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In this note vibrations of thin periodic plate strips with periodically distributed systems
of three concentrated masses are analysed. Results of the non-asymptotic tolerance model
are compared to those by the exact discrete model. In an example, these models are used to
calculate lower and higher frequencies of the travelling wave related to the internal periodic
structure.
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1. Introduction

Objects under consideration are thin periodic plate strips with a span L.
It is assumed that the plate strips are homogeneous, weightless and unbounded
along the x1-axis (hence, the height h, Young’s modulus E and Poisson’s ratio
ν are constant). The internal periodic structure of the plate strips is related
to a system of three periodically distributed concentrated masses M1, M2, M3

along the x1-axis. According to the given distribution of the masses, it is possible
to distinguish a small, repeatable element, called the periodicity cell. Every cell
has a span l along the x1-axis, called the microstructure parameter, which is
small compared to the span L of the plate.
Because governing equations of these plates have highly oscillating, periodic,

non-continuous coefficients, they are not a good tool to investigate special prob-
lems. Thus, various averaged models are formulated to describe these plates by
equations with constant coefficients.
There are many different approaches proposed to analyse periodic structures.

Most of them is based on the homogenization method, e.g. for the perodic plates
by Kohn and Vogelius [4]. However, these models neglect the effect of the size
of the plate microstructure on a behaviour of these plates. In order to take into
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account this effect, the governing equations of the plate strip will be derived
using the tolerance averaging technique.
The main aim of this paper is to obtain formulas for frequencies of trav-

elling waves of the plate strip using the tolerance averaging technique, which
was presented by Woźniak and Wierzbicki [6], Woźniak, Michalak and
Jędrysiak [Eds.] [5]. Afterwards, similarly to the paper by Jędrysiak and
Michalak [3], in order to verify obtained results, the “exact” solution will be
derived, which is based on the approach shown in the book by Brillouin [1].

2. Modelling foundations

Our considerations are assumed to be treated independently of the x2-
coordinate. Let us introduce the denotations: x = x1, z = x3, x ∈ [0, L],
z ∈ [−d/2, d/2], with d as a constant plate thickness. In the problem under
consideration it is assumed that the plate strip is described in the interval
Λ = (0, L), with the basic cell ∆ ≡ [−l/2, l/2] in the interval Λ, where l is
the length of the basic cell, called the microstructure parameter. The parameter
l is assumed to satisfy the conditions: l ≪ L and d≪ l. A cell with a centre at
x ∈ Λ is denoted by ∆(x) ≡ (x − l/2, x+ l/2). The plate strip can be made of
two elastic isotropic materials, perfectly bonded across interfaces, characterised
by Young’s moduli E′, E′′, Poisson’s ratios ν ′, ν ′′ and mass densities ρ′, ρ′′,
respectively. We assume that E(x), ρ(x), x ∈ Λ, are periodic, highly oscillating
functions in x, but that Poisson’s ratio ν ≡ ν ′ = ν ′′ is constant. Hence, under
the condition E′ 6= E′′ and/or ρ′ 6= ρ′′ the plate material structure is periodic in
the x-axis direction. By ∂ let us denote a derivative of x. Moreover, by w(x, t)
(x ∈ Λ, t ∈ (t0, t1)) a plate strip deflection is denoted.
Periodic functions in x are introduced describing the plate strip properties:

namely, the mass density per unit area of the midplane µ and the bending
stiffness B, which can be defined by:

(2.1) µ(x) ≡ dρ(x), B ≡ d3

12(1− ν2)
E(x).

