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The current article addresses the impacts of the pulsatile flow of Powell-Eyring nanofluid
using Buongiorno’s model in a horizontal channel. It also describes the combined impacts
of thermophoresis and Brownian motion. Blood is an example of a Powell-Eyring fluid. The
Runge-Kutta (R-K) 4th-order method, along with the shooting technique, is used to determine
solutions for velocity, temperature, and concentration. The impacts of different parameters,
including an inclined magnetic field, chemical reaction, Lewis number, and heat source or sink
parameter, are illustrated graphically. The mass flux distribution decreases due to an increase
in the values of the Powell-Eyring fluid parameter.
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1. Introduction

Nanofluids are different types of fluid composed of convectional base liquids
and nanometre-sized particles. Nanofluid research is a significant scientific field
because of its wide range of potential applications in mineral oil, water, solar
energy, and microelectronics. In chemotherapy, nanoparticles are also utilised
to kill cancer cells. Applications of nanofluids in technology and engineering
include cancer therapeutics, vehicle thermal management, nuclear systems cool-
ing, intensified microreactors, electronic cooling components, and many more.
Several studies on these fluids are cited in [1–3]. The entropy generation in hy-
dromagnetic Powell-Eyring nanofluid flow was studied by Alsaedi et al. [4].
Buongiorno [5] examined the convective heat transport in nanofluids. In this
study, the author developed a two-component, four-equation nonhomogeneous
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equilibrium model for mass momentum and heat transport in nanofluids. Fur-
ther more, Buongiorno [5] concluded that in the absence of turbulent effects,
Brownian diffusion and thermophoresis would be important. In addition, he
has considered the conservation equations based on these two effects. Hayat
et al. [6] provided an explanation for an Eyring-Powell nanofluid across a non-
linear stretching surface. In a vertical channel, pulsatile Casson nanofluid flow
was examined by Kumar et al. [7] using Buongiorno’s model. Mallick and
Misra [8] described how an electromagnetic field affects the peristaltic flow of
a Powell-Eyring nanofluid in an asymmetric wavy microchannel. In an L-shaped
enclosure, nanofluid free convection heat transfer was demonstrated by Sheik-
holeslami et al. [9]. The impacts of convective heat transport of nanofluid in
a wavy channel were analytically examined by Shehzad et al. [10].

Magnetohydrodynamics (MHD) flow has been the subject of numerous theo-
retical and empirical studies across various physical, geophysical, and industrial
fields. The applications of MHD flows are found in a wide range of industrial do-
mains, such as electronic packages, microelectronic devices, cooling of nuclear
reactors, crystal growth in liquids, and electric propulsion for space exploration.
An inclined magnetic field has a non-zero inclination angle. Significant advance-
ments in the study of inclined magnetic field flow with heat transfer were made
in [11–15]. Kaladhar et al. [16] explained the influences of the Hall current,
thermal radiation, and an inclined magnetic field on fully developed electrically
conducting mixed convection flow between vertical parallel plates. Nath and
Murugesan [17] explored the formation of a nanoparticle that affects mass
and heat transport processes in a moving lid cavity with an inclined magnetic
field. The flow of viscous liquid inclined magnetic field with peristalsis was stud-
ied by Noreen and Qasim [18].

There have been numerous studies on pulsatory flows in channels and pipes
[19–24]. However, very few studies on non-Newtonian nanofluid flow with pulsat-
ing pressure gradients have been documented in the literature. Datta et al. [25]
explored the dusty liquid flow in a channel. The effect of pulsatile blood flow
in thermally significant blood vessels on the thermal lesion region during ther-
mal therapy of tumor was studied by Horng et al. [26]. Kumar and Srini-
vas [27] examined pulsating Casson fluid flow in a vertical channel. The effects
of pulsatility, catheterization, the non-Newtonian nature of blood and peripheral
layer thickness on various flow quantities were analyzed by Sankar [28]. The
oscillatory flow of dusty MHD Ree-Eyring fluid with heat transfer in a chan-
nel was discussed by Shawky [29]. Srinivas et al. [30] investigated the cross-
diffusion effects of pulsating Casson fluid flow in a vertical permeable channel.
Thamizharasan and Reddy [31] examined MHD Jeffrey nanofluid with pul-
sation, in a channel. Very recently, Wang et al. [32] studied pulsatory blood
flow pass a small vessel under a magnetic field.
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The primary goal of this work is to conduct the numerical analysis of hydro-
magnetic Powell-Eyring nanofluid flow between two parallel walls generated by
a pulsating pressure gradient. To study how to regulate the motion of the fluid by
altering these characteristics and external forces, it is necessary to demonstrate
the relationship between the various motion parameters and external forces.
The article is structured as follows. The modelling and formulation of the prob-
lem are presented in Sec. 2. The problem’s solution is presented in Sec. 3. In
Sec. 4, discussions are presented with the aid of graphs and tables. Finally, Sec. 5
provides a summary of the key findings.

