the bonding surface of
composite components. Modeling problems for heat conduction and for linear
elasticity in hexagonal-type composites have been investigated in [1, 8, 11, 18].
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Considerations will be focused on the damping effect of external temperature
fluctuation by the wall built of the mentioned composite material. Such behavior
is usually referred to as the temperature effect behavior.

2. Subject of considerations

Let us consider a special type of biperiodic hexagonal type structure in which
every basic hexagonal cell λ∆ is divided into three rhombus parts λ♦1, λ♦2,
λ♦3, cf. Fig. 1. Each of these three rhombus parts has different properties de-
scribed below. The hexagonal cell is situated in Cartesian orthogonal coordinate
system Ox1x2x3 in which the plane Ox1x2 is a biperiodicity plane and Ox3 = Oz
is normal to biperiodicity plane.

Fig. 1. Basic hexagonal cell.

Thermal properties of the composite is described by a heat conductivity
tensor field represented in the introduced coordinate system by the symmetric
matrix

(2.1) K = K(x) =



k11 k12 k13
k21 k22 k23
k31 k32 k33


, κ ≡ [k13, k23]

T

taking constant values KI , KII , KIII in rhombus λ♦1, λ♦2, λ♦3, respectively,
and by the scalar field c(·) of specific heat taking related constant values cI , cII ,
cIII in rhombus λ♦1, λ♦2, λ♦3.
We will assume jump discontinuities of K(·) ∈ R3×3 and cI , cII , cIII on

interfaces between every neighboringrhombus parts as well as continuity of the
heat flux vector in directions normal to the planes separating components.
Hence, composite components are perfectly bonded [9, 10].
This work presents two special cases of hexagonal-type structure. In the first

case we introduce three rhombus parts with isotropic properties (Fig. 2) marked
by heat conductivity tensor in form:

(2.2) Ka = kaI = ka



1 0 0
0 1 0
0 0 1


, a = I, II, III.
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Fig. 2. Basic hexagonal cell with three isotropic rhombus parts.

In the second case the heat conductivity tensor of the first rhombus part of
the basic hexagon will be assumed in the form

(2.3) K =




1
sI
kI

+
sII
kII

0 0

0 sIk
I + sII k

II 0

0 0 sIk
I + sII k

II




in which s1 + s2 = 1, s1, s2 > 0 and kI , kII are two conductivity constants of
some isotropic conductors.
The subsequent two rhombuses, second and third, are assumed to be made

of the same transversally anisotropic conductor determined by conductivity ma-
trix (1.3) but rotated in every neighboring rhombus by an angle of 2π/3 (Fig. 3)
with 0z axis as the axis of rotation. Hence

(2.4) Ka =





K for (x1, x2) ∈ ♦I ,

QT
2π/3KQ2π/3 for (x1, x2) ∈ ♦II ,

Q2π/3KQT
2π/3 for (x1, x2) ∈ ♦III .

Fig. 3. Basic hexagonal cell with rotational symmetry.
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Symbol Q2π/3 denotes here the orthogonal matrix of rotation by 2π/3 in R
2,

namely

(2.5) Qα ≡



cosα − sinα 0
sinα cosα 0
0 0 1


 α= 2π

3=




−1

2
−
√
3

2
0

√
3

2
−1

2
0

0 0 1



.

A material, whose conductivity properties are described by the conductivity ma-
trix (2.3), can be interpreted as a two-phased periodic layer with dense periodic
structure. Under this interpretation s1 = l1/(l1 + l2), s2 = l2/(l1 + l2), where l1,
l2 are the thicknesses of the first and the second layer, respectively.
The basic difficulty of the tolerance modeling procedure is a proper (for every

considered physical problem) choice of the shape function system. This problem
will be investigated in the subsequent sections.

3. Modeling procedure

The starting point of the tolerance modeling of heat conduction in periodic
composites is the idea of the description of the temperature field by the finite
slowly-varying fields u, ψA, A = 1, ..., N , and introducing the micro-macro ap-
proximation of the temperature field

(3.1) θ = θM ≡ u+ λgAψA

into a parabolic heat transfer equation

(3.2) cθ̇ − (∇ + ∂) · [K(∇+ ∂)]θ = b.

