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The aim of this study is to propose a partially-averaged model of heat conduction in
simple micro-periodic composite conductors. In this model, as in many known models of this
type, the type of microstructure is represented by the single scalar parameter, which is re-
ferred to as microstructure parameter. Unlike other known averaged models of this type, the
resulting model allows for the formulation exact solutions to initial-boundary value problems
formulated for the parabolic heat conduction equation. If tolerance approximations will be ap-
plied to averaged temperature filed this model becomes asymptotically exact model. The term
“asymptotically exact model” refers to models in the framework of which solutions coincident
with exact solutions to the mentioned problems for the parabolic heat transfer equation when
the microstructure parameter tends to zero.
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1. Introduction

The aim of this study is to propose a partially-averaged model of heat conduc-
tion in simple micro-periodic composite conductors. In this model, as in many
known models of this type, the type of microstructure is represented by the sin-
gle scalar parameter, which is referred to as microstructure parameter. Unlike
other known averaged models of this type, the resulting model allows for the for-
mulation exact solutions to initial-boundary value problems formulated for the
parabolic heat conduction equation. If tolerance approximations will be applied
to averaged temperature filed this model becomes asymptotically exact model.
The term “asymptotically exact model” refers to models in the framework of
which solutions coincident with exact solutions to the mentioned problems for
the parabolic heat transfer equation when the microstructure parameter tends
to zero.
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Aforementioned property of the proposed model allows us to situations in
which we are able to compare the behavior of the composite conductors made of
the same finite number of components but differ in their geometric arrangement.
This comparison will be made, while the reactions of these composites to the
same external thermal conditions (represented by the imposed initial-boundary
conditions) will be examined. Other known averaged models of this type does
not allow to carry out such comparisons, because the solutions obtained in the
framework of these models are only approximate and the accuracy of these
solutions can be verified in the present state of knowledge only empirically.
The starting point for the implementation of the proposed method of mod-

eling is the modeling method known as “the tolerance averaging technique”, as
proposed by Professor Czesław Woźniak. The reader is here referred to the six
basic monographs on this subject [1–6] for theoretical foundations and [8–15] for
various applications of tolerance modeling approach. In this work, it is proposed
to instead apply “micro-macrohypothesis” (used in tolerance modeling), a more
general hypothesis which postulates the possibility of developing a Fourier series
for residuals between the “exact temperature” and its micro-macro approxima-
tion used in tolerance modeling. Hence, in the proposed course of modeling the
temperature field is represented as a sum of two parts. The first part which will
be referred to as the long-wave part of the temperature field coincides with the
temperature approximation introducedin the tolerance micro-macro hypothesis.
The second part is the mentioned above Fourier expansion and is referred to
as short-wave part of the temperature field. To allow us to the use of Fourier
expansion method we are to impose on the long-part of the temperature field
an additional assumption, whereby the heat flux vector component normal to
the surface of the bonding components of the composite is continuous on these
surface. In fact, this is an additional assumption imposed on tolerance shape
functions used in the long parts of the temperature field.
Considerations of work are illustrated with two examples of the application

of the proposed model for the study of problems of thermal conductivity.

2. Fundamental concepts

The starting point of consideration is the well-known parabolic heat transfer
equation

(2.1) ∇T (K∇θ)− cθ̇ = b

in which θ = θ(z, t), z = (z1, z2, z3) ∈ R3, t ≥ 0, denotes the temperature field,
c is a specific heat field and K = (kij) is the heat conductivity matrix. Here
∇ ≡ [∂/∂x1, ∂/∂x2, ∂/∂x3]T and indices i, j run over 1, 2, 3. Fields c = c(·)
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and K = K(·) take S values denoted by cI , ..., cS and KI , ..., KS , respectively,
do not depend on the temperature field θ and are restrictions of certain fields
defined in R3 to the region

(2.2) Ω = (0, L1)× (0, L2)× (0, L3)\(δ, L1−δ)× (δ, L2−δ)× (δ, L3\δ)] ⊂ R3

in which L1, L2, L3 > 0 and 0 < 2δ < L2, L3. The fragment of the considered
dividing wall and introduced Cartesian coordinate system is illustrated in Fig. 1.
An open problem is how to arrange the components in the interior of dividing
wall to obtain optimal insulation properties of the wall with respect to a certain
given a priori criterion.