Using the well known assumptions of the Kirchhoff-type plate theory for periodic
plate strips the partial differential equation of the fourth order for deflection
w(x, t) is derived:

(2.2) ∂∂[B(x)∂∂w(x, t)] + µ(x)ẅ(x, t) = 0,

with coefficients being highly oscillating, non-continuous, periodic functions in x.
Equation (2.2) describes free vibrations of the plate strips under consideration.
In order to derive the governing equations with constant coefficients a toler-

ance averaging technique will be applied.
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3. Modelling approach

3.1. Introductory concepts

In the course of the tolerance modelling we use some introductory concepts:
an averaging operator, a slowly varying function, a tolerance-periodic function
and a highly oscillating function, which are recalled below.
Denote a cell at x ∈ Λ∆ by ∆(x) ≡ x+ ∆, Λ∆ = {x ∈ Λ : ∆(x) ⊂ Λ}. The

known averaging operator for an integrable function f is given by

(3.1) 〈f〉(x) = 1

l

∫

∆(x)

f(y) dy, x ∈ Λ∆ .

For a periodic function f in x its averaged value calculated from this formula is
constant.
Let ∂(k)f be the k-th derivative of function f = f(x), x ∈ Λ, k = 0, 1, ..., α

(α ≥ 0); ∂0f ≡ f . By f̃ (k)(·, ·) denote a function defined in Λ×Rm, and by δ –
a tolerance parameter. Let us also introduce Λx ≡ Λ ∩ ⋃

z∈∆(x)

∆(z), x ∈ Λ.

Function f ∈ Hα(Λ) is called the tolerance-periodic function, f ∈ TPα
δ (Λ,∆),

if for k = 0, 1, ..., α, the following conditions are satisfied

(1◦) (∀x ∈ Λ)
(
∃f̃ (k)(x, ·) ∈ H0(∆)

) [
‖∂kf

∣∣
Λx
(·)− f̃ (k)(x, ·)‖H0(Λx) ≤ δ

]
,

(2◦)

∫

∆(·)

f̃ (k)(·, z) dz ∈ C0(Λ).

Function f̃ (k)(x, ·) is called the periodic approximation of ∂kf in ∆(x), x ∈ Λ,
k = 0, 1, ..., α.
Function F ∈ Hα(Λ) is called the slowly-varying function, F ∈ SV α

δ (Λ,∆), if

(1◦) F ∈ TPα
δ (Λ,∆),

(2◦) (∀x ∈ Λ)
[
F̃ (k)(x, ·)

∣∣
∆(x)

= ∂kF (x), k = 0, . . . , α
]
.

Function φ∈Hα(Λ) is called the highly oscillating function, φ∈HOα
δ (Λ,∆), if

(1◦) φ ∈ TPα
δ (Λ,∆),

(2◦) (∀x ∈ Λ)
[
φ̃(k)(x, ·)

∣∣
∆(x)

= ∂kφ̃(x), k = 0, 1, ..., α
]
,

(3◦) ∀F ∈ SV α
δ (Λ,∆) ∃f ≡ φF ∈ TPα

δ (Λ,∆)

f̃ (k)(x, ·)
∣∣
∆(x)

= F (x)∂kφ̃(x)
∣∣
∆(x)

, k = 1, . . . , α.

For α = 0 let us denote f̃ ≡ f̃ (0).
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Let g(·) be defined on Λ as a highly oscillating function, g ∈ HO2
δ (Λ,∆),

continuous together with its gradient ∂1g. However, the second derivative ∂2g
is a piecewise continuous and bounded. Function g(·) is the fluctuation shape
function of the 2-nd kind, FS2

δ (Λ,∆), if it depends on l as a parameter and
holds following conditions:

(1◦) ∂kg ∈ O(lα−k) for k = 0, 1, . . ., α, α = 2, ∂0g ≡ g,

(2◦) 〈µg〉(x) ≈ 0 for every x ∈ Λ∆,

where µ > 0 is a certain periodic function; l is the microstructure parameter.

