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This paper is concerned with defect detection in plate structures while considering the
influence of external loads. The examined structures are based on Kirchhoff plate structures.
Rectangular plate structures are considered. Plate bending is described using the boundary
element method. The boundary and boundary-domain integral equations are formulated in
a modified, simplified approach without the need of using a value known from the classical
theory of Kirchhoff plate bending. Constant-type boundary elements in a non-singular approach
are introduced. The plates are loaded with a single static concentrated force or dynamic moving
force. External loading is applied at selected points along the direction parallel to one dimension
of the plate. Defects are introduced by additional edges forming slots or holes in relation
to the basic plate domain. Deflections and curvatures are taken into account as structural
responses. Analysis of structural responses is conducted using the signal processing tool of
wavelet transformation in its discrete form.
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1. Introduction

The detection of defects is important for monitoring of a structural behaviour
of engineering structures. There are several different non-destructive techniques,
extensively investigated by scientists, which make it possible to identify the de-
fective part of a structure. The approaches are based on, e.g., optimization
of loads [1], information on natural frequencies [2], heat transfer [3], inverse
analysis [4, 5], soft computing methods such as evolutionary algorithms [6] or
artificial neural networks (ANNs) [7, 8]. Defects (damages) can be effectively
detected using a relatively new method of signal analysis called wavelet trans-
formation (WT) [9], as well as its discrete form (discrete wavelet transformation
– DWT) [10–12]. By combining this method with ANN or inverse analysis, one
can precisely identify defect (damage) details. This paper presents the case of
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defect detection in thin plates excited by external static and dynamic loads.
The influence of structural response signals on obtained results is considered
too. Numerical examples are presented.

2. Theoretical considerations on wavelet transformation

Any considered signal can be expressed as a sum of sinusoidal signals. In this
paper a wavelet transform will be implemented, in which for the representation
of the signal f(t), a linear combination of wavelet functions is used. In contrast
to Fourier transform, wavelets are localized in the time and frequency domain.
Therefore, they are well-suited for dealing with signals with discontinuities. The
theory of WT was presented in many papers, e.g., in [13]. Below, the foundations
of WT are presented and explained.
The continuous WT of the signal f(t) in the time and frequency domain is

defined as

(2.1) Wf(a, b) =

∞∫

−∞

f(t) · ψa,b(t) · dt,

where the overbar denotes the complex conjugate of the function under it. The
function ψ(t) is called the mother wavelet function and belongs to the field
of L2(R). In addition to this, the function ψ(t) must satisfy the condition of
admissibility [13], which leads to equality

(2.2)

∞∫

0

|Ψ(ω)|2
ω

· dω <∞,

where Ψ(ω) is the Fourier transform of ψ(t) and is defined as

(2.3) Ψ(ω) =

∞∫

−∞

ψ(t) · e−iωt · dt.

The function Ψ(ω) is oscillatory because its average value is equal to zero:

(2.4)

∞∫

−∞

ψ(t) · dt = 0.

The mother wavelet function may have a real or complex-valued character.
However, in the considered cases, real-valued wavelets are applied. For signal
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decomposition, a set of wavelets (the wavelet family) are used and obtained by
scaling and translating function ψ:

(2.5) ψa,b =
1√
|a|

· ψ
(
t− b

a

)
,

where t denotes the time or space coordinate, a is the scale parameter and b is the
translation parameter. The parameters a and b take real values (a, b ∈ (R)) and

additionally a 6= 0. The element |a|1/2 is the scale factor that ensures constant
wavelet energy regardless of the scale. It means that ‖ψa,b‖ = ‖ψ‖ = 1 [14].
In the present numerical solution of the considered plate , the leading role is
taken by DWT. In application, DWT requires neither integration nor explicit
knowledge of scaling and wavelet functions. The wavelet family can be obtained
by substituting a = 1/2j and b = k/2j into Eq. (2.5), which leads to the following
relationship:

(2.6) ψj,k(t) = 2(j/2) · ψ(2j · t− k),

in which k and j are scale and translation parameters respectively. Meaning of
these parameters for the simplest Haar wavelet is shown in Fig. 1.

a) b)

c) d)

Fig. 1. Haar wavelet family: a) mother wavelet j = 0, k = 0, b) wavelet with parameters j = 0,
k = 1, c) j = 2, k = 2, d) j = 2, k = 4.