2. Modelling and formulation

Consider a fully developed laminar pulsatory flow of an electrically conduct-
ing Powell-Eyring nanofluid between two parallel walls separated by a distance h.
A uniform strength magnetic field B0 is applied at an inclined location of an-
gle α with respect to the x∗-axis (see Fig. 1). The fluid velocity, temperature
and concentration are assumed to be parallel to the x∗-axes. So that only the
x∗-component of u∗ velocity does not vanish. The condition of fully developed
flow implies that ∂u∗

∂x∗ = 0. Given the velocity is solenoidal, we obtain ∂v∗

∂y∗ = 0.
As a consequence, the velocity component v∗ is constant in any channel section
and is equal to zero at the channel walls, indicating that v∗ must be vanishing at
any position. The y∗-momentum balance equation can be expressed as ∂p∗

∂y∗ = 0.
Here T0, C0 represents the temperature and concentration at the lower wall,
while the uniform temperature and concentration, T1, C1, are considered on the
upper wall. The flow of the fluid in the channel is influenced by a pulsatory
pressure gradient (Thamizharasan and Reddy [31]):

(2.1) − 1

ρf

∂P ∗

∂x∗
= A0

(
1 + ε eiωt

∗
)
, ε� 1,

where ε is a suitably chosen positive quantity (Radhakrishnamacharya and
Maiti [22] and Sankar [28]), A0 is a known constant, t∗ is time, P ∗ is the di-

Fig. 1. Flow domain schematic diagram.
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mensional pressure, and ω is the frequency. The rheological equation of the non-
Newtonian Eyring-Powell-Cauchy model is defined by Mallick and Misra [8] as

Sij = µf
∂u∗i
∂x∗j

+
1

β
sinh−1

(
1

L

∂u∗i
∂x∗j

)
,

where β and L are fluid material constants, u∗i represents velocity, Sij is the
Cauchy tensor, and µf stands for dynamic viscosity. Since sinh−1x ≈ x of
|x| ≤ 1, then

Sij = µf
∂u∗i
∂x∗j

+
1

β

(
1

L

∂u∗i
∂x∗j

)
= µf

(
1 +

1

βLµf

)
∂u∗i
∂x∗j

.

The governing equations are [24, 31]:

∂u∗

∂t∗
= − 1

ρf

∂P ∗

∂x∗
+ νf

(
1 +

1

βLµf

)
∂2u∗

∂y∗2
−
σfB

2
0

ρf
u∗ sin2 α,(2.2)

∂T ∗

∂t∗
=

κf
(ρCp)f

∂2T ∗

∂y∗2
+ τ

[
DB

(
∂C∗

∂y∗
∂T ∗

∂y∗

)
+
DT

Tm

(
∂T ∗

∂y∗

)2
]

(2.3)

+
µf

(ρCp)f

(
1 +

1

βLµf

)(
∂u∗

∂y∗

)2

− 1

(ρCp)f

∂qr
∂y∗

+
Q0

(ρCp)f
(T ∗ − T0),

∂C∗

∂t∗
= DB

∂2C∗

∂y∗2
+
DT

Tm

∂2T ∗

∂y∗2
− k1C∗.(2.4)

Subject to the boundary conditions:

u∗(0) = 0, T ∗(0) = T0, C∗(0) = C0,

u∗(h) = 0, T ∗(h) = T1, C∗(h) = C1,
(2.5)

where τ = (ρCp)p/(ρCp)f , (ρCp)p is the effective heat capacity of the nanopar-
ticles, (ρCp)f is the heat capacitance of nanofluid, ρf is the density of the base
fluid, ρp is the density of the particles, DT is thermophoretic diffusion coefficient,
νf is the kinematic viscosity, σf is electrical conductivity, DB is the Brownian
diffusion coefficient, T ∗, C∗ represents the dimensional temperature and concen-
tration of the fluid, respectively, Tm is the mean temperature, κf is the thermal
conductivity, Q0 indicates the heat source (or sink), and k1 is 1st-order chemical
reaction rate. By using the Rosseland approximation for radiative heat flux, qr is
defined as