3.2. Tolerance modelling assumptions

The fundamental modelling assumptions of the tolerance averaging technique
can be formulated similarly to those in the following books by Woźniak and
Wierzbicki [6],Woźniak, Michalak and Jędrysiak [5], and Jędrysiak [2].
The micro-macro decomposition of the plate strip deflection w is the first

assumption:

(3.2) w(x, t) =W (x, t) + gA(x)QA(x, t), A = 1, . . . , N, x ∈ Λ,

withW (·, t), QA(·, t) ∈ SV 2
δ (Λ,∆) (for every t) being basic kinematic unknowns,

called the macrodeflection, the fluctuation amplitudes respectively; and gA(·) ∈
FS2

δ (Λ,∆), being a known fluctuation shape functions.
The tolerance averaging approximation is the second modelling assumption,

where terms O(δ) are assumed to be negligibly small in the course of modelling,
e.g. in formulas:

〈φ〉(x) = 〈φ〉(x) +O(δ),

〈φF 〉(x) = 〈φ〉(x)F (x) +O(δ),

〈φ∂α(gAF )〉(x) = 〈φ∂αgA〉(x)F (x) +O(δ),

x ∈ Λ, α = 1, 2, A = 1, . . . , N, 0 < δ ≪ 1,

φ ∈ TP 2
δ (Λ,∆), F ∈ SV 2

δ (Λ,∆), gA ∈ FS2
δ (Λ,∆),

where δ is a tolerance parameter.

3.3. Modelling procedure

Following the aforementioned books the modelling procedure can be outlined
as below.
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The starting point is the formulation of the action functional

(3.3) A(w(·)) =
∫

Λ

t1∫

t0

L (y, ∂∂w(y, t), ẇ(y, t)) dt dy,

where L is the lagrangean given by

(3.4) L =
1

2
(µẇẇ −B∂∂w∂∂w) .

Using the principle of stationary action to A, after some manipulations, the
known Eq. (2.2) of free vibrations for thin periodic plate strips is obtained.
Then, micro-macro decomposition (3.2) is substituted to action functional (3.3).
Applying averaging operator (3.1) to the action functional we arrive at the
tolerance averaging of functional A(w(·)) in the form

(3.5) Ag(W (·), QA(·)) =
∫

Λ

t1∫

t0

〈Lg〉(y, ∂∂W, Ẇ , Q̇A,W,QA) dt dy,

with the averaged form 〈Lg〉 of lagrangean (3.4)

〈Lg〉 = −1

2

{
(〈B〉∂∂W + 2〈B∂∂gB〉QB)∂∂W(3.6)

−〈µ〉Ẇ Ẇ + 〈B∂∂gA∂∂gB〉QAQB − 〈µgAgB〉Q̇AQ̇B
}
.

From the principle of stationary action applied to Ag the system of Euler-
Lagrange equations with constant coefficients is derived.

4. Model equations

After some manipulations from the system of Euler-Lagrange equations we
obtain the following system of equations for W (·, t) and QA(·, t):

〈B〉∂∂∂∂W + 〈B∂∂gB〉∂∂QB + 〈µ〉Ẅ = 0,
(4.1)

〈B∂∂gA〉∂∂W + 〈B∂∂gA∂∂gB〉QB + 〈µgAgB〉Q̈B = 0.

The underlined term in these equations involves the microstructure param-
eter l. Coefficients of Eqs. (4.1) are constant. Equations (4.1) and micro-macro
decomposition (3.2) constitute the tolerance model of thin periodic strips, which
makes it possible to take into account the effect of the microstructure size on
free vibrations of these plates. For the plate strip described in Λ = (0, L) we
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have to formulate boundary conditions only for the macrodeflection W (on the
edges x = 0, L), but not for the fluctuation amplitudes QA, A = 1, . . . , N .
It can be observed that neglecting the term dependent on the microstructure

paramter l in Eqs. (4.1), we arrive at the following equations of the asymptotic
model of thin periodic plate strips:

〈B〉∂∂∂∂W + 〈B∂∂gB〉∂∂QB + 〈µ〉Ẅ = 0,
(4.2)

〈B∂∂gA〉∂∂W + 〈B∂∂gA∂∂gB〉QB = 0.

5. A special problem: a travelling wave in a weightless
unbounded plate strip with a periodically distributed system

of three concentrated masses

5.1. The tolerance model

5.1.1. Frequencies of a travelling wave

Let us consider a homogenous weightless and unbounded plate strip along the
x axis, with a periodically distributed system of three concentrated masses M1,
M2, M3, cf. Fig. 1.