Discrete signal decomposition can be written in the following form, according
to the Mallat pyramid algorithm:

(2.7) fJ = SJ +DJ + ...+Dn + ...+D1, n = J − j,
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where each component in the signal representation is associated with a specific
frequency range and provides information at the scale level (j = 1, ..., J ). The
discrete parameter J is the level of multi-resolution analysis (MRA) [13], SJ is
a smooth signal representation, Dn and Sn are details and rough parts of a signal
and D1 corresponds with the most detailed representation of the signal. To fulfil
the dyadic requirements of DWT, the function fJ must be approximated by
N = 2J discrete values. The multi-resolution analysis according to the Mallat
pyramid algorithm is illustrated in Fig. 2.

Fig. 2. Mallat pyramid algorithm [13].

In the analysis of defect detection, Daubechies wavelets are applied. This
family of wavelet is orthogonal, continuous and has compact support. Daubechies
wavelets are asymmetrical with sharp edges. They do not require a large number
of coefficients; hence, they are widely used to solve a broad range of problems,
e.g., image analysis or defect detection. The order of the functions of this wavelet
family is contained between 2 and 20. The Daubechies wavelet of the second or-
der corresponds to the simplest Haar wavelet. The basis and scaling functions
of the Daubechies 4 wavelet are presented in Fig. 3.

a) b)

Fig. 3. (a) Basis function (mother) and (b) scaling function (father): Daubechies 4 wavelet.
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3. Defect detection – problem formulation

The aim of this work is to detect the localization of defects providing that the
defect (damage) exists in the considered plate structure. Numerical investigation
is conducted based on signal analysis of structural static and dynamic responses.
The plate material is assumed to be linear-elastic. The plate bending is described
and solved by the boundary element method. The boundary integral equations
are derived in a non-singular approach. Rectangular plates simply supported on
the edges are considered. The analysis of structural responses is conducted with
the use of a signal processing tool – DWT. Defects in plates are modelled as slots
near the plate boundary. An example of a plate with a defected edge is illustrated
in Fig. 4. A plate is loaded by a single concentrated force P moving along the
indicated line, for example, 1), 2) or 3). The force P can have a static or dynamic
character. At the selected point D, deflection w, angle of rotation in arbitrary
direction φ, curvatures κ, internal forces, bending and twisting moments or
transverse forces are measured as structural responses.

Fig. 4. Considered plate structure.

The measured response parameters have the character of influence lines in
their discrete form. The signal of the structural response defined in this way is
processed using DWT, which was described in Sec. 2.
The plate bending is described using the boundary element method in a sim-

plified, modified approach where there is no need to introduce concentrated
forces at the plate corners and equivalent shear forces at the plate continuous
edges. This approach is used for static, dynamic and stability analysis in [15–18].
The boundary integral equations are derived using Betti’s theorem. For static

analysis of a plate subjected to the external distributed load q and the concen-
trated force P , the governing equations have the following form:
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(3.1) c(x) · w(x)+
∫

Γ

[
T ∗

n(y,x) · w(y)−M∗

ns(y,x) ·
dw(y)

ds
−M∗

n(y,x) · ϕn(y)

]

· dΓ(y) =
∫

Γ

[
T̃n(y) · w∗(y,x)−Mn(y) · ϕ∗

n(y,x)
]
· dΓ(y)

+

∫

Ω

q(y) · w∗(y,x) · dΩ(y) + P (i) · w∗(i,x),

(3.2) c(x) · ϕn(x)+

∫

Γ

[
T
∗

n(y,x) · w(y)−M
∗

ns(y,x) ·
dw(y)

ds
−M∗

n(y,x) · ϕn(y)

]

· dΓ(y) =
∫

Γ

[
T̃n(y) · w∗(y,x)−Mn(y) · ϕ∗

n(y,x)
]
· dΓ(y)

+

∫

Ω

q(y) · w∗(y,x) · dΩ(y) + P (i) · w∗(i,x),

where the fundamental solution of the biharmonic equation

(3.3) ∇4w∗(y,x) =
1

D
· δ(y,x)

is given as Green’s function

(3.4) w∗(y,x) =
1

8πD
· r2 · ln(r)

for a thin isotropic plate, r = |y − x|, δ is the Dirac delta, x is the source point,
y is a field point, D = Eh3