Fig. 1. The fragment of the considered dividing wall.

The study of the mentioned problem will be restricted here to the microstruc-
tural ∆-periodic composites which diameter λ = diam (∆) is small where com-
pared to the characteristic length dimension of region Ω. It means that there
exists m-tuple (v1, ...,vm) of independent vectors v1, ..., vm from Rm, deter-
mining m directions of periodicity and referred to as periodicity vectors, such
that

(2.3)
⋃{

∆k1,...km, rm+1,...,r3 : k1, ...km = ...−1, 0, 1, ..., rm+1, ..., r3 ∈R
}
= R3

for ∆k1,...km, rm+1,...,r3 ≡ k1v
1+ ...+kmvm+ rm+1e

m+1+ ....+ r3e
3+∆ and such

that both fields c = c(·) and K = K(·) are ∆-periodic. Here ei denotes the i-th
unit vector from R3, i = 1, 2, 3. In the subsequent investigations the averaging
〈f〉(x) of an arbitrary integrable field f defined on Rm plays an important role,
and is defined as

(2.4) 〈f〉(x) = 1

|∆|

∫

x+∆

f(ξ) dξ



80 D. KULA, E. WIERZBICKI

and which is a constant field provided that f is a ∆-periodic field. Investigations
of the mentioned above physical problem will be focused on the analysis of
initial-boundary condition

θ(z, t)|z∈∂Ω = θ∂Ω(z, t),
(2.5)

θ(z, t)|t=0 = θ0(z)

attached, for given boundary and initial temperature values θ∂Ω(z, t) and θ0(z),
to heat transfer equation (2.1). The formulated initial-boundary problem is too
complicated to be a proper mathematical tool to compare thermal properties
of dividing composite walls illustrated in Fig. 1 depending on the geometry of
interfaces and material properties of components. Hence, we are to adopt the
above problem to the form that allows for the realization of such a comparison.
This adaptation will be realized as follows.
Let the layer V h = z0 + V , V = (0,H1) × (0,H2) × (0, δ), determining by

a certain z0 ∈ R3, and H1, H2, δ > 0, be a fragment of the front part of
this wall located far from the wall edge. Denote z̃ ≡ (x, y) = z − z0, where
x ≡ (x1, ..., xm) ∈ Rm is related to the periodicity directions of the compos-
ite and y ≡ (y3−m, ..., y3) ∈ R3−m. In fact, together with z̃ ≡ (x, y) we have
just introduced new coordinate system such that coordinates z̃ and z of the
same point are interrelated z̃ = z − z0. For m = 1 we deal with one-directional
periodicity. In this case V = Ξ × Φ for Ξ = (0,H1). In this case z0 can be
identified with [ηl/2, δ, 0] where lI = ηl, lII = (1 − η)l for 0 < η < 1, are
the thickness of the first and the second laminas and microstructure param-
eter λ coincide with the thickness of the repetitive layer, λ = l ≡ lI + lII.
The interval (0, l) is identified as a basic cell ∆. Case m = 2 deals the pe-
riodicity in two directions in which V = Ξ × Φ for Ξ = (0,H1) × (0,H2)
and Φ = (0, δ). Both two-constituent conductors together with related basic
cells are illustrated in Fig. 2. In the subsequent considerations the denotations
∇Ξ ≡ [∂/∂x1, ..., ∂/∂xm, 0, ..., 0]T , ∇Φ ≡ [0, ..., 0, ∂/∂xm+1, ..., ∂/∂x3]T are

Fig. 2. Chessboard-type periodic rigid conductor. Case m=1 and m = 2.
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used for partial derivatives in the periodicity and non-periodicity directions re-
spectively. Hence ∇Ξ +∇Φ = ∇ ≡ [∂/∂x1, ∂/∂x2, ∂/∂x3]T .
In the framework of this study we are to investigate the intensity attenuation

of temperature fluctuations with respect to the averaged (on cells) temperature
field and hence we are to investigate temperature field θ in the form of decom-
position

(2.6) θ = u+ θres,

where long wave u and short-wave θres parts of the temperature field should
satisfy conditions

(2.7) 〈θ〉 = 〈u〉, 〈θres〉 = 0.

