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An analytical study for the creeping flow of a couple stress fluid past a cylinder embedded
in a porous medium is presented using the slip condition. The uniform flow is considered far
away from a cylinder. The boundary conditions used are zero couple stress and tangential slip
conditions. The modified Bessel functions represent the stream function (the velocity). The drag
exerted on a solid cylinder immersed in a porous medium is derived. The impacts of the couple
stress, permeability, and slip parameters on the normalized drag force are presented graphically.
The drag forces of well-known exceptional cases are reduced. The drag force is a decreasing
function of the permeability and couple stress parameters and an increasing function of the
slip parameter.
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Notations

a – radius of solid cylinder [m],
dij – deformation rate tensor,
DN – normalized drag force,
eijk – alternating tensor,
FD – drag force [N],
k – permeability [m2],

mij – couple stress tensor,
p – fluid pressure [N/m2],
q – fluid velocity [m/s],

qr, qθ – velocity components of fluid [m/s],
r – radial coordinate measured from cylinder axis [m],

Re – Reynolds number
(
2aUρ
µ

)
,

tij – stress tensor [N/m2],
U – uniform velocity of fluid [m/s].
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Greek symbols
α – dimensionless permeability parameter,
β – slip coefficient,
δij – Kronecker delta,

η, η′ – couple stress viscosities [N · s],
θ – angular coordinate [deg],
λ – length parameter of couple stress fluid [m],
µ – viscosity coefficient of fluid [(N · s)/m2],
ρ – fluid density [kg/m3],
τ – couple stress viscosity ratio parameter,
ψ – stream function,
ω – vorticity vector [s−1],

ωij – spin tensor,
(r, θ, z) – cylindrical polar coordinates system.

Operators
, – differentiation with respect to variable,

∇2 – Laplacian operator [m−2],
∇ – gradient operator [m−1].

1. Introduction

The study of creeping flow through cylindrical particles in a porous medium
has always been a topic of interest. It is an exciting area for research in biomed-
ical engineering, chemical engineering, biophysics of membranes, industrial ap-
plications, hydrology, and geothermal studies because it is used for purification
processes, filtration, oil recovery techniques, thermal insulation, heat storage
systems, and emergency cooling of nuclear reactors [1–4]. Either Darcy’s law [5]
or Brinkman’s equation [6] are commonly adopted to model the flow in the
porous medium. In particular, Brinkman’s model validation has shown substan-
tial exposition in the literature [7–9].

Spielman and Goren [10] studied Brinkman’s model for the flow past
porous media over a circular cylinder and presented their findings in the form
of modified Bessel functions. Pop and Cheng [11] examined the steady flow
through a circular cylinder embedded in a medium with constant porosity using
Brinkman’s model. They found that there is no flow separation when a cir-
cular cylinder is implanted in a medium with constant porosity. Wang [12]
investigated Newtonian flow in a Darcy-Brinkman’s porous medium with im-
permeable inclusions. It was found that when permeability tends to zero, the
solution approaches the Stokes flow for a sphere, confirming the Stokes paradox
(the absence of Stokes flow over a cylinder) for a cylinder.

Leontev [13] examined the viscous fluid flow past a cylinder and a sphere
within a porous medium with the slip effect. The author found that the slip
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condition influences the flow behavior at the boundary. Madasu and Srini-
vasacharya [14] investigated a micropolar fluid flowing through a cylinder
and a sphere placed in a Brinkman’s porous medium. They concluded that the
drag force is a decreasing function of the permeability of a porous medium.
Martin [15] discussed two-dimensional Brinkman flows and their relation with
Stokes flows. The author observed that Brinkman’s model provides a regular-
ization of the flow problem as it does not exhibit a Stokes-like paradox.

Non-Newtonian fluid flow holds significant importance in modern technol-
ogy and industries. In the field of non-Newtonian fluids, couple stress fluids
explain all the essential features and effects of couple stresses. The main effect
of couple stresses is introducing a size-dependent effect determined by material
constants and dynamic viscosity, which is not present in the classical viscous
theory. Stokes [16] introduced the couple stress theory. Examples of couple
stress fluid are blood, electro-rheological fluid, synthetic fluids, and lubricants.

