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An initial stability of Kirchhoff plates supported on boundary and resting on internal
supports is analysed in this paper. The internal supports are understood to be part of a plate
surface or a line belonging to the plate. The proposed approach avoids Kirchhoff forces at the
plate corner and equivalent shear forces at the plate boundary. Two unknown and independent
variables are always considered at a boundary element node depending on the type of a plate
edge such as the shear force and bending moment for a clamped edge, and the shear force
and angle of rotation in normal direction for a simply-supported edge. For a free edge, the
deflection and angle of rotation in normal direction are considered as two independent variables
with additional angle of rotation in tangent direction which depends on boundary deflections.
The two governing integral equations are derived using Betti’s theorem. These equations have
the form of boundary-domain integral equations. The constant type of boundary element is
used. The singular and non-singular formulations of the boundary-domain integral equations
with one and two collocation points associated with a single boundary element located slightly
outside of a plate edge are presented. To establish a plate curvature by double differentiation
of the basic boundary-domain integral equation, the plate domain is divided into rectangular
subdomains associated with suitable collocation points. According to the alternative approach,
a plate curvature is also established by considering three collocation points located in close
proximity to each other along a line parallel to one of the two axes of global coordinate system
and establishment of appropriate difference operators.

Key words: boundary element method, Kirchhoff plates, initial stability, fundamental solu-
tion.

1. Introduction

The boundary element method (BEM) can be applied to a wide range of
engineering analyses of structures. Burczyński [1] described in a comprehen-
sive manner the boundary element method and its application in a variety
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of fields, the theory of elasticity together with appropriate solutions and ba-
sic types of boundary elements. The main advantage of BEM is its relative
simplicity of formulating and solving problems of the potential theory and
the theory of elasticity. The application of the boundary element method to
a plate analysis has particular advantages. Many authors used BEM to solve
static, dynamic and initial stability problems of thin plates. There are well-
known publications of Altiero and Sikarskie [2], Bèzine and Gamby [3],
Stern [4] and Hartmann and Zotemantel [5] who applied BEM to solve
thin plate bending problem. Abdel-Akher and Hartley [6] presented evalu-
ation of boundary and boundary-domain integrals of fundamental functions used
in plate analysis. A number of contributions devoted to analysis of plates were
presented by Debbih [7, 8], Beskos [9], Wen, Aliabadi and Young [10],
Katsikadelis [11, 12], Katsikadelis and Yotis [13], Katsikadelis, Sa-
pountzakis and Zorba [14],Katsikadelis andKandilas [15],Katsikadelis
and Sapountzakis [16]. Wrobel and Aliabadi [17] described application of
BEM to a thick plate analysis together with procedures for calculating singu-
lar and hypersingular integrals in broad aspect. A very interesting approach was
presented by Litewka and Sygulski [18, 19] who applied the [20] fundamental
solutions by Ganowicz [20] to a static analysis of Reissner’s plates. Noteworthy
is the publication by Shi [21] who applied a BEM formulation to vibration and
initial stability problem of orthotropic thin plates. Ptaszny [22] applied the fast
multipole boundary element method to the analysis of plates with many holes.
Rashed [23] applied the coupled BEM – flexibility force method to static anal-
ysis of thin plates with internal column supports. The major drawback of this
approach is the necessary condition of boundary supports, which satisfies kine-
matic constraints. In order to simplify the calculation proceduresGuminiak and
Sygulski [24] proposed a modified formulation of the boundary integral equa-
tion for a thin plate. This approach was applied to static, dynamic and stability
analysis of thin plates and it is presented together with a number of numerical
examples in several papers, e.g., [25–30]. Guminiak [31] applied the difference
equation model of establishment of curvatures connected to the aforementioned
modified BEM approach to solve initial stability problem of thin plates pro-
viding also the in-depth review of literature devoted to the BEM application in
plate analysis.Myślecki [32, 33] proposed BEM to static analysis of plane gird-
ers and BEM combined with approximate fundamental solutions for a problem
of plate bending resting on elastic foundation. The author used a non-singular
approach of boundary integral equations wherein the derivation of the second
boundary integral equation was executed for additional collocation points lo-
cated outside of a plate domain. The same approach of derivation of the bound-
ary integral equation was applied by Myślecki and Oleńkiewicz [34, 35] to
solve the free vibration problem of thin plates. Works by Katsikadelis [36, 37]
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in which BEM was applied to a wide range of engineering analyses of plates
are particularly noteworthy. In this work, the concept of the analog equation
method (AEM) is presented as a tool that allows to fully overcome the main
drawback of direct BEM, namely its limitation only to linear problems. The
AEM is based on the principle of the analog equation of Katsikadelis for differ-
ential equations [38]. This concept was established to analyse plate buckling by
Nerantzaki and Katsikadelis [39] and Chinnaboon, Chucheepsakul and
Katsikadelis [40]. Similarly, Babouskos and Katsikadelis [41, 42] solved
the problem of flutter instability of damped plate subjected to a conservative
and non-conservative loading. In the present paper, the analysis of initial sta-
bility of internally supported thin plates by the direct version of BEM will be
presented. The analysis will focus on the modified, simplified [31] formulation of
thin plate bending. The Bèzine [3] technique will be applied to introduce inter-
nal supports and to establish the vector of curvatures at the internal collocation
points.