(2.6) qr = −4

3

(
∂T ∗4

∂y∗

)
σ∗

χ
,
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where σ∗ is the Stefan-Boltzmann constant, and χ is the Rosseland mean ab-
sorption co-efficient. We assume that the temperature differences within the flow
are sufficiently small such that T ∗4 may be expressed as a linear function of the
temperature. This is accomplished by expanding T ∗4 in a Taylor series about
T0 and neglecting higher-order terms, thus: T ∗4 ∼= 4T 3

0 T
∗ − 3T 4

0 .
Therefore, Eq. (2.3) becomes

(2.7)
∂T ∗

∂t∗
=

1

(ρCp)f

(
κf +

16σ∗T 3
0

3χ

)
∂2T ∗

∂y∗2

+ τ

[
DB

(
∂C∗

∂y∗
∂T ∗

∂y∗

)
+
DT

Tm

(
∂T ∗

∂y∗

)2
]

+
µf

(ρCp)f

(
1 +

1

βLµf

)(
∂u∗

∂y∗

)2

+
Q0

(ρCp)f
(T ∗ − T0).

We introduce non-dimensional variables:

(2.8)
P ∗ = PA0ρfh, t∗ =

t

ω
, T ∗ = T0 + θ(T1 − T0),

u∗ =
A0

ω
u, y∗ = yh, x∗ = xh, C∗ = C0 + φ(C1 − C0),

where ω is the frequency, u, θ, φ represents the velocity, temperature, and con-
centration in dimensionless form, respectively. Transforming Eqs. (2.1), (2.2),
(2.7), and (2.4) by using Eq. (2.8), we obtain

−∂P
∂x

= 1 + ε eit,(2.9)

∂u

∂t
= −∂P

∂x
+

1 + k0
H2

(
∂2u

∂y2

)
− M2

H2
sin2 αu,(2.10)

∂θ

∂t
=

1

PrH2

(
1 +

4

3
Rd
)
∂2θ

∂y2
+

1 + k0
H2

Ec
(
∂u

∂y

)2

(2.11)

+
Nb
H2

∂θ

∂y

∂φ

∂y
+

Nt

H2

(
∂θ

∂y

)2

+
Q

H2
θ,

∂φ

∂t
=

1

Le PrH2

∂2φ

∂y2
+

1

Le PrH2

Nt

Nb

∂2θ

∂y2
− γ

H2
φ− K1

H2
,(2.12)

where k0 = 1
βLµf

(Powell-Eyring fluid parameter), M =
B0h
√
σf√

µf
(Hartmann

number), H = h
√
ω√
νf

(frequency parameter), Pr =
µCp
κf

(Prandtl number),

Q = Q0h2

(ρCp)fνf
(heat source/sink parameter), Nt = τDT (T1−T0)

Tmνf
(thermophoresis
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parameter), Ec =
(
A0
ω

)2

Cp(T1−T0) (Eckert number), Rd =
4σ∗T 3

0
κfχ

(radiation parame-

ter), Nb = τDB(C1−C0)
νf

(Brownian motion parameter), γ = k1h2

νf
(chemical reac-

tion parameter), K1 = k1C0h2

νf (C1−C0)
, Le = α0

DB
(Lewis number), and α0 =

κf
(ρCp)f

(thermal diffusivity).
The transformed boundary conditions (2.5) are

(2.13)
u(0) = 0, θ(0) = 0, φ(0) = 0;

u(1) = 0, θ(1) = 1, φ(1) = 1.

3. Method of solution

To obtain the solution of Eqs. (2.10)–(2.12), a perturbative solution was
assumed in the form:

u = u0 + εu1e
it + ε2u2e

2it,(3.1)

θ = θ0 + εθ1e
it + ε2θ2e

2it,(3.2)

φ = φ0 + εφ1e
it + ε2φ2e

2it,(3.3)

while neglecting higher orders. Here, φ1(y) and φ2(y) are unsteady concentration
profiles, θ1(y) are θ2(y) are unsteady temperature profiles, u1(y) and u2(y) are
unsteady velocity profiles, φ0(y) is the steady concentration profile, θ0(y) is the
steady temperature profile, u0(y) is the steady velocity profile, and u is the non-
dimensional velocity.