Murthy and Nagaraju [17] studied a couple stress fluid flow past a cylin-
der subjected to longitudinal and torsional oscillations. They determined that
the amplitude of the oscillations for the drag in the viscous fluid case is smaller
than that of the couple stress fluid case. Khan et al. [18] developed a solu-
tion for a couple stress fluid within a porous rectangular channel. Devakar
et al. [19] analytically solved the couple stress fluid flow between the concen-
tric cylinders with slip conditions. They observed that the presence of couple
stress decreases the fluid velocity. The flow of a couple stress fluid past two
parallel porous plates was studied by Srinivasacharya et al. [20]. Nagaraju
et al. [21] investigated heat transfer in a couple stress fluid within two rotating
cylinders in a porous lining with a magnetic effect. The entropy generation rate
for the couple stress fluid flow past a porous medium was examined by Ade-
sanya et al. [22]. Hassan [23] discussed a couple stress hydro-magnetic fluid
flow past a porous channel. Yadav et al. [24] examined internal heat generation
and variable viscosity effects in Darcy-Brinkman convection motion in a porous
layer saturated by a couple stress fluid. Palaiah et al. [25] studied the effects of
thermal radiation and viscous dissipation on magnetized couple stress fluid flow
through a cylinder. Madasu and Sarkar [26, 27] separately studied the gov-
erning equations for the flow of couple stress fluid through an isotropic porous
medium and the MHD effect on the flow of couple stress fluid past a sphere,
respectively.

Fluid flow problems related to various geometries depend on the bound-
ary conditions applied at the solid-fluid or solid-porous interfaces. Tradition-
ally, the no-slip condition has been employed at the interfaces. However, re-
cent studies have shown that the no-slip condition might not always hold, and
slippage of fluid particles could occur on the solid boundary surface [28, 29].
Navier [30] proposed a general boundary condition that includes the potential
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occurrence of fluid slip at a rigid boundary. Sherief et al. [31] examined the
motion of a slipping sphere in a micropolar fluid along the axis of a circular
cylindrical pore. They observed that the slip coefficient value increase leads to
an augmentation of the drag force. Ashmawy [32] studied the impact of slip
on a solid sphere immersed in an unbounded couple stress fluid. The study con-
cluded that the drag force acting on a sphere is a decreasing function of the
couple stress viscosity ratio parameter and an increasing function of the slip
parameter. Madasu et al. [33] analyzed the slip effect on a spheroid embedded
in a Brinkman medium. Madasu and Sarkar [34] studied the couple stress
fluid flow through a sphere embedded in a porous medium with a slip effect.
They found that the drag force is an increasing function of the slip parame-
ter. Madasu and Sarkar [35] examined the influence of the MHD and slip
on a rigid sphere in a cell model. Texier et al. [36] studied the impact of the
physical parameters on the propulsion of a rotating helical filament in a granu-
lar medium. Chen et al. [37] examined helical locomotion in Brinkman’s porous
medium. Nganguia et al. [38] studied squirming in a viscous fluid enclosed by
Brinkman’s model.

To the authors’ best knowledge, the flow behavior of a couple stress fluid
through a cylinder implanted in Brinkman’s porous medium has not been inves-
tigated yet. The article aims to examine the slip coefficient influence on the cou-
ple stress fluid flow around a cylinder placed within Brinkman’s porous medium.
Specifically, the study focuses on the cylinder surface, where both a zero couple
stress and a slip condition are applied. The drag force exerted on an imperme-
able cylinder is obtained, and some well-known cases are discussed. The effects
of couple stress, permeability, and slip parameters on the drag force are repre-
sented graphically.

2. Mathematical modelling

The flow of a couple stress fluid through a rigid cylinder with a radius r = a
situated in a porous medium is shown in Fig. 1. It is assumed that a uniform

Fig. 1. A schematic representation of the problem.
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velocity U is far away from the cylinder. The analysis considers a small Reynolds
number, i.e., only viscous terms are present in the fluid momentum.

The governing equations of the motion of a couple stress fluid through a solid
cylinder implanted in a porous medium in the absence of body couple and body
force are given in [16, 22, 23, 26, 34]

∇ · q = 0,(2.1)

η∇×∇×∇×∇× q +∇p+
µ

k
q + µ∇×∇× q = 0,(2.2)

where q, p, µ, k are the velocity vector, fluid pressure term, classical viscosity
coefficient, and permeability, respectively, and η is the first viscosity coefficient of
a couple stress fluid. When the viscosity coefficient η approaches zero, Eq. (2.2)
reduces to Brinkman’s equation.