12·(1−v2)
is the plate stiffness, h is the plate thickness,

and E and v are the Young modulus and the Poisson ratio respectively. The
coefficient c(x) is taken as

c(x) = 1 when x is located inside the plate domain,

c(x) = 0.5 when x is located on the smooth boundary,

c(x) = 0 when x is located outside the plate domain.
The second boundary integral Eq. (3.2) can be obtained by replacing the

unit concentrated force P ∗ = 1 with the unit concentrated moment M∗

n = 1.
Such a replacement is equivalent to the differentiation of the first boundary
integral Eq. (3.1) with respect to the co-ordinate n at point x belonging to the
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plate domain. The expression T̃n(y) denotes the shear force for clamped and for
simply-supported edges [15–18]:

(3.5) T̃n(y) =




Vn(y),

Rn(y).

Because the concentrated force at the corner is used only to satisfy the
differential biharmonic equation of the thin plate, one can assume that this force
could be distributed along a plate edge segment close to the corner [15–18]. The

relation between ϕs(y) and the deflection is known: ϕs(y) =
dw(y)
ds ; the angle of

rotation ϕs(y) can be evaluated using a finite difference scheme of the deflection
with two or more adjacent nodal values. In this analysis, the employed finite
difference scheme includes the deflections of two adjacent nodes [18].
The forced vibration problem of a thin plate is considered too and the modal

analysis is applied. Hence, the free vibration problem must be first solved. Inside
a plate domain, additional collocation points associated with lumped masses
are introduced according to Bezine technique [19]. In each internal collocation
point, the vectors of displacement wi(t), acceleration ẅi(t) and inertial force
Bi(t) dependent on time t are established

(3.6)

wi(t) =Wi · sinωt,

ẅi(t) = −ω2 ·Wi · sinωt,

Bi(t) = Bi · sinωt.

The inertial force amplitude is described as

(3.7) Bi = ω2 ·mi ·Wi.

The boundary-domain integral equations have the character of amplitude equa-
tions and they are in the following form:

(3.8) c(x) · w(x) +
∫

Γ

[
T ∗

n(y,x) · w(y)−M∗

ns(y,x) ·
dw(y)

ds
−M∗

n(y,x) · ϕn(y)

]

· dΓ(y) =
∫

Γ

[
T̃n(y) · w∗(y,x)−Mn(y) · ϕ∗

n(y,x)
]
· dΓ(y) +

I∑

i=1

Bi · w∗(i,x),
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(3.9) c(x) · ϕn(x)+

∫

Γ

[
T
∗

n(y,x) · w(y)−M
∗

ns(y,x) ·
dw(y)

ds
−M∗

n(y,x) · ϕn(y)

]

· dΓ(y) =
∫

Γ

[
T̃n(y) · w∗(y,x)−Mn(y) · ϕ∗

n(y,x)
]
· dΓ(y) +

I∑

i=1

Bi · w∗(i,x).

The set of algebraic equations in matrix notation has the following form:

(3.10)




GBB GBS −λ ·GBw ·Mp

∆ −I 0

GwB GwS −λ ·Gww ·Mp + I


 ·





B

ϕS

W





=





0

0

0




,

where

GBB and GBS are the matrices of the dimensions (2N ×2N) and (2N ×S), re-
spectively, grouping boundary integrals and depending on the type of bound-
ary, where N is the number of boundary nodes (or the number of constant-
type elements) and S is the number of boundary elements along the free
edge;

GBw is the matrix of the dimension (2N ×M) grouping values of fundamental
function w∗ established at internal collocation points;

∆ is the matrix grouping difference operators connecting angle of rotations in
tangent direction with deflections of suitable boundary nodes if a plate has
a free edge;

GwB is the matrix of the dimension (M ×2N) grouping the boundary integrals
of the appropriate fundamental functions, whereM is the number of internal
collocation points and N is the number of boundary nodes;

GwS is the matrix of the dimension (M × S) grouping the boundary integrals
of the appropriate fundamental functions;

Gww is the matrix of the dimension (M ×M) grouping the values of funda-
mental function w∗ established at internal collocation points;

Mp = diag(m1,m2,m3, ...,mM ) is the plate mass matrix, λ = ω2 and I is the
unit matrix (M is the number of lumped masses). Elimination of boundary
variables B and ϕS from matrix Eq. (3.10) leads to a standard eigenvalue
problem:

(3.11)
{
A− λ̃ · I

}
·W = 0,

where

A =
{
Gww ·Mp − (GwB −GwS ·∆) · [GBB +GBS]

−1 ·GBw ·Mp

}
.
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4. Numerical examples

A rectangular plate structure simply-supported on its edges is considered.
The boundary element method is applied to solve the thin plate bending prob-
lem. Each plate edge is divided into 30 constant-type boundary elements. The
collocation point is located slightly outside the plate edge which is estimated by
parameter ε = δ/d, where δ is the real distance of the collocation point from the
plate edge and d is the element length [15–17]. For each example ε = 0.001 is as-
sumed. The diagonal boundary terms in the characteristic matrix are calculated
analytically and other than diagonal terms are calculated using a 12-point Gauss
quadrature. The plates properties are: E = 205.0 GPa, v = 0.3, ρ = 7850 kg/m3,
h = 0.02 m.
The plates are loaded statically and dynamically. The static concentrated

external load P = 1000 N is replaced by the equivalent constant distributed
loading q acting over the square surface of dimensions 0.05 m × 0.05 m. The
dynamic concentrated force is harmonic: P (t) = P0 · sin pt, where the ampli-
tude is P0 = 1000.0 N and p = 10.0 rad/s is the frequency of excitation. The
damping coefficient is assumed to be µ = 0.1. The first 100 natural frequencies
and modes of the system are assumed using modal analysis. The plate mass ma-
trix has the elements of the constant values. The number of internal collocation
points associated with the lumped masses is equal to 200. It is also assumed
that the harmonic excitation force moves slowly. Plate defects are introduced
by the additional boundaries (free edges) forming a hole in relation to the basic
plate domain [12]. A static and dynamic concentrated load is applied at selected
points along the direction parallel to one dimension of the plate. As a structural
response deflections and curvatures are taken into account as a structural re-
sponse. The data are gathered in one measurement point, at equal time intervals.
Decomposition of the obtained signal is carried out using DWT, Daubechies 4
wavelet functions.

4.1. Example 1

The plate loaded with a static concentrated force P is considered and pre-
sented in Fig. 5. The coordinates of the measurement point D are: xD = 2.15 m
and yD = 0.25 m. The introduced plate defect is described by parameter e =
0.005 m.
It is clearly visible that in the case of the DWT (detail 1) of the vertical dis-

placements (Fig. 6) and curvature κx (Fig. 7a) signals the damage was properly
localized by the high peaks on these diagrams. In the case of the DWT of the
curvature κy signal (Fig. 7b), the slot was also properly detected, but the area
of disturbances was slightly wider.



148 A. KNITTER-PIĄTKOWSKA, M. GUMINIAK

Fig. 5. Considered plate structure.

Fig. 6. DWT (Daubechies 4, detail 1)
signal: vertical displacements measured at
point D N – number of measurements.

a) b)

Fig. 7. DWT (Daubechies 4, detail 1) signal: curvature κx (a) and κy (b) measured at point D,
N – number of measurements.

4.2. Example 2

The plate loaded with a static concentrated force P is considered and pre-
sented in Fig. 8. The coordinates of the measurement point D are: xD = 2.0 m
and yD = 0.25 m. The introduced plate defect is described by parameter e =
0.005 m.
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Fig. 8. Considered plate structure.

Figures 9, 10a and 10b depict the DWT (detail 1) of the vertical displace-
ments, curvature κx and curvature κy structural response signals respectively.
In all three cases, the damage was properly detected by the evident disturbances
of the transformed signal.

Fig. 9. DWT (Daubechies 4, detail 1) signal: verti-
cal displacements measured at point D, N – number

of measurements.

a) b)

Fig. 10. DWT (Daubechies 4, detail 1) signal: curvature κx (a) and κy (b) measured at the
point D, N – number of measurements.
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4.3. Example 3

The plate loaded with a static concentrated force P is considered and pre-
sented in Fig. 11. The coordinates of the measurement point D are: xD = 2.35 m
and yD = 0.35 m. The introduced plate defect is described by parameters
e1 = e2 = 0.005 m.

Fig. 11. Considered plate structure.