2. Modelling of internal supports

Internal constraints can have the character of supports at selected points,
column or continuous linear supports. When using direct Bèzine technique it
is necessary to expand two boundary-domain integral equations [3] to include
additional elements where the unknown values are suitable reactions such as
concentrated forces (Fig. 1), forces distributed over the column cross-sections
and distributed along the continuous linear constraints. The internal column
support can be modelled as a surface with one collocation point and constant
distribution of reaction (Figs. 2a, 2b and 2c). If the column support has large
dimensions in comparison to plate dimensions, several subsurfaces can be intro-
duced to the column surface (Fig. 2d). To calculate elements of the characteristic
matrix, it is necessary to integrate suitable fundamental functions on the column
surface or subsurfaces. In the case of the column of arbitrary shape (Figs. 2b

Fig. 1. A plate internally supported at selected points.
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a) b) c) d)

Fig. 2. Examples of the column (plane) supports.

and 2c) the formulae derived by Abdel-Akher and Hartley [6] can be used.
The internal linear continuous supports can be modelled as a set of sections (ele-
ments) of constant type (Fig. 3). Because the fundamental solution for a thin
plate has a singularity of the second order, the collocation point of internal sin-
gle element can be located at its centre. Using another approach, the internal
continuous supports can be treated as a column rectangular support with one
edge dimension much smaller than the other one (Fig. 4).

Fig. 3. A plate resting on linear continuous internal supports.

Fig. 4. Internal continuous supports: single element of constant type.

3. Integral formulation of plate bending and initial stability
problem considering internal supports

The governing differential equation of plate initial stability has the form
[43, 44]:

(3.1) D · ∇4w = −p,
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where w = w(x, y) is the unknown function of the plate deflection and p is the
equivalent load that has the form:

(3.2) p = Nx ·
∂2w

∂x2
+ 2Nxy ·

∂2w

∂x∂y
+Ny ·

∂2w

∂y2
.

In the majority of contributions devoted to the application of BEM to the
thin (Kirchhoff) plate theory, derivation of the boundary integral equation in-
volves the known boundary variables of the classical plate theory, i.e., the shear
force and the concentrated corner forces. Thus, on the plate boundary there are
considered two physical quantities such as the equivalent shear force Vn, reaction
at the plate k-th corner Rk, the bending momentMn, corner concentrated forces
and two geometric variables: the displacement wb and the angle of rotation in
the normal direction ϕn. The boundary integral equation can be derived using
Betti’s theorem. Two plates are considered, an infinite plate subjected to the
unit concentrated force and a real one subjected to the real in-plane loadings
Nx, Nxy and Ny. The plate bending problem is described in a unique way by
two boundary-domain integral equations. The first equation has the form [3, 36,
37]:

(3.3) c(x) · w(x) +
∫

Γ

[V ∗
n (y,x) · wb(y)−M∗

n(y,x) · ϕn(y)] · dΓ(y)

−
K∑

k=1

R∗(k,x) · w(k) =
∫

Γ

[Vn(y) · w∗(y,x)−Mn(y,x) · ϕ∗
n(y,x)] · dΓ(y)

−
K∑

k=1

Rk · w∗(k,x)−
∫

Ωr

qr · w∗(r,x) · dΩr −
∫

Γl

ql · w∗(l,x) · dΓl

+

∫

Ω

(
Nx ·

∂2w

∂x2
+ 2Nxy ·

∂2w

∂x∂y
+Ny ·

∂2w

∂y2

)
· w∗(y,x) · dΩ(y),

where the fundamental solution of this biharmonic equation

(3.4) ∇4w∗(y,x) =
1

D
· δ(y,x)

is the free-space Green’s function given as

(3.5) w∗(y,x) =
1

8πD
· r2 · ln(r)

for a thin isotropic plate, r = |y − x|, δ is the Dirac delta function, D = E h3

12(1−v2)

is the plate stiffness, x is the source point and y is the field point. The coefficient
c(x) is taken as