In (3.1) and wherever we deal with a repeated index, a summation conven-
tion holds. The new fields above introduced, are the averaged temperature field
u and fluctuation amplitude fields ψA and are new basic unknowns in the tol-
erance model equations. In (3.2) symbol b means the heat sources field and θ
is temperature field. There is also denoted ∇ ≡ grad+ ∂ for grad ≡ [∂1, ∂2, 0]

T

and ∂ ≡ [0, 0, ∂3]
T where ∂1 ≡ ∂/∂x1, ∂2 ≡ ∂/∂x2, ∂3 ≡ ∂/∂x3. The tolerance

modeling procedure yields to the model equations

(3.3)

〈c〉θ̇ − (∇ + ∂) · [〈K〉u+ 〈K grad gA〉ψA] = 〈b〉,

− λ2(〈gAcgB〉ψ̇B − ∂T 〈gAKgB〉∂ψB)

+ λ(〈gAgradT gBK〉 − 〈gBgradT gAK〉)∂ψB

+ 〈gradT gAK grad gB〉ψB + 〈gradT gAK〉∇u = λ〈gAb〉
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in which the standard averaging 〈·〉(x) over cells x+ λ∆ has been applied. For
particulars the reader is referred to [6, 7, 12]. Fluctuation amplitudes in the
tolerance model equations (3.3) describe the suppressions of the temperature
perturbations together with the growth of the distance from the boundary of
the region occupied by the composite.
In the subsequent considerations, the heat flux plays an important role

(3.4) qM ≡ K∇(u+ λgAψA)

generated by the micro-macro approximation (3.1) of the temperature field. This
special kind of heat flux is referred to as the tolerance heat flux vector. If the
component of the tolerance heat flux vector, normal to the surfaces Γ separating
ingredients of the composite, is continuous on these surfaces then we say that
the tolerance heat flux continuity condition is satisfied.

4. Boundary effect equation

The theory of linear ordinary differential equations suggests to investigate
the fluctuation amplitude ψA in the form of the decomposition ψA = ψA + ψ̃A

onto two terms ψA and ψ̃A. The first part ψA should satisfy equation

(4.1) − λ2
(
〈gAcgB〉ψ̇B − ∂T 〈gAKgB〉∂ψB

)

+ λ
(
〈gAgradT gBK〉 − 〈gBgradT gAK〉

)
∂ψB

+ 〈gradT gAK grad gB〉ψB = 0

while the second part should be an arbitrary solutions to

(4.2) − λ2
(
〈gAcgB〉 ˙̃ψB − ∂T 〈gAKgB〉∂ψ̃B

)

+ λ
(
〈gAgradT gBK〉 − 〈gBgradT gAK〉

)
∂ϕB

+ 〈gradT gAK grad gB〉ϕB + 〈gradT gAK〉∇u = λ〈gAb〉.

Equation (4.1) will be referred to as the nonstationary boundary effect equation.
At the same time equation

(4.3) λ2∂T 〈gAKgB〉∂ψB + λ
(
〈gAgradT gBK〉 − 〈gBgradT gAK〉

)
∂ψB

+ 〈gradT gAK grad gB〉ψB = 0

will be referred to as the stationary boundary effect equation or simply the bound-
ary effect equation, cf. [2–4].
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5. Shape functions

In the tolerance modeling technique a proper indication of the finite sequence
h1(x), h2(x), ..., hN (x) of tolerance shape functions is the most important mod-
eling problem. In accordance with the principles of the tolerance modeling, this
indication is verified only by a posteriori evaluation of the accuracy of the ob-
tained solutions. In addition to the formal conditions required to be met by
string tolerance shape functions, there are no known guidelines for constructing
them.
In this paper we are to investigate the tolerance shape functions leading

to the tolerance heat flux continuity condition formulated at the end of the
previous section. For the anisotropic conductors the existence of such tolerance
shape functions is still an open mathematical problem. Such shape functions
play a crucial role in the the extended tolerance model, [7], in the framework of
which the exact description of the heat transfer in composite materials can be
obtained.

6. Passage to the limit model

Under the assumption that the tolerance heat flux continuity condition for
the tolerance shape functions h1(x), h2(x), ... , hN (x) is satisfied we shall pass
from the tolerance model represented by (3.3) to the extended tolerance model.
Such procedure has been realized for two-phased periodic laminated composites
in [17].
In the first step of this procedure we shall introduce instead of micro-macro

hypothesis (3.4) a new hypothesis in the form

(6.1) θ(x, z, t) = θM (x, z, t) + am,n(z, t)φ
m,n(x),

for

φm,n(x) =
λ2

4
ϕm(λx+)ϕ

n(λx−)

and for

(6.2)

ϕm
+ (x+) = cos

2nπ√
3
x±, x+ ∈

〈
0,

√
3

2

〉
,

ϕn
−(x−) = cos

2nπ√
3
x±, x− ∈

〈
0,

√
3

2

〉
,

x± ≡ 1

2
x2 ±

√
3

2
(x1 − 1),
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where in long wave term θM ≡ u + hA(x)ψA we shall assume that fluctua-
tion amplitudes ψA = ψA(z, t) do not depend on periodic coordinates x ≡
(x1, x2) and field u = u(x, z, t) is not restricted by the slowly-varying condi-
tion, cf. [1]. At the same time θres = θ − θM (x, z, t) is, under the tolerance heat
flux continuity condition a certain continuously differentiable scalar field and
θres(x, z, t) = ap(z, t)φ

p(x), p ≡ (m,n), is the Fourier expansion with coeffi-
cients am,n = am,n(z, t) and with respect to the orthogonal basis

φm,n(x) =
λ2

4
ϕm
(x+
λ

)
ϕn
(x−
λ

)
.