Hence the boundary and initial values θ∂V , θ0 should be represented in the
similar form

θ∂V = u|∂V + θres|∂V ,
(2.8)

θ0 = u0 + θres0

for a given boundary (on ∂V ), u|∂V (x, y, t), θres|∂V (x, y, t) and initial u0(x, y),
θres0 (x, y) representing the averaged and the fluctuation parts of the temperature
field on the boundary ∂V and at the time instant t = 0, respectively. The values
u|∂V (x, y) and θres|∂V (x, y) should satisfy the conditions

(2.9)
〈θ∂V 〉 = 〈u|∂V 〉, 〈θres|∂V 〉 = 0,

〈θ0〉 = 〈u0〉, 〈θres0 〉 = 0.

Decomposition of the initial and boundary conditions given by (2.8), is justified
by the fact that in the outside and inside of the rooms which are surrounded
by walls illustrated in Fig. 1, the boundary layer located close to the walls has
an abnormal temperature field due to the need to adapt it to the microperiodic
structure of the wall.
The aim of this paper is to formulate the averaged mathematical model

of heat transfer in composite periodic media, in a framework for which exact
solutions to the boundary problem given by (2.6)–(2.9) can be investigated.

3. Modeling procedure

The course of modeling is based on the two fundamental assumptions.
The first modeling assumption is a certain extension of themicro-macro hy-

pothesis, introduced framework of the tolerance averaging technique, cf. [1–6].
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In accordance with that hypothesis, the temperature field θ can be approxi-
mated with an acceptableaccuracy with

(3.1) θM (z) ≡ ϑ(z) + hA(x)ψA(z),

where the slowly varying fields ϑ(·, z) and ψA(·, z, t) are the tolerance averaging
of temperature field and amplitude fluctuations fields, respectively. Here and in
the sequel the summation convention holds with respect to indices A, B, ... =
1, ..., N . Symbols hA(x), A = 1, ..., N , denote in (3.1) tolerance shape functions
which should be periodic and satisfy the conditions

hA ∈ o(λ), λ∇Ξh
A ∈ o(λ), 〈chA〉 = 0.

For particulars the reader is referred to [1–6]. The tolerance-micro macro hy-
pothesis can be formulated in the following form:
Tolerance micro-macro hypothesis. The residual part of the temperature field

θres being the difference between the temperature field θ and its tolerance parts
θM given by Eq. (3.1) can be treated as zero,

(3.2) θres ≡ θ − θM ≈ 0,

i.e. it vanishes with an acceptable “tolerance approximation”.
In contrast to the tolerance modeling in this paper instead of quoted above

micro-macro hypothesis the extended micro-macro hypothesis will be applied.
According to this new hypothesis the right side of Eq. (3.2) is not equal to
zero, but is a special infinite analytic expansion. This is a certain attempt to
adapt of an idea implemented in signal theory, where we have to deal with the
“overlapping” of many signals determining by different parameters. In order to
formulate this hypothesis denote by ∆1, ∆2, ..., ∆n the homogeneity subregions
of the basic cell ∆ and let Γ1 = ∂∆1, Γ2 = ∂∆2, ..., Γn = ∂∆n, Γ∆ ≡ Γ1 ∪ Γ2 ∪
...∪Γn. Now, the extended micro-macro hypothesis can be formulated as follow:
Assumption 1. (Extended micro-macro hypothesis)

The residual part θres ≡ θ − θM of the temperature field θ ≡ θM − θres being
the difference between the temperature field θ and its tolerance parts θM given
by Eq. (3.1) can be represented by the Fourier series θres(x, y, t) = λa0(y, t) +∑

∞

p=1 ap(y, t)φ
p(x) formed by an orthogonal ∆-periodic basis φp(x), p = 1, 2, ...

which should be constant with respect to periodic variable x. Hence ψp =
ψp(y, t).

The orthogonality condition is here related to the scalar product f1 ◦ f2 =
〈f1f2〉, determined by the averaged value 〈f1f2〉 which is constant for any ∆-
periodic functions f1 and f2 defined on R

m.
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In the subsequent considerations it will be assumed that summation con-
vention holds also with respect to p = 1, 2, .... That is why, under the second
modeling assumption, formula (2.6) can be rewritten in the form

(3.3) θres(x, y, t) = λa0(y, t) + ap(y, t)φ
p(x).