278 M. GUMINIAK

c(x) = 1, when x is located inside the plate domain,
c(x) = 0.5, when x is located on the smooth boundary,
c(x) = 0, when x is located outside the plate domain.
The second boundary-domain integral equation can be obtained by replacing

the unit concentrated force P ∗ = 1 by the unit concentrated moment M∗
n = 1,

which is equivalent to the differentiation of the first boundary integral equation
(3.3) with respect to the coordinate n at a point x belonging to the plate domain,
letting this point approach the boundary and taking n to coincide with the
normal [3, 36, 37]

(3.6) c(x) · ϕn(x) +

∫

Γ

[
V

∗

n(y,x) · wb(y)−M
∗

n(y,x) · ϕn(y)
]
· dΓ(y)

−
K∑

k=1

R
∗
(k,x) · w(k) =

∫

Γ

[Vn(y) · w∗(y,x)−Mn(y) · ϕ∗
n(y,x)] · dΓ(y)

−
K∑

k=1

Rk · w∗(k,x)−
∫

Ωr

qr · w∗(r,x) · dΩr −
∫

Γl

ql · w∗(l,x) · dΓl

+

∫

Ω

(
Nx ·

∂2w

∂x2
+ 2Nxy ·

∂2w

∂x∂y
+Ny ·

∂2w

∂y2

)
· w∗(y,x) · dΩ(y),

where
{
V

∗
n(y,x),M

∗
n(y,x), R

∗
(y,x), w∗(y,x), w∗(r,x), w∗(l,x), ϕ∗

n(y,x)
}

=
∂

∂n(x)
{V ∗

n (y,x),M
∗
n(y,x), R

∗(y,x), w∗(y,x), w∗(r,x), w∗(l,x), ϕ∗
n(y,x)} .

The second boundary-domain integral equation can be also derived by di-
rect application of the boundary domain integral equation (3.3) to a new set
of collocation points located on the same normal line outside the plate edge.
This double collocation point approach was presented in the papers [32–35].
The detailed procedure for derivation of the fundamental solution, integral rep-
resentation of the solution and the two boundary-domain integral equations are
presented by Katsikadelis in [36, 37].
The plate bending problem can also be formulated in a modified, simplified

way using integral representation of the plate biharmonic equation. Because the
concentrated force at the corner is used only to satisfy the differential biharmonic
equation of the thin plate, one can assume that it could be distributed along
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a plate edge segment close to the corner [31]. As a result, the boundary integral
equations (3.3) and (3.6) will take the form [29–31]:

(3.7) c(x)·w(x)+
∫

Γ

[
T ∗
n(y,x)·w(y)−M∗

ns(y,x)·
dw(y)

ds
−M∗

n(y,x)·ϕn(y)

]
·dΓ(y)

=

∫

Γ

[
T̃n(y) · w∗(y,x)−Mn(y) · ϕ∗

n(y,x)
]
· dΓ(y)

−
∫

Ωr

qr · w∗(r,x) · dΩr −
∫

Γl

ql · w∗(l,x) · dΓl

+

∫

Ω

(
Nx ·

∂2w

∂x2
+ 2Nxy ·

∂2w

∂x∂y
+Ny ·

∂2w

∂y2

)
· w∗(y,x) · dΩ(y),

(3.8) c(x)·ϕn(x)+

∫

Γ

[
T
∗
n(y,x)·w(y)−M

∗
ns(y,x)·

dw(y)

ds
−M∗

n(y,x)·ϕn(y)

]
·dΓ(y)

=

∫

Γ

[
T̃n(y) · w∗(y,x)−Mn(y) · ϕ∗

n(y,x)
]
· dΓ(y)

−
∫

Ωr

qr · w∗(r,x) · dΩr −
∫

Γl

ql · w∗ (l,x) · dΓl

+

∫

Ω

(
Nx ·

∂2w

∂x2
+ 2Nxy ·

∂2w

∂x∂y
+Ny ·

∂2w

∂y2

)
· w∗(y,x) · dΩ(y),

where
{
T
∗
n(y,x),M

∗
n(y,x),M

∗
ns(y,x), w

∗(y,x), w∗(r,x), w∗(l,x), ϕ∗
n(y,x)

}

=
∂

∂n(x)
{T ∗

n(y,x),M
∗
n(y,x),M

∗
ns(y,x), w

∗(y,x), w∗(r,x), w∗(l,x), ϕ∗
n(y,x)}

and

(3.9) T̃n(y) = Tn(y) +Rn(y).