In the second step of the mentioned procedure we shall assume that the
orthogonal system of functions φm,n(x) is independent of the thermal and geo-
metrical properties of the conductor. Hence, m,n > 0 in (6.1) and ∇Ξφ

p = 0
almost everywhere on Γ . That is why

(6.3)
〈cφp〉 = 0, 〈Kφp〉 = 0, p = 1, 2, ...,

〈chA〉 = 0, 〈KhA〉 = 0, A = 1, ..., N.

After introducing new representations hA(x) ≡ λgA(λ−1x) for tolerance shape
functions hA(x) and φp(x) ≡ λϕp(λ−1x), p ≡ (m,n), aforementioned assump-
tions lead to the following extended model equations

〈cu̇〉 − ∇T [〈K∇u〉 − 〈K∇Ξg〉ψA − 〈K∇Ξφ
p〉ap] = −〈b〉,

λ2

{[
〈gAε cgB〉 〈gAcϕp〉
〈ϕpcgB〉 〈ϕpcϕq〉

][
ψ̇B

ȧq

]
−∇T

Φ

([
〈gAε cgB〉 〈gAcϕp〉
〈ϕpKgB〉 〈ϕpcϕq〉

][
∂ψB

∂aq

])}

(6.4)

+ λ

([
〈gradT gAKgB〉 〈gradT gAKϕp〉
〈gradTϕpKgB〉 〈gradTφpkϕq〉

]

−
[
〈gradT gBKgA〉 〈gradTϕqKgA〉
〈gradT gBKϕp〉 〈gradTϕqKϕp〉

])[
∂ψB

∂aq

]

+

[
〈gradT gAKgrad gB〉 〈gradT gAKgradϕq〉
〈gradTϕpKgrad gB〉 〈gradTϕpkgradϕq〉

][
ψB

aq

]

+

[
〈gradT gAK∇u〉
〈gradTϕpK∇u〉

]
= λ

[
〈gAb〉
〈ϕpb〉

]
.
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A formal procedure of rescalling tolerance shape functions leads to the limit
model equations

〈cu̇〉 − ∇T [〈K∇u〉 − 〈K∇Ξg〉ψA − 〈K∇Ξϕ
p〉ap] = −〈b〉,

λ2

{[
0 0

0 〈ϕpcϕq〉

][
ψ̇B

ȧq

]
−∇T

Φ

([
0 0

0 〈ϕpcϕq〉

][
∂ψB

∂aq

])}

(6.5) + λ

([
0 〈gradT gAKϕq〉
0 〈gradTϕpkϕq〉

]
−
[

0 0

〈gradT gBKϕp〉 〈gradTϕqKϕp〉

])[
∂ψB

∂aq

]

+

[
〈gradT gAKgrad gB〉 〈gradT gAKgradϕq〉
〈gradTϕpKgrad gB〉 〈gradTϕpkgradϕq〉

] [
ψB

aq

]

+

[
〈gradT gAK∇u〉
〈gradTϕpK∇u〉

]
= λ

[
〈gAb〉
〈ϕpb〉

]
.

The limit model of the heat conduction in the considered isotropic hexagonal-
type composite represented by Eqs. (6.5) is valid provided that the system of
tolerance shape functions h1, h2,. . . , hN leads to the tolerance heat flux conti-
nuity condition.
Let rotα(x) = Qα(x − x0)

T + x0, for x ∈ R2, α ∈ R, and for an arbitrary
cell center x0 as a center of rotation. In the subsequent considerations we shall
assume that three shape functions

(6.6)

h1(x) = λg(λ−1x),

h2(x) = h1(rot2π/3(x)),

h3(x) = h2(rot2π/3(x))

determined by a single basis function g(·) is taken as the system of tolerance
shape functions. In [16] the basis function g(·) satisfying condition (6.6) and
the tolerance heat flux continuity condition. Hence, the limit model of the heat
conduction in the considered anisotropic hexagonal-type composite represented
by Eqs. (6.5) is valid.

7. Final remarks

The answer to the question of whether amplitude fluctuations ψA can be
eliminated from the limit model equations (6.5) is still not known. It means that
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the answer to the question whether the short-term and long-term temperature
boundary disturbances are transmitted through the hexagonal-type conductor
independently is also an open problem. It must be emphasized that for two-
phased laminated periodic conductors this problem has been solved in [17] and
the exact description of the boundary effect phenomena in this case has been
obtained.
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