Substituting Eqs. (2.9), (3.1)–(3.3) into Eqs. (2.10)–(2.12) and comparing
the coefficients of the same powers of ε, we obtain:

(1 + k0)u
′′
0 −M2 sin2 αu0 +H2 = 0,(3.4)

(1 + k0)u
′′
1 −

(
M2 sin2 α+ iH2

)
u1 +H2 = 0,(3.5)

(1 + k0)u
′′
2 −

(
M2 sin2 α+ 2iH2

)
u2 = 0,(3.6) (

1 +
4

3
Rd

)
θ′′0 + (1 + k0) Pr Ec

(
u′0
)2

+ Pr Nb θ′0φ
′
0(3.7)

+ Pr Nt
(
θ′0
)2

+ PrQθ0 = 0,
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1+

4

3
Rd

)
θ′′1 +

(
PrQ− iPrH2

)
θ1 + 2 (1 + k0) Pr Ecu′0u

′
1(3.8)

+ Pr Nb
(
θ′0φ
′
1 + θ′1φ

′
0

)
+ 2 Pr Nt θ′0θ

′
1 = 0,(

1+
4

3
Rd

)
θ′′2 +

(
PrQ− 2iPrH2

)
θ2 + (1 + k0) Pr Ec

(
(u′1)

2 + 2u′0u
′
2

)
(3.9)

+ Pr Nb
(
θ′0φ
′
2 + θ′1φ

′
1 + θ′2φ

′
0

)
+ Pr Nt

(
(θ′1)

2 + 2θ′0θ
′
2

)
= 0,

φ′′0 − γ Pr Leφ0 +

(
Nt

Nb

)
θ′′0 −K1Pr Le = 0,(3.10)

φ′′1 − Pr Le (γ + iH2)φ1 +

(
Nt

Nb

)
θ′′1 = 0,(3.11)

φ′′2 − Pr Le (γ + 2iH2)φ2 +

(
Nt

Nb

)
θ′′2 = 0.(3.12)

The corresponding boundary conditions are:

(3.13)

u2(0) = 0, u1(0) = 0, u0(0) = 0,

u2(1) = 0, u1(1) = 0, u0(1) = 0;

θ2(0) = 0, θ1(0) = 0, θ0(0) = 0,

θ2(1) = 0, θ1(1) = 0, θ0(1) = 1;

φ2(0) = 0, φ1(0) = 0, φ0(0) = 0,

φ2(1) = 0, φ1(1) = 0, φ0(1) = 1.

By solving Eqs. (3.4)–(3.6) with the corresponding boundary conditions (3.13),
one obtains:

u0 = A1e
m1y +A2e

m2y +A3,(3.14)

u1 = A4e
m3y +A5e

m4y +A6,(3.15)

u2 = A7e
m5y +A8e

m6y,(3.16)

where m’s and A’s are constants given in the Appendix.
Further more, the non-dimensional mass flux (Q1), rate of mass transfer

(Sh), and heat transfer rate (Nu) at the channel boundaries can be obtained
from:

(3.17) Q1 =

1ˆ

0

udy, Nu = −∂θ
∂y

∣∣∣∣∣
y=0,1

, and Sh = −∂φ
∂y

∣∣∣∣∣
y=0,1

.
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4. Results and discussion

The system of dimensionless coupled ODEs (3.4)–(3.12), subject to the
boundary conditions in Eq. (3.13), is numerically solved by employing the fourth-
order Runge-Kutta scheme together with the shooting method using the
NDSolve function in Mathematica, which is a current specialized computing
system. NDSolve gives the solutions iteratively. The shooting technique is used
via NDSolve. This technique is very helpful in the case of small step sizes fea-
turing a negligible error. The step size is fixed as 0.001 (i.e., ∆y = 0.001),
maintaining constant precision for the convergence standards. Throughout the
calculations, the employed parametric values are Nt = 0.2, Le = 1, γ = 1,
K1 = 0.001, Nb = 0.2, Pr = 21, H = 2, Q = −2, Ec = 0.5, k0 = 1.2, Rd = 2,
α = π/6, M = 2, t = π/4, and ε = 0.01. Figure 2 depicts the changes in the
velocity distribution for various parameters of k0, M , H, and α.

a) b)

c) d)

Fig. 2. Velocity distributions; impacts of: a) k0, b) M , c) H, d) α.