The expression (3.9) denotes the shear force for clamped and for simply-suppor-
ted edges [31], where T̃n(y) = Vn(y) is on the boundary far from the corner
and T̃n(y) = Rn(y) is on a small fragment of the boundary close to the corner.
In the case of free edge one has to combine the angle of rotation in the tangent
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direction ϕs(y) with the fundamental function M∗
ns(y). Because the relation

between ϕs(y) and the deflection is known: ϕs(y) =
dw(y)
ds , the angle of rotation

ϕs(y) can be evaluated using the finite difference scheme of the deflection with
two or more adjacent nodal values [31]. In this analysis, the employed finite
difference scheme includes deflections at three adjacent nodes.

4. Construction of the set of algebraic equation

The plate boundary is discretized by constant elements. Three approaches
of constructing the boundary integral equations, applied also in [31], are consid-
ered: the first, singular, where the collocation point is located exactly at a plate
edge (Fig. 5),

Fig. 5. Collocation point assigned to the boundary
element of constant type.

the second, non-singular approach, where the boundary-domain integral equa-
tions can be formulated using one set of collocation points (Fig. 6a) and the third
one, where two sets of collocation points (Fig. 6b) located outside of the plate
boundary on the line normal to the plate edge are considered.

a) b)

Fig. 6. a) one collocation point, b) two collocation points assigned to
the boundary element of constant type.

It is assumed that a rectangular plate is compressed only by Nx forces. Then,
in the boundary integral equations (3.8) and (3.9) only the part Nx ·

(
∂2w

/
∂x2

)

is present. The unknown variable in internal collocation points is the parameter
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κ = ∂2w
/
∂x2, the plate curvature is in x direction [24, 31]. It is also assumed,

that the plate has a regular shape without any holes. The distribution of the
normal (in-plane) loading along the plate edge perpendicular to the x direction
has constant value. The plate domain Ω is divided into the finite number of
subdomains just to define the plate curvature at selected internal collocation
points associated with these subdomains Ωm. The normal loading Nx = Ncr is
constant along the single plate edge (Fig. 7).

Fig. 7. Distribution of in-plane loading.

The set of algebraic equation can be written in the form (Fig. 8):

(4.1)




GBB GBS GBq −λ ·GBκ

∆ −I 0 0

GqB GqS Gqq −λ ·Gqκ

GκB GκS Gκq −λ ·Gκκ+ I



·





B

ϕS

q

κ





=





0

0

0

0





,

where λ = Ncr and B is the boundary variables vector (column matrix) of the
dimension (2N × 1), where N is the number of boundary nodes (or the number
of elements of constant type), ϕS is the vector (column matrix) of boundary
angles of rotation in tangent direction depending on boundary deflections, this
vector has the dimension (S × 1), where S is the number of boundary nodes (or
the number of elements of constant type) along the free edge, q is the internal
support reaction vector (column matrix) of the dimension (L × 1), where L is
the number of internal supports constraints (subdomains ΩL or linear sections
ΓL), κ is the vector of curvatures established at the selected internal collocation
points associated with internal subdomains Ωm, GBB and GBS are the matri-
ces of the dimensions (2N × 2N) and (2N ×S) respectively, grouping boundary
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integrals and depending on the type of plate boundary, where N is the num-
ber of boundary nodes (or the number of elements of constant type) and S is
the number of boundary elements along free edge, GBq is the matrix of the
dimension (2N × L) grouping integrals over the internal supports (column or
continuous linear) subdomains, integrals over the Ωr for column supports and
over the Γl for continuous linear supports, GBκ is the matrix of the dimension
(2N ×M) grouping integrals over the internal subdomains Ωm, ∆ is the matrix
grouping difference operators connecting angles of rotation in tangent direction
with deflections of suitable boundary nodes if a plate has free edge. GqB and
GqS are the matrices of the dimension (L × 2N) grouping the boundary inte-
grals of the appropriate fundamental functions depending on the type of plate
boundary, where L is the number of the internal collocation points associated
with internal supports and N is the number of boundary nodes, Gqq is the
matrix of the dimension (L × L) grouping integrals over the internal supports
subdomains, Gqκ is the matrix of the dimension (L ×M) grouping integrals
over the internal subdomains Ωm.
The fourth matrix Eq. (4.1)4 is obtained by setting up the boundary integral