In according to the second modeling assumption shape functions as well as
the orthogonal system φp(x) are independent on the thermal and geometrical
properties of the conductor.

Assumption 2. (Continuity condition of the tolerance heat flux vector)
The component of heat flux vector qres ≡ K∇θres generated by residual part
θres of the temperature field, normal to the surface Γ separating constituents,
vanish in almost everywhere on Γ .

Assumption 2 should be satisfied independently of the material structure
of the considered composite and hence for any A = 1, ..., N and any positive
integer p > 0 we have ∇Ξh

A = 0 and ∇Ξφ
p = 0 almost everywhere on Γ and

(3.4)
〈cφp〉 = 0, 〈Kφp〉 = 0, p = 1, 2, ... ,

〈chA〉 = 0, 〈KhA〉 = 0, A = 1, ..., N.

Since fluctuation amplitudes are slowly-varying functions (2.8) yields

(3.5)
〈θ〉(x, y) = 〈ϑ〉(x, y) + 〈hAψA〉(x, y) + λa0(y),

〈θres〉(x, y) = λa0(y).

Conditions (2.7) and (3.5) imply

(3.6) a0(y) = 0 for y ∈ Φ

and we conclude from Assumptions 1 and 2 that the temperature field can be
written as a sum (2.6) for

(3.7) u(x, z) = ϑ(x, z) + hAψA(x, z)

and θres represented by Eqs. (3.3) and (3.6). At the same time conditions (2.7)
are satisfied. Moreover, bearing in mind Eqs. (3.5), we conclude that 〈u− ϑ〉 =
〈hAψA〉 = 〈hA〉ψA = 0 and hence u can be treated as an averaged temperature
field.
Now introduce the new representations hA(x) ≡ λgA(λ−1x) and φp(x) ≡

λφp(λ−1x) for tolerance shape functions hA(x) and orthogonal basis φp(x). As-
sumptions 1 and 2 yields the conclusion that if the temperature field is repre-
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sented by (2.7) and u and θres fulfil Eqs. (3.3), (3.6), (3.7) then the following
integral-differential equations hold:

〈cu̇〉 − ∇T [〈K∇u〉 − 〈K∇Ξg〉ψA − 〈K∇Ξφ
p〉ap] = −〈b〉,

λ2

{[
〈gAε cgB〉 〈gAcφp〉
〈φpcgB〉 〈gAcφp〉

][
ψ̇B

ȧp

]
−∇T

Φ

([
〈gAε cgB〉 〈gAcφp〉
〈φpKgB〉 〈φpcφq〉

][
∇ΦψB

∇Φap

])}

+λ

([
〈∇T

Ξg
AKgB〉 〈∇T

Ξg
AKφp〉

〈∇T
Ξφ

pKgB〉 〈∇T
Ξφ

pkφq〉

]
(3.8)

−
[
〈∇T

Ξg
BKgB∇ΦψB〉 〈∇T

Ξφ
qKgA〉

〈∇T
Ξφ

qKgB∇ΦψB〉 〈∇T
Ξφ

qKφp〉

])[
∇ΦψB

∇Φaq

]

+

[
〈∇T

Ξg
AK∇Ξg

B〉 〈∇T
Ξg

AK∇Ξφ
q〉

〈∇T
Ξφ

pK∇Ξg
B〉 〈∇T

Ξφ
pk∇Ξφ

q〉

][
ψB

aq

]
+

[
〈∇T

Ξg
AK∇u〉

〈∇T
Ξφ

pK∇u〉

]
= λ

[
〈gAb〉
〈φpb〉

]
.