Figure 2a shows variation in velocity profile for different values of k0. An as-
cending trend in velocity profiles is observed for increasing values of k0, and this
increases the thickness of the momentum boundary layer. Since k0 is inversely
proportional to the base fluid viscosity, increase in positive values of k0 decreases
the base fluid viscosity and enhances the stress rate within the boundary layer.
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With a rise in k0, it is seen that the distributions of velocity increase. Figure 2b
elucidates the effect of M on the velocity field. The applied magnetic field pro-
duces a drag force opposing the flow direction. As a result, the fluid’s velocity
decreases with increasing magnetic field strength. Figure 2c reveals that veloc-
ity is increased for higher values of the frequency parameter (H).

The effect of the angle of inclination on u is plotted in Fig. 2d. It is evident
that increasing values of α result in a decrease in u. This is because when
α increases, the impact of the magnetic field on fluid particles rises, increasing
the retarding force. As a result, the velocity field diminishes. The unsteady
velocity distribution concerning the frequency parameter H and time t values
are displayed in Fig. 3. Unsteady velocity profiles in Fig. 3a display fluctuating
characteristics with an increasing frequency parameterH. The profiles are nearly
parabolic in shape for small value of H. The highest velocity is observed near
the boundary layers close to the walls. One can see in Fig. 3b that the unstable
velocity distributions oscillate as t increases.

a) b)

Fig. 3. Unsteady velocity distributions; impacts of: a) H, b) t.

Figure 4 illustrates the impacts of Nb, Nt, Ec, and Q on θ. Figure 4a depicts
the variations in temperature distribution with changes in Nb. It is obvious that
increasing Nb will significantly rise the fluid’s temperature. By changing Nt on θ,
similar behaviour can be observed (see Fig. 4b). A rise in the Eckert number
shows a high kinetic energy, which causes fluid molecules to vibrate and collide
more frequently. Consequently, higher temperature profile (Fig. 4c) result from
enhanced heat dissipation in the boundary layer region due to increased molec-
ular collisions. Figure 4d illustrates how Q affects changes in the Powell-Eyring
nanofluid’s temperature. The temperature of the fluid rises with the increase of
heat source parameter, which results from the fluid’s heat generation. At the
same time, quite the opposite behaviour can be observed for the increasing val-
ues of the (Q < 0) resulting from the fluid’s heat absorption. The influences of
Nb, Nt, Ec, and t on θt are shown in Fig. 5. Figures 5a–5c describe the variation
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a) b)

c) d)

Fig. 4. Temperature distributions; impacts of: a) Nb, b) Nt, c) Ec, d) Q.

a) b)

c) d)

Fig. 5. Unsteady temperature distributions; impacts of: a) Nb, b) Nt, c) Ec, d) t.
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in unsteady temperature distributions for different values of Nb, Nt, and Ec.
Notably, it is observed that the unsteady temperature fluctuates with rising
Nb, Nt, and Ec, with the maximum ocurring closer to the walls. The impact
of t on the unsteady temperature profile is exhibited in Fig. 5d. The unstable
temperature profiles are observed to oscillate as t increases.

The distribution of nanoparticle concentration is shown in Fig. 6 for dif-
ferent values of Nb, Nt, Le, and γ. When Nb increases, the concentration of
nanoparticles decreases, as shown in Fig. 6a. Conversely, when Nt increases, the
concentration gradually increases (Fig. 6b). Figure 6c illustrates the decrease in
nanoparticle concentration due to higher values of the Lewis number. Figure 6d
depicts the influence of concentration distribution. It is observed that the distri-
butions of nanoparticle concentrations decrease with an increase of destructive
chemical reaction (γ > 0). This is due to fact that increasing destructive chemi-
cal reaction leads to a decrease in the concentration boundary layer because the
destructive chemical reaction reduces the solutal boundary layer thickness and
increases the mass transfer.

a) b)

c) d)

Fig. 6. Nanoparticle concentration distributions; impacts of: a) Nb, b) Nt, c) Le, d) γ.

The impacts of Nb, Nt, Le, and γ on φt are shown in Fig. 7. Figure 7
describes the variation in unsteady nanoparticle concentration distribution for
various values of Nb, Nt, Le, and γ. One can notice that the unsteady nanopar-
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a) b)

c) d)

Fig. 7. Unsteady nanoparticle concentration distributions;
impacts of: a) Nb, b) Nt, c) Le, d) γ.

ticle concentration fluctuates with rising Nb, Nt, Le, and γ and the maximum
concentration is located closer to the walls. Figure 8 depicts the impact of k0
and M on the mass flux distribution (Q1) against H. As seen in Fig. 8a, Q1

decreases for a given rise in the Powell-Eyring fluid parameter. By changing M ,
the opposite pattern can be observed (see Fig. 8b). To confirm the accuracy
of the existing model, Fig. 9 presents a comparative study between a numerical
method and the findings generated by an analytical approach (perturbation)

a) b)