The stress tensor is

(2.3) tij = −pδij + 2µdij −
1

2
eijkmsk,s,.

The couple stress tensor is

(2.4) mij = mδij + 4(η′ωi,j + ηωj,i),

where m, ωi,j , eijk, and δij represent the trace of the couple stress tensor, the
spin tensor, the alternating tensor, and the Kronecker delta, respectively. Addi-
tionally, η′ is the second viscosity coefficient of a couple stress fluid and satisfies
the inequalities η ≥ 0 and η ≥ η′.

The dij deformation rate tensor is written as

(2.5) di,j =
1

2
(qi,j + qj,i).

The vorticity vector ωi is

(2.6) ωi = −1

2
eijkqk,j .

To convert the governing equations into a non-dimensional form, we must
use the following non-dimensional variables:

(2.7) r = ar̃, ∇ =
∇̃
a
, p =

µU

a
p̃, q = U q̃.

Inserting Eq. (2.7) into the governing equations and removing the tildes, we
obtain

∇ · q = 0,(2.8)

1

λ2
∇×∇×∇×∇× q +∇p+ α2q +∇×∇× q = 0,(2.9)



542 P. SARKAR, K.P. MADASU

where α2 = a2

k and λ =
√

µa2

η are the permeability and length-dependent pa-
rameters, respectively.

Consider a cylindrical coordinate system (r, θ, z). As the flow is axisymmet-
ric, the velocity vector is independent of z.

The velocity vector q is written as

(2.10) q = qr(r, θ)er + qθ(r, θ)eθ,

where er and eθ are the unit vectors in the r and θ direction, respectively.
The qr and qθ are defined as

(2.11) qr =
1

r

∂ψ

∂θ
, qθ = −∂ψ

∂r
.

By removing the pressure term from Eq. (2.9) using Eq. (2.11), we obtain

(2.12) ∇2(∇2 − ξ21)(∇2 − ξ22)ψ = 0,

where

∇2 =
1

r

∂

∂r
+

∂2

∂r2
+

1

r2
∂2

∂θ2
,(2.13)

ξ21 =
λ2 + λ

√
λ2 − 4α2

2
,(2.14)

ξ22 =
λ2 − λ

√
λ2 − 4α2

2
.(2.15)

3. Solution of the problem

The sixth-order partial differential Eq. (2.12) is solved with the help of the
method of separation variables, giving the following solution:

(3.1) ψ =

[
r +

A

r
+BK1(ξ1r) + CK1(ξ2r)

]
sin θ,

where A, B, and C are unknowns to be determined, and K1(∗) is the modified
Bessel function of the second kind of order one.

The non-zero vorticity vector is

(3.2) ωz = −1

2

[
Bξ21K1(ξ1r) + Cξ22K1(ξ2r)

]
sin θ.

Additionally, the pressure term is

(3.3) p = −α2

(
r − A

r

)
cos θ + const.
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4. Boundary condition

The appropriate boundary conditions for the slip flow problem [13, 32–35,
39] are

qr = 0,(4.1)

β1qθ = trθ,(4.2)

mrz = 0,(4.3)

where β1 = aβ
µ is the slip parameter, and β is the coefficient of sliding friction.

The slip parameter depends on the solid surface and fluid properties. When
β1 →∞ in Eq. (4.2), it is reduced to the no-slip condition.

The condition at a far distance from the cylinder is ψ = r sin θ.
The stress components trr and trθ are

(4.4) trr =

[
α2(r −Ar−1)− 4Ar−3 − 2Br−2

(
2K1(ξ1r) + ξ1rK0(ξ1r)

)
− 2Cr−2(2K1

(
ξ2r) + ξ2rK0(ξ2r)

)]
cos θ,

(4.5) trθ = −
[
4Ar−3 +Br−2

(
(4 + r2α2)K1(ξ1r) + 2ξ1rK0(ξ1r)

)
+ Cr−2

(
(4 + r2α2)K1(ξ2r) + 2ξ2rK0(ξ2r)

)]
sin θ.