The above equations can be treated as a certain exact model of heat transfer
in periodic rigid composite conductors provided that tolerance shape functions
mentioned in Assumption 2 can be found. It is mean that solutions to Eqs. (3.8)
via (2.6) and Assumption 1 and Assumption 2 can be treated as a certain rep-
resentation of solutions to heat transfer equation (2.1) and vice versa.
To make this paper self consistent we should formulate, as a certain remark,

a third modeling assumption. This is and additional assumption which provides
the ability to perform tolerance modeling procedure with respect to the fields
u(·) as the slowly varying tolerance averaged temperature field, and to the fields
ψA(·) and ap(·) as fluctuation amplitudes, respectively.
Assumption 3. (The validity of tolerance modeling procedure)

Shape functions hA(x) ≡ λgA(λ−1x) together with orthogonal basis φp(x) ≡
λϕp(λ−1x) can be treated as an infinite sequence of tolerance shape functions
and with respect to them the tolerance modeling procedure can be realized with
slowly-varying (with respect to the periodic directions variables x ∈ Rm) aver-
aged temperature field u(x, y, t) which is, together with fluctuation amplitudes
ψA(x, y, t), A = 1, ..., N , and Fourier coefficients ap = ap(y), p = 1, 2, ..., as
basic unknowns of the extended tolerance model.

Under Assumption 3 we can apply to (3.8) typical tolerance approximations
with respect to and obtain

〈c〉u̇−∇T [〈K〉∇u− 〈K∇Ξg〉ψA − 〈K∇Ξϕ
p〉ap] = −〈b〉,

λ2

{[
〈gAε cgB〉 〈gAcϕp〉
〈ϕpcgB〉 〈gAcϕp〉

][
ψ̇B

ȧp

]
−∇T

Φ

([
〈gAε cgB〉 〈gAcϕp〉
〈ϕpKgB〉 〈ϕpcϕq〉

][
∇ΦψB

∇Φap

])}
(3.9)
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(3.9)[cont] +λ

([
〈∇T

Ξg
AKgB〉 〈∇T

Ξg
AKϕp〉

〈∇T
Ξϕ

pKgB〉 〈∇T
Ξϕ

pkϕq〉

]

−
[
〈∇T

Ξg
BKgB〉 〈∇T

Ξϕ
qKgA〉

〈∇T
Ξϕ

qKgB〉 〈∇T
Ξϕ

qKϕp〉

])[
∇ΦψB

∇Φaq

]

+

[
〈∇T

Ξg
AK∇Ξg

B〉 〈∇T
Ξg

AK∇Ξϕ
q〉

〈∇T
Ξϕ

pK∇Ξg
B〉 〈∇T

Ξϕ
pk∇Ξϕ

q〉

][
ψB

aq

]
+

[
〈∇T

Ξg
AK〉

〈∇T
Ξϕ

pK〉

]
∇u = λ

[
〈gAb〉
〈ϕpb〉

]
.

System of partial differential equations (3.9) represents a certain averaged
model of the heat transfer which will be referred to as the extended tolerance heat
transfer model. To equations (3.8) as well as to the model equations (3.9) should
be added related boundary and initial conditions for basic unknowns which are
long-wave term, fluctuation amplitudes ψB and Fourier coefficients ap. The basic
unknowns of models (3.8) and (3.9) can be treated as slowly-varying, provided
that solutions to both above initial-boundary problems a closed. Since, after
introducing limit passage λ → 0, model equations (3.8) and (3.9) coincide we
conclude that solutions to these initial-boundary problems for (3.8) and for (3.9)
asymptotically coincide.
The extended tolerance heat transfer model is an approximated model of heat

transfer in periodic rigid composite conductors and has been examined in [7].
In this paper our attention is focused on the analysis of the exact model of heat
conduction in periodic composites represented by model equations (3.8). In this
paper consideration will be illustrated in an attempt to obtain the exact solution
of heat transfer equation (2.1) for a special case of composite conductor.
The infinite number of equations in (3.2) is an important inconvenience of

both limit model and the extended tolerance model. Although, there are many
possibilities to avoid this inconvenience. One of these possibilities is rescaling of
the tolerance shape function system hA = λgA. The procedure of rescaling is
similar to that applied to the extended tolerance heat transfer model in [7]. For
the extended limit model it will be described in the next section.