This example proves that it is possible to find quite accurately the beginning
and end of the slot. It is visible that in the case of the DWT (detail 1) of
the vertical displacements (Fig. 12) and curvature κx (Fig. 13a) signals, the
disturbance area corresponds to the length of damage. However, in the case of
the DWT of the curvature κy signal (Fig. 7b), the slot was properly detected,
but the area of disturbances was slightly wider.

Fig. 12. DWT (Daubechies 4, detail 1) signal: vertical
displacements measured at point D, N – number of mea-

surements.
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a) b)

Fig. 13. DWT (Daubechies 4, detail 1) signal: curvature κx (a) and κy (b) measured at point D,
N – number of measurements.

4.4. Example 4

The plate loaded with a static concentrated force P is considered and pre-
sented in Fig. 14. The coordinates of the measurement point D are: xD = 3.75 m
and yD = 0.35 m. The introduced plate defect is described by parameters
e1 = e2 = e3 = 0.005 m.

Fig. 14. Considered plate structure.

Detecting a failure in the corner of the plate is also possible. This is proven
by the analysis results presented in Figs. 15, 16a and 16b. Evident disturbances

Fig. 15. DWT (Daubechies 4, detail 1) signal: vertical displace-
mens measured at point D, N – number of measurements.
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a) b)

Fig. 16. DWT (Daubechies4, detail 1) signal: curvature κx (a) and κy (b) measured at point D,
N – number of measurements.

of the transformed vertical displacements (Fig. 15), curvature κx (Fig. 16a) and
curvature κy (Fig. 16b) signals are indicators of the damage presence.

4.5. Example 5

The plate loaded with a static concentrated force P is considered and pre-
sented in Fig. 17. The coordinates of the measurement point D are: xD = 1.15 m
and yD = 1.75 m. The introduced plate defect is described by parameters
e1 = e2 = e3 = 0.005 m.

Fig. 17. Considered plate structure.

The authors also attempted to detect more than one failure in the plate
structure. The effectiveness of approach strongly depended on the location of
measurement point D. In this example, the best result was obtained when DWT
was applied to analysis of the vertical displacement signal (Fig. 18), where two
slots were properly detected. This was not so east to detect the two other trans-
formations of the curvature κx (Fig. 19a) and curvature κy (Fig. 19b) signals,
where only one defect was localized.
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Fig. 18. DWT (Daubechies 4, detail 1) signal:
vertical displacements measured at point D, N –

number of measurements.

a) b)

Fig. 19. DWT (Daubechies 4, detail 1) signal: curvature κx (a) and κy (b) measured at
point D, N – number of measurements.

4.6. Example 6

The plate loaded with a dynamic concentrated force P (t) = P0 · sin pt is
considered and presented in Fig. 20. The coordinates of the measurement point D
are: xD = 2.05 m and yD = 0.3 m. The introduced plate defect is described by
parameter e = 0.005 m.

Fig. 20. Considered plate structure.
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The defect in this example was also properly localized. A significant dif-
ference, in comparison to the experiments with static force excitation of the
structure, is that the damage location is indicated here by the disturbances
spread over a certain distance (Fig. 21). In previous examples, one high peak
can be observed, e.g., in Fig. 6.

Fig. 21. DWT (Daubechies 4, detail 1) signal: ampli-
tudes of the vertical displacements measured at point D,

N – number of measurements.

5. Concluding remarks

The implementation of discrete dyadic wavelet transformation to identify
signal discontinuity in the analysis of plates is presented in this paper. The thin
plate bending is described by boundary (static analysis) and boundary-domain
(dynamic analysis) integral equations and solved using the boundary element
method. Although the considered issue is two-dimensional from the point of
view of deformation description, the application of one-dimensional DWT leads
to satisfying results in defect detection. The analysis was carried out without
any signal noise reduction. It was discovered that small disturbances in the re-
sponse signal of a defective structure could be detected and the reference to
a signal from an undamaged structure was not required (thereby avoiding ad-
ditional errors). The novelty is that in this approach the data are gathered in
one measurement point at equal time intervals. The distance of the measure-
ment point from the damaged area is crucial for proper defect localization. The
considered examples prove that DWT of structural response signal expressed in
deflections or curvatures established at selected domain points quite correctly
identifies the presence and position of a defect. The effectiveness of the pro-
posed method is indicated by the presented numerical investigation, where the
defects are properly localized, even for the relatively small number of measure-
ments.
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