Fig. 1. The plate strip with a system of three periodically distributed
concentrated masses.

Young’s modulus E, Poisson’s ratio ν and thickness d of the plate are as-
sumed to be constant. Moreover, the plate mass is negligibly small when com-
pared with concentrated masses M1, M2 and M3. In our considerations two
modeshape function gA are assumed. Denote:

(5.1)
D ≡ 〈B〉, D11 ≡ 〈B∂∂g1∂∂g1〉, D22 ≡ 〈B∂∂g2∂∂g2〉,
m ≡ 〈µ〉, m11 ≡ l−4〈µg1g1〉, m22 ≡ l−4〈µg2g2〉.

Hence, equations (4.1) take the form:

D∂∂∂∂W +mẄ = 0,

D11Q1 + l4m11Q̈1 = 0,(5.2)

D22Q2 + l4m22Q̈2 = 0.
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Equations (5.2) stand for a system of independent equations for the macrodeflec-
tion and two fluctuation amplitudes. The first equation describes fundamental
vibrations of the plate strip (e.g. lower frequencies of the travelling wave), while
the second and the third refer to microstructural vibrations (related to higher
frequencies of the travelling wave). Solutions to those equations can be assumed
in the form:

(5.3)

W (x, t) = AW exp[i(kx − ωt)],

Q1(x, t) = AQ1 exp[i(kx− ωt)],

Q2(x, t) = AQ2 exp[i(kx− ωt)],

where AW , AQ1, AQ2 are amplitudes, k is a wave number, t is a time coordinate
and ω is a frequency. After some transformations formulas for the lower (ω−)
and higher (ω+:1;ω+:2) frequencies can be obtained:

(5.4) (ω−)
2 =

Dk4

m
, (ω+:1)

2 =
D11

l4m11
, (ω+:2)

2 =
D22

l4m22
.

It can be observed, that only higher frequencies depend explicitly on the mi-
crostructure parameter l.

5.1.2. Eigenvalue problem on the periodicity cell

Mode-shape functions can be calculated as solutions to an eigenvalue problem
on the periodicity cell. For the plate strip under consideration, the eigenvalue
problem takes the following form:

(5.5) B∂∂∂∂g(x) − µ(x)λ2g(x) = 0,

with periodic boundary conditions on the cell edges; B is the stiffness defined
by (2.1)2; g are periodic functions related to eigenvalues λ ≡ αl (α is the wave
number); and 〈µg〉 = 0. Assuming that the plate mass is negligibly small when
compared to concentrated masses, an exact form of eigenfunctions g(x) can be
found. These functions describe a shape of free vibrations of the cell.
The functions g(x) can be found using some methods known from the struc-

tural mechanics. In the first step, the periodicity cell is divided into sections
by the concentrated masses. Hence, we obtain four different sections: “4”–“1”,
“1”–“2”, “2”–“3” and “3”–“5” (cf. Fig. 2). Equations of equilibrium for transver-
sal forces and moments are written for points of concentrated masses.
Additionally, functions g(x) have to satisfy the boundary conditions:

(5.6)
g(0) = g(l) = v4 = v5, ∂g(0) = ∂g(l) = ϕ4 = ϕ5,

∂∂g(0) = ∂∂g(l), ∂∂∂g(0) = ∂∂∂g(l)
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Fig. 2. A periodicity cell.

and a normalizing condition < µg >=0. Hence, we obtain a system of six equa-
tions with six unknown displacements and rotations of joints. After some trans-
formations, we arrive at a characteristic equation in the form of determinant:

(5.7) detLpr = 0, p, r = 1, ..., 6.