4. Rescaling of the tolerance shape function system

Suppose that we have properly chosen a finite N -tuple (h1(x), ..., hN (x)) of
∆-periodic tolerance shape functions and infinite orthogonal and ∆-periodic
Fourier basis φp(x), p = 1, 2, .... We are to construct the infinite sequence
of N -tuples S(n) = (h1(n)(x), ..., h

N
(n)(x)) of differentiable (almost everywhere

in Rm) ∆-periodic functions. To this end, let S(1) = (h1(1)(x), ..., h
N
(1)(x)) =
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(h1(x), ..., hN (x)) and N -tuple S(n+1) = (h1(n+1)(x), ..., h
N
(n+1)(x)) is defined for

x ∈ Rm as follow:

(4.1) hA(n+1)(x) =





hA(n)(x) for |hA(n)(x)| ≤
1

2
µA(n),

µA(n) − hA(n)(x) for hA(n)(x) >
1

2
µA(n),

−µA(n) − hA(n)(x) for h
A
(n)(x) < −1

2
µA(n),

where µA(n) ≡ max{|hA(n)(x)| : x ∈ Rm} satisfy inequality µA(n)(x) <
λ

n
and hence

lim
n→+∞

hA(n)(x) = lim
n→+∞

[
λ

n
gA(n)(λ

−1x)

]
= 0 for hA(n)(x) =

λ

n
gA(n)(λ

−1x). Shape

functions hA(n)(x) are differentiable almost everywhere in R
m. Now, we can re-

place in (3.8) and (3.9) tolerance shape functions gA onto gA(n) and next apply
the limit passage n → +∞ to equations obtained on this way. As the result of
this procedure instead of Eq. (3.8) we obtain

〈cu̇〉 − ∇T [〈K∇u〉 − 〈K∇ΞgψA〉 − 〈K∇Ξφ
p〉ap] = −〈b〉,

λ2

{[
0 0

0 〈φpcφq〉

][
ψ̇B

ȧq

]
−∇T

Φ

([
0 0

0 〈φpcφq〉

][
∇ΦψB

∇Φaq

])}

+λ

([
0 〈∇T

Ξg
AKφq〉

0 〈∇T
Ξφ

pKφq〉

]
−
[

0 0

〈∇T
Ξg

BKφp〉 〈∇T
Ξφ

qKφp〉

])[
∇ΦψB

∇Φaq

]
(4.2)

+

[
〈∇T

Ξg
AK∇Ξg

BψB〉 〈∇T
Ξg

AK∇Ξφ
q〉

〈∇T
Ξφ

pK∇Ξg
BψB〉 〈∇T

Ξφ
pK∇Ξφ

q〉

][
1

aq

]

+

[
〈∇T

Ξg
AK∇u〉

〈∇T
Ξφ

pK∇u〉

]
= λ

[
0

〈φpb〉

]

which will be referred to as the reduced limit model.
It must be emphasized that the means of basic unknowns ψA, ap before

and after completing the procedure of rescaling (4.1) and of limit passage n →
+∞ are different. Particularly, terms hA(x)ψA(x, y) in (3.7) vanish and hence
representation of temperature field given by extended micro-macro hypothesis
changes to the form

(4.3) θ(x, z) = u(x, z) + θres(x, z).

for θres given by Eq. (3.3). Similarly, formula (3.5), under a0 = 0, takes the form

(4.4) 〈θ〉(x, z) = 〈u〉(x, z) = 〈ϑ〉(x, z).
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At the same time from expansion

(4.5) θ(x, z) = u(x, z) + λap(z)ϕp(x, z)

cannot be conclude that temperature gradient ∇θ(x, z) is equal to ∇u(x, z) +
λ∇[ap(z)ϕp(x, z)] since from Eq. (3.1) one can obtain

∇Ξθ(x, z) = lim
n→+∞

{
∇Ξu(x, z) +∇Ξ [h

A
(n)(x)ψA(x, z)] +∇Ξθres(x, z)

}
,

(4.6)
∇Φθ(x, z) = lim

n→+∞

{
∇Φu(x, z) + hA(n)(x)∇ΦψA(x, z)] +∇Φθres(x, z)

}
.

It is easy to verify that all coefficients non-vanishing under passage from
(3.9) to (4.1) and (4.2) remain unchanged.

5. Two-phased laminated rigid conductor

In the case of two-phased one-directionally periodic composite the orthog-
onal basis mentioned in Assumption 1 will be assumed in regions occupied by
constituents in the form of the well-known infinite trigonometric system, cf.
Fig. 3, i.e.,

(5.1) ϕp
(x
l

)
=





1

2
cos

pπ

l′
x, x ∈ 〈0, l′〉,

1

2
cos

pπ

l′′
(x− l), x ∈ 〈l′, l〉.