equations for internal collocation points associated with internal subdomains
Ωm. According to the typical approach, in this equation, the plate curvature
can be derived by double differentiation of the boundary integral Eq. (3.7) or by
constructing a difference operator with respect to the central collocation point
‘1’ (Fig. 9) belonging to each internal subsurface and using Eq. (3.7) in the
unchanged form, GκB is the matrix of the dimension (M × 2N) grouping the
boundary integrals of the second derivatives with respect to the coordinate x of
the appropriate fundamental functions depending on the type of plate boundary,
where M is the number of internal collocation points and N is the number of
boundary nodes, GκS is the matrix of the dimension (M × S) grouping the
boundary integrals of the second derivatives with respect to the coordinate x of
the appropriate fundamental functions depending on the free edge, Gκq is the
matrix of the dimension (M × L) grouping integrals over the internal support
(column or linear) subdomains, whereΩL = Ωr for column supports and ΩL = Γl

for continuous linear supports, Gκκ is the matrix of the dimension (M ×M)
grouping the integrals of the second derivatives with respect to the coordinate
x over the internal subsurfaces Ωm ∈ Ω.
The boundary integrals are calculated in the local coordinate system ni, si

and then transformed to the coordinate system nk, sk connected to the suitable
boundary node k (Fig. 8)
All the matrices of boundary and domain integrals present in the matrix

equation (4.1) are shown in Fig. 8. Similarly, the domain integrals are calcu-
lated in the local coordinate system assigned to the individual element (internal
collocation point).
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Fig. 8. Calculation of boundary and domain integrals.

In accordance with the simplified approach, the plate curvature can also be
established by the addition of two internal collocation points (‘2’ and ‘3’) [31].
Due to this concept it is necessary to write down three integral equations consid-
ering three collocation points (‘1’, ‘2’ and ‘3’) and to use Eq. (3.7) in unchanged
form. These two approaches are illustrated in Fig. 9.

a) b)

Fig. 9. Definition of curvature at the central collocation point ‘1’ [31].

According to the second approach the plate curvature at the central point ‘1’
is calculated by using the difference quotient

(4.2) κ = κx =
∆2w

∆x2
=

w2 − 2 ·w1 +w3

(∆x)2
.

Hence, the elements of the matrices GκB, GκS, Gκq and Gκκ can be evaluated
using three boundary integral equations based only on the boundary integral
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equation (3.7). Elimination of the boundary variables B, ϕS and the internal
support reaction vector q from matrix Eq. (4.1) leads to the standard eigenvalue
problem:

(4.3)
{
A− λ̃ · I

}
· κ = 0,

where λ̃ = 1/λ,

(4.4) A = Gκκ− G̃κB · G̃−1
BB ·GBκ−

[
Gκq − G̃κB · G̃−1

BB ·GBq

]

·
[
Gqq − G̃qB · G̃−1

BB ·GBq

]−1
·
[
Gκq − G̃qB · G̃−1

BB ·GBκ

]

and

(4.5)

G̃BB = GBB +GBS ·∆,

G̃qB = GqB +GqS ·∆,

G̃κB = GκB +GκS ·∆.

5. Modes of buckling

The elements of the eigenvector κ obtained in the solution of the standard
eigenvalue problem (4.3) represent the plate curvatures. The set of the algebraic
equations required to calculate the eigenvector w elements has the form:

(5.1)




GBB GBS GBq 0

∆ −I 0 0

GqB GqS Gqq 0

GwB GwS Gwq I



·





B

ϕS

q

w





=





λ ·GBw · κ
0

λ ·Gqw · κ
λ ·Gww · κ





.

In the set of Eqs. (5.1) the first, second and third Eqs. (5.1)1, (5.1)2 and (5.1)3
are obtained from the first, second and third equations of (4.1) and the fourth
equation (5.1)4 yields from the boundary integral equations used to calculate
plate deflections at internal collocation points. Elimination of the boundary
variables B, ϕS and the internal support reaction vector q from Eq. (5.1) gives
the elements of the displacement vector:

(5.2) w = λ ·
[
Gww − G̃wB · G̃−1

BB ·GBw −
[
Gwq − G̃wB · G̃−1

BB ·GBw

]

·
[
Gqq − G̃qB · G̃−1

BB ·GBq

]−1
·
[
Gwq − G̃qB · G̃−1

BB ·GBw

]]
· κ

and

(5.3) G̃wB = GwB +GwS ·∆.
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6. Numerical examples