Expressions of the matrix Lpr are presented in Appendix. As a result, a second
order equation is obtained, hence it is possible to derive two different eigenval-
ues ω2. Both of them are related to different mode-shape functions gA, A = 1, 2.
Introducing notations:

(5.8)

ψ1 =




L23 L22 L24 L25 L26

L33 L32 L34 L35 L36

L43 L42 L44 L45 L46

L53 L52 L54 L55 L56

L63 L62 L64 L65 L66



, ψ2 =




L21 L23 L24 L25 L26

L31 L33 L34 L35 L36

L41 L43 L44 L45 L46

L51 L53 L54 L55 L56

L61 L63 L64 L65 L66



,

ψ3 =




L21 L22 L23 L25 L26

L31 L32 L33 L35 L36

L41 L42 L43 L45 L46

L51 L52 L53 L55 L56

L61 L62 L63 L65 L66



, ψ4 =




L21 L22 L24 L23 L26

L31 L32 L34 L33 L36

L41 L42 L44 L43 L46

L51 L52 L54 L53 L56

L61 L62 L64 L63 L66



,

ψ5 =




L21 L22 L24 L25 L23

L31 L32 L34 L35 L33

L41 L42 L44 L45 L43

L51 L52 L54 L55 L53

L61 L62 L64 L65 L63



, Ξ =




L21 L22 L24 L25 L26

L31 L32 L34 L35 L36

L41 L42 L44 L45 L46

L51 L52 L54 L55 L56

L61 L62 L64 L65 L66



,
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unknown deflections and rotations are given by:

(5.9)

v1 =
ldetψ1

detΞ
, v2 =

ldetψ2

detΞ
, v4 = v5 = −l, v3 = −M1

M3
v1 −

M2

M3
v2,

ϕ1 =
ldetψ3

detΞ
, ϕ2 =

ldetψ4

detΞ
, ϕ3 =

ldetψ5

detΞ
,

ϕ4 = ϕ5 =
ω2

12lB
[M1v1[x1(x1 − l)(2x1 − l)] +M2v2[x2(x2 − l)(2x2 − l)]

+M3v3[x3(x3 − l)(2x3 − l)]].

Using these deflections and rotations, mode-shape functions gA can be described
similarly to deflections of a beam. From the structural mechanics some functions
can be introduced as follows:

(5.10)
r(ξ) = 1− 3ξ2 + 2ξ3, u(ξ) = ξ − 2ξ2 + ξ3,

r(ξ) = 3ξ2 − 2ξ3, u(ξ) = ξ2 − ξ3,

where ξ ∈ [0, 1]. Hence, mode-shape functions gA can be written in the form:

(5.11) gA(x) =





AB1 for x ∈ [0, x1],

AB2 for x ∈ [x1, x2],

AB3 for x ∈ [x2, x3],

AB4 for x ∈ [x3, l],

where A is a constant amplitude and:

B1 = r

(
x

x1

)
v4 + r

(
x

x1

)
v1 +

[
u

(
x

x1

)
ϕ4 − u

(
x

x1

)
ϕ1

]
x1,

B2 = r

(
x− x1
x2 − x1

)
v1 + r

(
x− x1
x2 − x1

)
v2

+

[
u

(
x− x1
x2 − x1

)
ϕ1 − u

(
x− x1
x2 − x1

)
ϕ2

]
(x2 − x1),

B3 = r

(
x− x2
x3 − x2

)
v2 + r

(
x− x2
x3 − x2

)
v3(5.12)

+

[
u

(
x− x2
x3 − x2

)
ϕ2 − u

(
x− x2
x3 − x2

)
ϕ3

]
(x3 − x2),

B4 = r

(
x− x3
l − x3

)
v3 + r

(
x− x3
l − x3

)
v5

+

[
u

(
x− x3
l − x3

)
ϕ3 − u

(
x− x3
l − x3

)
ϕ5

]
(l − x3).
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5.2. “Exact” solution

In order to verify the results obtained, the exact solution (or the discrete
model) is also used to describe the behaviour of the plate strip under consider-
ation.
Let us consider three following cells j−1, j, j+1. Denote distances between

the concentrated masses by a1, a2 and a3, respectively (cf. Fig. 2). Let us describe
the deflections of the points with concentrated masses M1, M2 and M3 in the
j-th cell by vM1

j , v
M2
j and vM3

j and the rotations of these points by φM1
j , φ

M2
j

and φM3
j .