Now, Assumptions 1 and 2 are fulfilled provided that the saw-like function is used
as the single tolerance shape function and the tolerance heat flux component
normal to the planes separating components is continuous, cf. [3].

Fig. 3. The initial three elements of trigonometric orthogonal basis for two-
phased uniperiodic layer. Assumptions 1–3 are satisfied.



88 D. KULA, E. WIERZBICKI

The characteristic property of the reduced limit model equations (4.2) that
we can distinguish from this model single equations for averaged temperature u
independent on the other basic unknown of this model. To this end introduce

denotations 〈σ〉+ =
σII
ηII

+
σI
ηI
and [σ] = σII − σI for any σ taking two constant

values σI and σII for both constituents. The first two equations from (4.2) can
be rewritten in the form

〈cu̇〉 − ∇T [〈K∇u〉 − [0, [k12], [k13]]
Tψ = −〈b〉,

(5.2)
〈k11〉+ψ + [[k11], [k12], [k13]]∇u = λ〈gb〉.

The rest of equations can be rewritten as infinite system of partial differential
equation system for ap

λ2

8

{
〈c〉
[
ȧ2p

ȧ2q−1

]
−∇T

Φ

(
〈K〉∇T

Φ

[
a2p

a2q−1

])}
+

[
0

〈KI
11〉+ψ

]
(5.3)

+
λ

2




0
s2 + p2

(
p− 1

2

)2 − s2(
s− 1

2

)2
+
(
s− 1

2

)2

q2 −
(
s− 1

2

)2 0




[
([k12]∂2 + [k13]∂3)a2r

([k12]∂2 + [k13]∂3)a2s−1

]

+
1

2
π2〈k11〉+

[
p2 0

0
(
q − 1

2

)2

][
a2p

a2q−1

]

+ 〈[[k11, [k12], [k13]]∇u〉
[
0

1

]
= λ

[
〈φ2pb〉
〈φ2q−1b〉

]
.

It should be emphasized that the convergence of the infinite sum β is not
any restriction but is a certain consequence of Assumptions 1–3. Let us observe
that from Eq. (5.2)2 we can determine ψ:

(5.4) ψ + β =
1

〈k11〉+
(λ〈gb〉 − 〈[[k11], [k12], [k13]]∇u〉)

and put it into Eq. (5.2)1. As a result of this elimination we obtain equation
for u

(5.5) 〈cu̇〉 − ∇T 〈K∇u〉 = −〈b〉 − λ
[k11]

2 + [k12]
2 + [k13]

2

〈k11〉0
∇T 〈gb〉,
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where

(5.6) K =



k11 k12 k13

k21 k22 〈k23
k31 k32 k33


 , k11 ≡ k11 −

[k12]
2 + [k13]

2

〈k11〉+

and Keff ≡ 〈K〉 is equal to the well-known tolerance effective matrix. It must be
emphasized that the above elimination procedure, with a view to, inter alia, to
extract from the equations of the so-called effective modulus matrix Keff , was
so far (in known in the literature approaches) performed in the asymptotic case,
i.e. with the required execution of a limit passage λ → 0. In the framework of
the proposed limit model this procedure is realizable without having to use such
a limit passage.
Summing up Eqs. (5.3), having regard to the convergence of corresponding

series and denote

α1 ≡ lim
nn→+∞

1

m

+∞∑

m=1

(
p− 1

2

)2

a2p , β1 ≡ lim
nn→+∞

1

m

+∞∑

m=1

q2a2q−1,

we conclude that

λ2

8

{
〈c〉
[
α̇

β̇

]
−∇T

Φ

(
〈K〉∇T

Φ

[
α
β

])}
− λ

2

[
0 1

1 0

][
([k12]∂2 + [k13]∂3)α

([k12]∂2 + [k13]∂3)β

]
(5.7)

+ 〈[[k11], [k12], [k13]]∇u〉
[
0

1

]
= −1

2
π2〈k11〉+

[
α1

β1

]

for α ≡ a1 + a3 + a5 + ....
Figure 4 illustrates the phenomenon of boundary effect in the two-component

layered composite subjected by fluctuations θres(x, 0) = θres(x, δ) imposed on
both sides of the dividing wall by constant different temperatures u(x, 0) = uext,
u(x, δ) = uint and arbitrary fluctuation tractions lead to the conditions α, β =
const. At the same time 〈k11〉/〈k33〉H = 10 and δ/H1 = 0.1. The horizontal axes
are related to the dimensionless variables ξ′ = x/H1 and ξ