Fig. 8. Mass flux distributions; impacts of: a) k0, b) M .
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a) b)

Fig. 9. Comparative study between numerical and analytical studies on velocity distributions;
impacts of: a) k0, b) M .

for velocity distribution. The changes of Sh and Nu for different values of k0,
Nt, Nb, and Le are shown in Table 1. In this case, the bottom and top walls’
respective Sherwood and Nusselt numbers are denoted by the symbols Sh0, Sh1

and Nu0, Nu1, respectively. Interestingly, Nu increases at the channel’s upper
boundary while decreasing at the lower boundary when the Powell-Eyring fluid
parameter increases. For the Brownian motion parameter, the behaviour is the
opposite. At the bottom and top walls, one can see that the Nusselt number is

Table 1. Variations of Nu and Sh for different values of k0, Nb, Nt, and Le.

Parameter Values
Nu Sh

Nu0 Nu1 Sh0 Sh1

k0

0.2 0.1823 1.3324 −1.3465 4.7949

0.7 0.1246 1.8973 −1.7483 5.2897

1.4 0.1107 2.3451 −2.0642 6.1821

2.1 0.1040 2.9960 −2.3247 6.3411

Nb

0.15 3.4432 −1.2649 −2.0065 6.3704

0.20 3.6989 −1.3981 −1.8347 6.0815

0.30 4.5901 −1.4843 −1.3102 5.7634

0.40 5.0769 −1.5182 −1.2873 5.4988

Nt

0.1 2.2207 0.1389 −0.2767 −0.0419

0.2 3.6991 0.1587 −1.5984 −0.0845

0.3 5.6461 0.1725 −4.7136 −0.1618

0.4 5.9985 0.1993 −5.8071 −0.2007

Le

0.5 3.7471 0.0844 −0.1277 1.8440

1.0 3.6877 0.0660 −0.5417 2.6507

1.5 3.6043 0.0604 −1.2661 2.7859

2.0 3.5520 0.0573 −2.5322 3.0254
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a rising function of Nt. For the Lewis number, the behaviour is the exact reverse.
The same table shows that while the Powell-Eyring fluid parameter and Lewis
number increase near the top wall, they drop at the bottom wall. For the Brow-
nian motion parameter, the behaviour is the opposite. One can observe that
at the lower and upper boundaries of the channel Sherwood number decreases
with Nt.

5. Conclusions

The pulsatory flow of Powell-Eyring nanofluid using Buongiorno’s model in
a horizontal channel was investigated numerically, accounting for the impacts of
thermophoresis and Brownian motion. This investigation holds significance in
the field of food processing system, pressure surges (pulsatile flow application),
biomedical engineering, and cancer therapeutics. Our analysis demonstrates that
an inclined magnetic field, chemical reaction, and thermal radiation affect the
flow. The governing partial differential equations were transformed into a system
of ordinary differential equations by employing the perturbation method, then
solved by adopting the fourth-order Runge-Kutta method along with the aid of
the shooting technique. The velocity increases with a rise in the Eyring-Powell
nanofluid parameter and frequency parameter, whereas a rise in the inclination
angle decreases the velocity. Due to the effects of periodic pressure gradient,
the fluid’s unsteady velocity and temperature fluctuate over time. Moreover,
as the parameters of the chemical reaction and Lewis number increase, the
nanoparticle concentration distribution decreases.

Appendix

m1,2 =
±
√

4 (1 + k0)M2 sin2 α

2 (1 + k0)
,

A3 =
H2

M2 sin2 α
,

A1 =
A3(e

m1 − 1)

(em1 − em2)
−A3,

A2 = −A3(e
m1 − 1)

(em1 − em2)
,

m3,4 =
±
√

4 (1 + k0)
(
M2 sin2 α+ iH2

)
2 (1 + k0)

,
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A6 =
H2(

M2 sin2 α+ iH2
) ,

A5 = −A6(e
m3 − 1)

(em3 − em4)
,

A4 =
A6(e

m3 − 1)

(em3 − em4)
−A6,

m5,6 =
±
√

4 (1 + k0)
(
M2 sin2 α+ 2iH2

)
2 (1 + k0)

,

A7 = 0,

A8 = 0.
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