Fig. 3. The periodicity cell with denotations used in the “exact” solution.

Assuming that the plate stiffness is constant for the whole structure and
given by B, it is possible to apply the equations of equilibrium for transversal
forces and moments for points with concentrated masses, known from structural
mechanics. The solution to this system of equations will be found in the form:

(5.13) v
Mp

j = AwMp
exp[i(kjl − ωt)], φ

Mp

j = AφMp
exp[i(kjl − ωt)],

where AwMp
and AφMp

are amplitudes, k is a wave number and ω is a frequency.
After some transformations we obtain a system of equations presented below:

(5.14)

T1j3j−1 − T1j2j − ω2M1v
M1
j = 0, M1j3j−1 +M1j2j = 0,

T2j1j − T2j3j − ω2M2v
M2
j = 0, M2j1j +M2j3j = 0,

T3j2j − T3j1j+1 − ω2M3v
M3
j = 0, M3j2j +M3j1j+1 = 0,

which is the system of six homogenous equations for amplitudes. In order to find
nonzero solution of the problem, the determinant of the system of equations has
to be equal to zero. As a result we arrive at a characteristic equation in the
form:

(5.15) αM3
3 l

9ω6 − βM2
3 l

6ω4 + γM3l
3ω2 −B3δ = 0,



VIBRATIONS OF PLATE STRIPS WITH INTERNAL PERIODIC STRUCTURE 103

where the dimensionless coefficients are given by:

(5.16)

α ≡ z1z2[3(γ1 + γ2)(γ1 + γ3)(γ2 + γ3) + γ1γ2γ3(2 + cos(kl))],

β ≡ 3{z1z2γ21(γ2 + γ3)
2[1 + 2γ1(γ2 + γ3)(1 − cos(kl))]

+ z1γ
2
3(γ1 + γ2)

2[1 + 2γ3(γ1 + γ2)(1 − cos(kl))]

+ z2γ
2
2(γ1 + γ3)

2[1 + 2γ2(γ1 + γ3)(1 − cos(kl))],

γ ≡ 36(z1 + z2 + 1)(2 + cos(kl)),

δ ≡ 432(cos(kl)− 1)2

and

γi ≡
ai
l
, z1 ≡

M1

M3
, z2 ≡

M2

M3
.

Introducing the denotations:

(5.17) α̃ ≡ 27α2δ + 2β3 − 9αβγ, β̃ ≡ 3αγ − β2,

solutions to the characteristic equation can be written as:

(5.18)

ω2
− ≡ 1

3α

[
β − 1

3
√
2

(
Re

3

√
α̃+ i

√
−α̃2 − 4β̃3

−
√
3Im

3

√
α̃+ i

√
−α̃2 − 4β̃3

)]
B

M3l3
,

ω2
+:1 ≡

1

3α

[
β − 1

3
√
2

(
Re

3

√
α̃+ i

√
−α̃2 − 4β̃3

+
√
3Im

3

√
α̃+ i

√
−α̃2 − 4β̃3

)]
B

M3l3
,

ω2
+:2 ≡

1

3α

[
β − 3

√
4Re

3

√
α̃+ i

√
−α̃2 − 4β̃3

]
B

M3l3
,

where ω− is the lower frequency, while ω+:1 and ω+:2 are the first and second
higher frequency, respectively.

6. Calculation results

Frequencies of the travelling wave can be obtained using the tolerance model
and the exact solution. In order to compare results, some numerical examples
will be calculated using both the models.
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In calculations it is assumed that the plate strip thickness h is constant and
equal to 0.1l. Concentrated mass M3 is assumed to be a mass of reference, to
which massesM1 andM2 will be compared. Calculation examples are performed
for different mass distribution (coordinates x1, x2 and x3 in the tolerance model
and a1, a2 and a3 in the exact solution) and for different mass ratios. There are
three calculation cases:

(1◦) with symmetric distribution of masses (x1 = 0.1l, x2 = 0.5l, x3 = 0.9l)
and with symmetric mass ratios (M1/M3 = 1, M2/M3 = 3);

(2◦) with uniform, symmetric distribution of masses (x1 = (1/6)l, x2 =
(1/2)l, x3 = (5/6)l), but with not symmetric mass ratios (M1/M3 = 3,
M2/M3 = 1);

(3◦) with the same mass proportions as in the (2◦) case (M1/M3 = 3,
M2/M3 = 1), but with not-symmetric distribution of masses (x1 = 0.1l,
x2 = 0.7l, x3 = 0.9l).