3 = f3/H3. The verti-
cal axis is the temperature axis represented by θ(x, z) = u(x, y) + λap(y)ϕ

p(x),
where ap 6= 0 will be assumed only for an arbitrary odd p. The boundary effect
phenomenon is here described by system model equations obtained from (5.3)
with the assumption of the independence of basic unknowns on time and the
absence of the heat sources, i.e. b = 0. Under the aforementioned independence
boundary conditions on the y2 variable we shall also limit model equations sim-
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Fig. 4. Illustration of the boundary effect behavior.

plified to the independent equations:

∇T 〈Keff∇u〉 = 0,
(5.8)

−λ
2

8
〈k33〉

∂2ap
∂(y3)2

+
1

4
π2〈k11〉0p2ap =

1

δ
(kII11 − kI11)(uext − uint).

The characteristic feature of the description (5.3) of the expansion on the tem-
perature fluctuation into the interior of the dividing wall is that it gives inde-
pendent equations for

(5.9) ω ≡ δ

λ

√
〈k11〉+
〈k33〉

.

Formulas

θ(x, z3) = u(x, z3) + λap(z
3)ϕp(x)] (no summation),

u(x, z3) =

(
1− z3

δ

)
uext +

z3

δ
uint,(5.10)

ap(z
3) =

sinh
{
πpω

(
1− z3

δ

)}

sinhπpω
aintp (z3) +

sinh
{
πpω z3

δ

}

sinh πpω
aextp (z3),
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where

aintp (z3) = aintp (z3)− (πpω)−1(uint − uext),

aextp (z3) = aextp (z3)− (πpω)−1(uint − uext)

for z3 = y represents the solution to the boundary value problem. That is why
the boundary effect behavior is described exclusively by residual temperature
θres = λapϕ

p but only by coefficients ap and hence the intensityof this effect
is independent on the boundary fluctuations uniquely determined by boundary
values aintp (z3), aextp (z3) of ap. The attenuation of temperature fluctuations is
measured exclusively by the coefficient ω given by Eq. (5.9) located in every
exponential expression for ap in Eqs. (5.10) and hence this coefficient will be
referred to as the intensity of the boundary effect behavior.
Figure 4 shows a relatively high intensity of the boundary effect behavior, i.e.

rapid appearance of temperature fluctuations with a distance from sides of the
wall designated by equations ξ3 = 0 and ξ3 = 1, respectively. The dependence of
the intensity of the effect behavior with respect to various values of parameters
λ/δ and 〈k11〉H/〈k33〉 and under η ≡ lI/l = 0.5.

6. Concluding remarks

As a first concluding remark we emphasize that the tolerance modeling tech-
nique in the case of heat conduction theory of the simple micro-periodic com-
posites proposed in this paper, leads to the averaged models in the framework
of which is possible:

1) to achieve reproducible cell periodicity;

2) to achieve a scalar parameter characterizing the degree of compaction of
the microstructure and having an impact on the temperature field and
temperature gradient field in the composite;

3) to represent the temperature field as a sum of the fields locally averaged
temperature and temperature fluctuation fields (fields difference between
the temperature field and the field locally averaged temperature) regard-
less of the type of periodicity of the composite.

Moreover, as a second remark we emphasize that the representation of the tem-
perature field mentioned in Assumption 3, let us refer to the comparison of so-
lutions for the temperature field of the same boundary problem but for the con-
ductors with various geometrical structure of periodicity. The realization of this
comparison is possible exclusively after previous investigation of the appropriate
tolerance shape functions. and the related orthogonal series. Shape functions and
orthogonal series should agree with the character of the investigated problem
and hence the realization of the proposed modeling procedure needs previous
detailed analysis of the physical background of the investigated problem.
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Finally, we emphasize that there are no reasons to guess that effective con-
ductivity matrix Keff is identical with the related matrices of effective conduc-
tivity modulus obtained on the other ways, particularly in the framework of the
well known asymptotic homogenization approach.
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