The couple stress component mrz is

(4.6) mrz = 2η

[
Bξ31

(
K0(ξ1r) + r−1ξ−11 K1(ξ1r)

)
+ Cξ32

(
K0(ξ2r) + r−1ξ−12 K1(ξ2r)

)]
sin θ.

Using the boundary condition Eqs. (4.1)–(4.3), we obtain

(4.7) a+Aa−1 +BK1(ξ1a) + CK1(ξ2a) = 0,

(4.8) A(4a−3 + β1a
−2)

+Ba−2
[
(4 + a2α2 + aβ1)K1(ξ1a) + ξ1a(2 + aβ1)K0(ξ1a)

]
+ Ca−2

[
(4 + a2α2 + aβ1)K1(ξ2a) + ξ2a(2 + aβ1)K0(ξ2a)

]
= β1,
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(4.9) 2

[
Bξ31

(
K0(ξ1a) + a−1ξ−11 K1(ξ1a)

)
+ Cξ32

(
K0(ξ2a) + a−1ξ−12 K1(ξ2a)

)]
= 0.

By solving the system of linear Eqs. (4.7)–(4.9), we have

(4.10)

A = −
a
(
K0(ξ1a)aξ1S8 −K1(ξ1a)S9

)
∆

,

B = −
2S4ξ

2
2

(
K0(ξ2a)aξ2 +K1(ξ2a)

)
∆

,

C =
2S4ξ

2
1

(
K0(ξ1a)aξ1 +K1(ξ1a)

)
∆

,

where S1 − S9 and ∆ are defined in the Appendix.
As the couple stress parameter λ → ∞ (ξ1 →∞, ξ2 → α, a = 1), the un-

knowns: A, B, and C are reduced to the case of a viscous fluid past a slip
cylinder in a porous medium. Here, the flow is governed by Brinkman’s equa-
tion. The values of A, B, and C are

(4.11)

A = −
αK0(α)(β1 + 2) +K1(α)

(
2(β1 + 2) + α2

)
αK0(α)(β1 + 2) + α2K1(α)

,

B = 0,

C =
2(β1 + 2)

αK0(α)(β1 + 2) + α2K1(α)
.

These results agree with the findings of Leontev [13].
As the couple stress parameter λ → ∞ (ξ1 →∞, ξ2 → α, a = 1) and slip

parameter β1 → ∞, the values of A, B, and C in the case of the viscous flow
past a no-slip cylinder embedded in a porous medium are as follows:

(4.12)

A = −
[
1 + 2K1(α)

(
αK0(α)

)−1]
,

B = 0,

C = 2
(
αK0(α)

)−1
.

These values match with the results presented by Pop and Cheng [11] and
Wang [12].
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5. Drag force

The drag force exerted by a couple stress fluid on a slip cylinder in a Brinkman
porous medium is obtained by the integral formula:

(5.1) FD =

2πˆ

0

r(trr cos θ − trθ sin θ)|r=a dθ.

By inserting the values of Eqs. (4.4) and (4.5) into the above integral formula,
we obtain

(5.2) FD = µπUF,

where

(5.3) F = α2
(
a2 −A+BaK1(ξ1a) + CaK1(ξ2a)

)
.

Putting A, B, and C values in Eq. (5.2), we have

(5.4) FD =
2µπUaα2

(
K0(ξ1a)aξ1S8 +K1(ξ1a)S15

)
∆

,

where S8 − S15 and ∆ are given in the Appendix.
As the permeability parameter α → ∞ (ξ1 →∞, ξ2 →∞, a = 1), the slip

parameter β1 → ∞, and the couple stress parameter λ → ∞ in Eq. (5.4),
the drag force becomes undefined. Therefore, this shows the Stokes paradox,
i.e., no solution for a viscous fluid flow across a solid cylinder [10, 12]. However,
Martin [15] recently has demonstrated that the Brinkman flow does not exhibit
the Stokes paradox.

As the couple stress parameter λ→∞ (ξ1 →∞, ξ2 → α, a = 1) and the slip
parameter β1 →∞ in Eq. (5.4), the resulting drag exerted on a no-slip cylinder
embedded in a porous medium is

(5.5) FD = 2πµUα2

[
1 + 2K1(α)

(
αK0(α)

)−1]
.