The initial stability problem for rectangular plates resting on internal col-
umn or linear continuous supports is considered. The considered plates have all
the edges supported or are supported along two opposite edges. The in-plane
loading Nx is acting along the supported edges. The critical value of the in-plane
loading is computed. Each plate edge is divided by the boundary elements of
constant type of the same length. Internal continuous linear supports are di-
vided into sections (elements) of constant type of the same length. A column
(plane support) has a square cross-section associated with one collocation point
and the side length much smaller than the shorter side of the plate. The set
of the internal collocation points in which the curvature vector κ, associated
with internal subsurfaces is established, is regular.
Quasi-diagonal terms of the matrix GBB in Eqs. (4.1) and (5.1) are calcu-

lated analytically and remaining ones using the 12-point Gaussian quadrature.
All the terms of the matrices GBq, GBκ, GBw, Gqq, Gqκ, Gκq, Gκκ, Gqw,
Gwq and Gww in Eqs. (4.1) and (5.1) are evaluated analytically. The rest of the
terms in the matrices Gik are calculated numerically by the 12-point Gaussian
quadrature.
To compare the obtained results with the ones from [29, 30], the following

material properties are assumed. For plates resting on internal plane (column)
supports the Young’s modulus is E = 1.0 kPa and the Poisson’s ratio ν = 0.3
and for plates resting on internal continuous linear supports the Young’s mod-
ulus is E = 30.0 GPa and the Poisson’s ratio ν = 0.167.
The following notation is assumed:
BEM I – singular formulation of governing boundary-domain integral

equations (3.7) and (3.8) with the second equation obtained by single differentia-
tion of Eq. (3.7), the vector of curvatures is established by double differentiation
of the first governing boundary-domain integral equation (3.7).
BEM II – non-singular formulation of governing boundary-domain integral

equations (3.7) and (3.8), with the second equation (3.8) obtained by differentia-
tion of Eq. (3.7), the vector of curvatures is established by double differentiation
of the first governing boundary-domain integral equation (3.7). The collocation
point of a single boundary element is located outside, near the plate edge. For
any collocation point: ε1 = δ̃1/d where δ̃1 is distance of the collocation point
from the plate edge and d is the boundary element length.
BEM III – non-singular formulation of governing boundary-domain integral

equation (3.7) with the second boundary-domain integral equation obtained for
the set of additional collocation points with the same fundamental solution w∗,
the vector of curvatures is established by constructing the difference quotient
(4.2) and the fundamental solution w∗. Location of two collocation points for
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any boundary element is determined by ε1 and ε2 = δ̃2/d. For three collocation
points belonging to each internal subdomain element: ε∆ = ∆x/a.
FEM – regular finite element mesh, two types of elements: S4R (four nodes

with three degree of freedom per node) and S8R (eight nodes with three degree of
freedom per node) with reduced integration used in ABAQUS program assumed
for comparative analysis.
The critical force Ncr is expressed using the non-dimensional term:

(6.1) Ñcr =
Ncr

D
· lx · ly.

6.1. Example with the plate simply-supported on two opposite edges
with two remaining free edges resting on two internal column supports

under constant normal loading

Static and loading scheme is shown in the Fig. 10.

Fig. 10. The plate simply-supported on two opposite edges with two remaining free edges
resting on two internal column supports under constant normal loading.

The plate dimensions are ly = 0.25 · lx and the internal column (plane) sup-
ports dimension (square b× b) is b = 0.02 · ly . Each column surface is associated
with one collocation point.
Two boundary and domain discretization patterns are adopted:
a) the number of boundary elements is 96, the number of internal collocation
points is 144 and the internal subsurface dimension (square a× a) is a =
1/6 · ly,

b) the number of boundary elements is 120, the number of internal collocation
points is 400 and the internal subsurface dimension (square a× a) is a =
0.05 · ly.
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The results of calculation are presented in Tables 1–3. The influence of loca-
tion of the internal collocation points on the critical force values using BEM III
approach is presented in Tables 2 and 3. The first buckling mode is shown in
Fig. 11.

Table 1. Critical force values. ε1 = 0.01, ε2 = 0.1, ε∆ = 0.01.

Ñcr
BEM II(a)
[29]

BEM III(a)
present

BEM II(b)
[29]

BEM III(b)
present

FEM S4R
[29]

FEM S8R
[29]

1 8.8260 9.4300 8.9410 9.7432 8.5580 8.9490

2 19.6310 20.7885 19.6740 21.2720 17.8870 17.5840

3 36.8010 39.1424 37.0280 40.2456 35.7170 34.6450

Table 2. Critical force values, solution BEM III(a) for different values
of ε∆ = ∆x/a, ε1 = 0.01, ε2 = 0.1.

Ñcr
ε∆ = ∆x/a

0.0001 0.001 0.01 0.1 0.2

1 9.4304 9.4300 9.4300 9.4289 9.4300

2 20.7870 20.7884 20.7885 20.7869 20.7884

3 39.1460 39.1426 39.1424 39.1438 39.1424

Table 3. Critical force values. solution BEM III(b) for different values
of ε∆ = ∆x/a, ε1 = 0.01, ε2 = 0.1.