Frequencies can be presented in the dimensionless form, obtained by the
transformation below:

(6.1) w− =

√
M3l3

B
ω−, w+:1 =

√
M3l3

B
ω+:1, w+:2 =

√
M3l3

B
ω+:2.

Results are shown in the form of dispersion curves describing frequencies
versus the dimensionless wave number q ≡ kl ∈ [−π; π]. Curves ES−, ES+:1,

Fig. 4. Dispersion curves of the frequency parameter
in the (1◦) calculation case.
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ES+:2 stand for the exact solution, while the plots TM−, TM+:1, TM+:2 are the
results of the tolerance model obtained using the exact form of the mode-shape
functions gA.

Fig. 5. Dispersion curves of the frequency parameter
in the (2◦) calculation case.

Fig. 6. Dispersion curves of the frequency parameter
in the (3◦) calculation case.
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7. Final remarks

In this paper the tolerance averaging technique has been used to obtain gov-
erning equations with constant coefficients for thin plate strips. Additionally,
the exact solution has been presented in order to evaluate the obtained results.
By analyzing results in Fig. 4–6, one can conclude that:

• the tolerance model can be used to analyze not only the lower frequencies
of the travelling wave but also the higher frequencies, which are related
to the internal periodic structure and dependent on the microstructure
parameter l;

• the lower frequency dispersion curve in the tolerance model is equal to its
equivalent obtained in the exact solution in the wide range of dimensionless
wave number q;

• differences of results of the higher frequencies calculated using the tol-
erance model and the exact solution are very small and do not exceed
1% for so-called “long-wave propagation problems”, which occur when the
dimensionless wave number q is small (e.g. q ∈ [−0.1π; 0.1π]).

Appendix A.

Let us denote coordinates of concentrated masses M1, M2, M3 as x1, x2 and
x3, respectively. Bearing in mind that B is a constant plate strip stiffness and l
is the microstructure parameter, expressions in Lpr matrix can be defined as:

L11 = −1

2

M1(l
2 − x1l + 2x21)

x1l
ω2

− 12[(x32 − 3x1x
2
2 + 3x21x2)(x1 + 3l − 3x3) + x1(l − x3)

2(x1 + 3l − x3)]B

x1(x1 − x2)3(l − x3 + x1)3
,

L12 = −1

2

M2x2(l − x2)(l − 2x2)

x21l
ω2 +

12B

(x1 − x2)3
,

L13 = −1

2

M3x3(l − x3)(l − 2x3)

x21l
ω2 − 12(x1 + 3l − 3x3)B

x1(l − x3 + x1)3
,

L14 =
6[(−x31 − 3(l − x3)x

2
1 − 3(l − x3)

2x1 + (l − x3)
3)x22]B

(l − x3 + x1)3(x1 − x2)2x21

+
6[2x1(x

3
1 + 3(l − x3)x

2
1 + 3(l − x3)

2x1 − (l − x3)
3)x2 + 2x21(l − x3)

3]B

(l − x3 + x1)3(x1 − x2)2x21
,

L15 =
6B

(x1 − x2)2
, L16 =

12(l − x3)
2B

x1(l − x3 + x1)3
,
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L21 =
1

6

M1(l − x1)(l − 2x1)

l
ω2

− 6[x2(x2 − 2x1)(x1 + 3l − 3x3) + (l − x3)
2(l + 3x1 − x3)]B

(x1 − x2)2(l − x3 + x1)3
,

L22 =
1

6

M2x2(l − x2)(l − 2x2)

x1l
ω2 − 6B

(x1 − x2)2
,

L23 =
1

6

M3x3(l − x3)(l − 2x3)

x1l
ω2 +

6(x1 + 3l − 3x3)B

x1(l − x3 + x1)3
,

L24 =
2[(2x31 + 6(l − x3)x

2
1 + 6(l − x3)