This result coincides with the findings of Spielman and Goren [10] and
Wang [12].

6. Results and discussion

The calculations of the normalized drag force DN = FD
1
2
ρU22a

= 2πaF
Re

exerted

by a couple stress fluid on a cylindrical surface are presented graphically in
Figs. 2–4 for various values of the following parameters:
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• slip parameter: β1 (0 ≤ β1 <∞),
• couple stress parameter: λ (3 ≤ λ <∞),
• permeability parameter: k1

(
= 1

α2 = k
a2

(k1 ≥ 0)
)
.

The variation of the drag force DNRe against β1 for different values of the
couple stress parameter λ with fixed values of the permeability parameter k1
and radius of cylinder a is observed in Fig. 2. This indicates that the drag force
decreases as λ increases, while it increases as the value of β1 increases. This
result is in agreement with the results presented by Madasu and Sarkar [34].
The curve λ→∞ represents the flow without couple stresses, i.e., a Newtonian
fluid. It can be observed that the drag force exerted on a solid cylinder immersed
in a porous medium of couple stress fluid is greater than the drag force acting on
a solid cylinder embedded in a porous medium of a Newtonian fluid (λ→∞).

Fig. 2. The variation of DNRe with β1 when a = 1 and k1 = 1.

The variation of DNRe acting on a cylinder embedded in a porous medium
saturated with a couple stress fluid against the slip parameter β1 with several
values of permeability parameter k1 and fixed values of the couple stress pa-
rameter and cylinder radius is presented in Fig. 3. The observed trend indicates
that the drag force is a decreasing function of the permeability parameter.

Figure 4 shows the variation of the drag force against k1 with different values
of β1 and fixed values of the couple stress parameter and cylinder radius. It is
noticed that when β1 increases, the drag force increases. One can see that the
drag force acting on a no-slip cylinder is higher than the drag force acting on
a slip cylinder. It is inferred that the impact of the slip on the drag force is
significant in fluid flows past solid inclusions in a porous medium.
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Fig. 3. The variation of DNRe with β1 when a = 1 and λ = 7.

Fig. 4. The variation of DNRe with k1 when a = 1 and λ = 7.

7. Conclusions

We have investigated the couple stress fluid flow through a solid cylinder
implanted in a porous medium by considering non-zero flow velocity and zero
couple stress at the boundary. The pressure, stream function, stress components,
and couple stress components are determined in this study. The drag exerted by
a couple stress fluid on an impermeable cylinder was derived. The specific cases
examined agree with the published studies of Spielman and Goren [10], Pop
and Cheng [11], Wang [12], and Leontev [13]. Furthermore, the influences of
couple stress, permeability, and slip parameters on the drag force were presented
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graphically. We conclude that the drag force exerted on a solid cylinder immersed
in a porous medium of a couple stress fluid is greater than that in a Newtonian
fluid. Additionally, the drag force acting on a no-slip cylinder is higher than
that on a slip cylinder. This investigation finds applications in heat, momentum,
mass transfer in porous media [12] and helical locomotion in Brinkman’s medium
[36–38].

Appendix

The constants that appear in Eqs. (4.10) and (5.4) are as follows:

S1 = ξ21 − ξ22 ,

S2 = ξ21 − 2ξ22 ,

S3 = 2ξ21 − ξ22 ,

S4 = aβ1 + 2,

S5 = a2α2ξ21 + S3S4,

S6 = a2α2ξ22 − S2S4,

S7 = a2α2 + 2S4,

S8 = K0(ξ2a)aξ2S1S4 +K1(ξ2a)S5,

S9 = K0(ξ2a)aξ2S6 −K1(ξ2a)S1S7,

S10 = a2α2ξ21 − ξ22S4,

S11 = a2α2ξ22 − ξ21S4,

S12 = K0(ξ2a)aξ2S1S4 +K1(ξ2a)S10,

S13 = K0(ξ2a)ξ2S11 −K1(ξ2a)aα2S1,

S14 = ξ21S4 − ξ22S7,

S15 = K0(ξ2a)aξ2S14 +K1(ξ2a)S1S7,

∆ = K0(ξ1a)ξ1S12 −K1(ξ1a)S13.
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