Ñcr
ε∆ = ∆x/a

0.0001 0.001 0.01 0.1 0.2

1 9.7431 9.7432 9.7432 9.7437 9.7458

2 21.2721 21.2720 21.2720 21.2741 21.2812

3 40.2448 40.2455 40.2456 40.2527 40.2732

Fig. 11. The first buckling mode.
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6.2. Example with the plate clamped on two opposite edges with two remaining
free edges resting on two internal column supports

under constant normal loading

Static and loading scheme is shown in Fig. 12. The plate properties were
assumed identically as in Example 6.1.

Fig. 12. The plate simply-supported on two opposite edges with two remaining free edges free
resting on two internal column supports under constant normal loading.

The results of calculation are presented in Tables 4–6. The influence of loca-
tion of internal collocation points on the critical force values using BEM III(a)
and BEM III(b) approaches is presented in Tables 5 and 6. The first buckling
mode is shown in Fig. 13.

Table 4. Critical force values. ε1 = 0.01, ε2 = 0.1, ε∆ = 0.01.

Ñcr
BEM II(a)
[29]

BEM III(a)
present

BEM II(b)
[29]

BEM III(b)
present

FEM S4R
[29]

FEM S8R
[29]

1 18.6948 20.3522 18.952 21.0271 18.0400 17.7350

2 37.4158 40.0875 37.669 41.2555 36.0710 34.9630

3 56.7005 60.5224 57.006 62.1079 55.6600 53.0770

Table 5. Critical force values. solution BEM III(a) for different values
of ε∆ = ∆x/a, ε1 = 0.01, ε2 = 0.1.

Ñcr
ε∆ = ∆x/a

0.0001 0.001 0.01 0.1 0.2

1 20.3504 20.3522 20.3522 20.3522 20.3522

2 40.0962 40.0875 40.0875 40.0875 40.0875

3 60.5097 60.5221 60.5224 60.5224 60.5228
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Table 6. Critical force values. solution BEM III(b) for different values
of ε∆ = ∆x/a, ε1 = 0.01, ε2 = 0.1.

Ñcr
ε∆ = ∆x/a

0.0001 0.001 0.01 0.1 0.2

1 21.0270 21.0271 21.0271 21.0286 21.0340

2 41.2552 41.2553 41.2555 41.2616 41.2806

3 62.1090 62.1076 62.1079 62.1224 62.1641

Fig. 13. The first buckling mode.

6.3. Example with the plate simply-supported on two opposite edges
with two remaining free edges resting on linear continuous internal support

under constant normal loading

Static and loading scheme is shown in the Fig. 14.

Fig. 14. The plate, simply-supported on two opposite edges with two
free edges resting on internal continuous support under constant normal

loading.

Each plate edge is divided into number of 40 boundary elements of the same
length. The number of internal linear continuous elements of the same length is
40 and the number of internal subsurfaces used to describe the plate curvature
is 200. The plate geometry is defined as: lx = 2.0 · ly = 20.0 m, hp = 0.2 m.
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The results of calculation are presented in Tables 7 and 8. The influence of
location of internal collocation points on critical force values using BEM III
approach is presented in Table 8. The first buckling mode is shown in Fig. 15.

Table 7. Critical force values. ε1 = 0.01, ε2 = 0.1, ε∆ = 0.01.

Ñcr
BEM II [30] BEM III present FEM S4R [30]

1 19.3976 21.3618 19.4324

2 40.2226 43.4987 40.7566

3 58.6534 59.8541 58.3006

Table 8. Critical force values. Solution BEM III for different values
of ε∆ = ∆x/a, ε1 = 0.01, ε2 = 0.1.

Ñcr
ε∆ = ∆x/a

0.0001 0.001 0.01 0.1 0.2

1 21.4618 21.4618 21.4618 21.4596 21.4539

2 43.4985 43.4987 43.4987 43.4983 43.4993

3 59.8548 59.8548 59.8541 59.8353 59.7845

Fig. 15. The first buckling mode.

6.4. Example with the plate simply-supported on two opposite edges resting
on two linear continuous internal supports under constant normal loading

Static and loading scheme is shown in Fig. 16. The material properties are
assumed identically as in Example 6.3.
Each plate edge is divided into number of 45 boundary elements of the same

length. The number of internal linear continuous elements of the same length
is 40 and the number of internal subsurfaces used to describe the plate curvature
is 300. The plate geometry is defined as: lx = 3.0 · ly = 30.0 m, hp = 0.2 m.
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Fig. 16. The plate simply-supported on two opposite and diagonal edges resting on linear
continuous internal support under constant normal loading.