2x1 − (l − x3)
3)x2 + 3x1(l − x3)

3]B

(l − x3 + x1)3(x1 − x2)x1
,

L25 = − 2B

(x1 − x2)
, L26 =

6(l − x3)
2B

x1(l − x3 + x1)3
, L31 =

12B

(x1 − x2)3
,

L32 = M2ω
2 − 12(x1 − x3)[(x1 − 2x2 + x3)

2 + (x1 − x2)(x2 − x3)]B

(x1 − x2)3(x2 − x3)3
,

L33 =
12B

(x2 − x3)3
, L34 = − 6B

(x1 − x2)2
, L36 =

6B

(x2 − x3)2
,

L35 =
6(x1 − x3)(x1 − 2x2 + x3)B

(x1 − x2)2(x2 − x3)2
, L42 =

6(x1 − x3)(x1 − 2x2 + x3)B

(x1 − x2)2(x2 − x3)2
,

L41 =
6B

(x1 − x2)2
, L43 = − 6B

(x2 − x3)2
, L44 = − 2B

(x1 − x2)
,

L45 =
4(x1 − x3)B

(x1 − x2)(x2 − x3)
, L46 = − 2B

(x2 − x3)
,

L51 =
1

2

M1x1(l − x1)(l − 2x1)

(l − x3)2l
ω2 − 12(l + 3x1 − x3)B

(l − x3)(l − x3 + x1)3
,

L52 =
1

2

M2x2(l − x2)(l − 2x2)

(l − x3)2l
ω2 − 12B

(x2 − x3)3
,

L53 = −1

2

M3(2x
2
3 − 3x3l + 2l2)

(l − x3)l
ω2

− 12[(l − x2)(x3 − l − 3x1)(−3x23 + 3(l + x2)x3 − (l2 + lx2 + x22))]B

(x2 − x3)3(l − x3)(l − x3 + x1)3

− 12x21(x1 + 3(l − x3))B

(x2 − x3)3(l − x3 + x1)3
,

L54 =
12x1B

(l − x3 + x1)3
, L55 = − 6B

(x2 − x3)2
,
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L56 =
6[(l − x2)(l − 2x3 + x2)x

3
1 + (l − x2)[(3l − x3)

2 + (x2 + x3)
2−2x22]x

2
1]B

(x2 − x3)2(l − x3)2(l − x3 + x1)3

+
6[3(l − x3)

2(l − x2)(l − 2x3 + x2)x1 + (l − x3)
3(l − x2)(l − 2x3 + x2)]B

(x2 − x3)2(l − x3)2(l − x3 + x1)3
,

L61 =
1

6

M1x1(l − x1)(l − 2x1)

(l − x3)l
ω2 − 6(l + 3x1 − x3)B

(l + 3x1 − x3)3
,

L62 =
1

6

M2x2(l − x2)(l − 2x2)

(l − x3)l
ω2 +

6B

(x2 − x3)2
,

L63 =
1

6

M3x3(l − 2x3)

l
ω2

− 6[x21(x1 + 3l − 3x3) + (l − x2)(l − 2x3 + x2)(3x1 + l − x3)]B

(x2 − x3)2(l − x3 + x1)3
,

L64 =
6x1(l − x3)B

(l − x3 + x1)3
, L65 = − 2B

(x2 − x3)
,

L66 = − 4(l − x2)[x
3
1 + (l − x3)

3]B

(x2 − x3)(l − x3 + x1)3(l − x3)

− 6x1[x1(2l − x3 − x2) + 2(l − x3)(l − x2)]B

(x2 − x3)(l − x3 + x1)3
.
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