The results of calculation are presented in Tables 9 and 10. The influence of
location of internal collocation points on the critical force values using BEM III
approach is presented in Table 10. The first buckling mode is shown in Fig. 17.

Table 9. Critical force values. ε1 = 0.01, ε2 = 0.1, ε∆ = 0.01.

Ñcr
BEM II present BEM III present FEM S4R

1 29.0968 32.4116 29.7456

2 43.8981 47.8172 44.0644

3 78.7263 85.0558 78.4790

Table 10. Critical force values. solution BEM III for different value
of ε∆ = ∆x/a, ε1 = 0.01, ε2 = 0.1.

Ñcr
ε∆ = ∆x/a

0.0001 0.001 0.01 0.1 0.2

1 32.4118 32.4115 32.4116 32.4152 32.4257

2 47.8162 47.8170 47.8172 47.8245 47.8457

3 85.0538 85.0553 85.0558 85.0776 85.1412

Fig. 17. The first buckling mode.
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6.5. Example with the plate simply-supported on all edges resting on two linear
continuous internal supports under constant normal loading

Static and loading scheme is shown in Fig. 18. The plate and material prop-
erties were assumed identically as in Example 6.4.

Fig. 18. The plate simply-supported on all edges resting on two linear continuous internal
supports under constant normal loading.

The results of calculation are presented in Tables 11 and 12. The influ-
ence of location of internal collocation points on the critical force values using
BEM III approach is presented in Table 12. The first buckling mode is shown
in Fig. 19.

Table 11. Critical force values. ε1 = 0.01, ε2 = 0.1, ε∆ = 0.01.

Ñcr
BEM I present BEM II present BEM III present FEM S4R

1 119.7662 119.7672 119.7701 121.2945

2 132.2487 132.2499 132.2535 132.1488

3 161.2000 161.2006 161.2066 163.0539

Table 12. Critical force values, solution BEM III for different values
of ε∆ = ∆x/a, ε1 = 0.01, ε2 = 0.1.

Ñcr
ε∆ = ∆x/a

0.0001 0.001 0.01 0.1 0.2

1 119.7721 119.7701 119.7701 119.7800 119.8105

2 132.2499 132.2535 132.2535 132.2703 132.3207

3 161.1999 161.2061 161.2066 161.2426 161.3524
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Fig. 19. The first buckling mode.

7. Conclusions

The initial stability of thin plates resting on internal supports was anal-
ysed using the boundary element method (BEM). The investigated problem
was solved according to the modified and simplified approach, in which the
boundary conditions are defined so that there is no need to introduce equivalent
boundary quantities dictated by the boundary value problem for the biharmonic
differential equation. The collocation versions of the BEM with singular and
non-singular calculations of integrals were employed and the constant type of
the boundary element was introduced. The Bèzine technique was used to estab-
lish the vector of internal support reaction forces and the vector of curvatures
inside a plate domain. The plate domain was divided into rectangular subsur-
faces which have the character of surface elements of the constant type. In the
presented examples, the plates are subjected to in-plane constant loading. The
loaded plate edges must be supported which is required in the proposed formu-
lation of buckling analysis [31]. A significant increase in the number of boundary
elements and internal subsurfaces does not lead to the significant improvement
of the results of calculations, which was shown in the first two examples. In the
first example some differences between the results of the critical force values
obtained using BEM are observable. This may be due to the shape of the con-
sidered plate which may affect the conditioning of the matrix A, present in the
matrix equation describing the standard eigenvalue problem. Similar differences
for the FEM application with two types of finite elements are noticeable, too.
The solution for the critical force is stable for a large range of values ε∆ =

∆x/a. According to the proposed approach, linear continuous supports must
be located on the border between internal subdomains Ωm and surfaces deter-
mining the column supports should be located at a necessary distance from the
internal subdomains Ωm. This is a limiting restriction but it does not exclude
the application of the considering method. This inconvenience can be fully elim-
inated by the application of the analog equation method in combination with
the classical BEM approach [36, 37].
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The presented work relates entirely to the paper [31], in which the buck-
ling problem of rectangular plates was investigated using BEM. The boundary
element results obtained for the proposed concept of the thin plate bending
problem considering internal linear continuous and plane constraints demon-
strate the sufficient effectiveness and efficiency. The proposed method can be
applied to the stability analysis of steel construction, e.g., bridge plane girders
with orthogonal stiffeners.
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