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The main objective of the present paper is the investigation of macrocrack propagation
along a bimaterial interface in adiabatic dynamic processes. The investigation has been gen-
erated by very recent experimental observation (cf. Rosakis, SAMUDRALA and COKER [34],
GubpuRU, RosAkIs and RAVICHANDRAN [13], GUDURU, ZEHNDER, ROSAKIS and RAVICHAN-
DRAN [14]).

A general constitutive model of elastic-viscoplastic damaged polycrystalline solids has been
developed within the thermodynamic framework of the rate-type covariance material structure
with a finite set of internal state variables. This set of internal state variables will be assumed
and interpreted so that the theory developed has been taken into account the effects as follows:
(i) plastic non-normality; (ii) softening generated by microdamage mechanisms; (iii) thermome-
chanical coupling (thermal plastic softening and thermal expansion); (iv) strain-rate sensitivity.
It is noteworthy to stress that viscosity introduces implicitly a length-scale parameter into the
dynamical initial boundary value problem.

In order to describe in a constitutive model all the previously mentioned properties and
incorporate their respective effects, it is intended to introduce a particular set of internal
state variables, which consists of the equivalent inelastic deformation and volume fraction
porosity. The equivalent inelastic deformation can describe the dissipation effects generated
by viscoplastic flow phenomena and the volume fraction porosity takes into account the
microdamage evolution effects. The kinetics of microdamage plays a very important role
in this constitutive model. Fracture criterion based on the evolution of microdamage is as-
sumed. The relaxation time is viewed either as a microstructural parameter to be determined
from experimental observations, or as a mathematical regularization parameter. By assum-
ing that the relaxation time tends to zero, the rate-independent elastic-plastic response can
be obtained. The identification procedure is developed basing on the experimental observa-
tions.

We consider isothermal and adiabatic processes in the thin flat specimen made of two
identical elements (material A) and the cohesive band (material B). The width of the cohesive
band is 1 pm, so it is a mesoscale size range. In this cohesive band the initial notch is localized
symmetrically. It is assumed that the boundary conditions are modelled by the speed of the
upper edge of the specimen, while the lower edge is clamped. The initial conditions of the
problem are homogeneous. Both materials of the specimen are modelled as elastic-viscoplastic.

A two-dimensional, plane stress, finite-difference model of the entire specimen is applied.
The numerical algorithm satisfies the material objectivity, i.e. is invariant with respect to any
diffeomorphism (any motion).
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Particular attention is focused on the investigation of interaction of stress waves on the
propagation of macrocrack within the interface band. The macrocrack-tip speed history and
the evolution of the transient macrocrack-tip temperature fields are obtained.

1. INTRODUCTION

Advances in computing as well as measurement instrumentation have re-
cently allowed for the investigation of a wider spectrum of physical phenomena
in dynamic failure than it was previously possible. With increasing demand for
specialized lightweight, high-strength structures, failure of inhomogeneous solids
was receiving increased attention. Such inhomogeneous solids include structural
composites such as bonded and sandwich structures, layered and composite ma-
terials as well as functionally graded solids. Many of such solids are composed
of brittle constituents possessing substantial mismatch in wave speeds, and are
bonded together with weak interfaces, which may serve as sites for catastrophic
failure (cf. ROSAKIS and RAVICHANDRAN [32]).

Application of metals and polymers at mesoscale (a size scale that ranges
from a fraction of micrometer to 100 pum) are recently multiplying rapidly.
There is, the considerable experimental evidence that plastic flow and partic-
ularly, fracture phenomena in crystalline solids are inherently size-dependent
over the mesoscale range. However, the conventional continuum mechanics mod-
els of inelastic deformation processes are size scale-independent. The relatively
large numbers of dislocations governing plastic deformation at the micron-scale,
motivate the development of a continuum theory of plasticity incorporating
the size-dependence. The elastic viscoplastic theory can be developed for this
purpose.

In a very recent paper by DORNOWSKI and PERZYNA [10] an analysis of the
macrocrack along a bimaterial interface under dynamic adiabatic processes has
been presented.

The main objective of the present paper is the investigation of the macroc-
rack propagation along a bimaterial interface in the case when the width of the
cohesive band is of mesoscale size range.

Classical dynamic fracture theories predict the surface wave speed to be the
limiting speed for propagation of in-plane cracks in homogeneous, linear elastic
materials subjected to remote loading. On the other hand, the very recent ex-
periments performed by ROsAKIS, SAMUDRALA and COKER [34] have provided
evidence that shearing mode conditions near a propagating crack tip drive the
crack intersonic speeds, which are found to be possible even in purely homoge-
neous systems with only one distinct set of wave speeds.
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NEEDLEMAN and ROSAKIS [21] analysed numerically the dynamic crack
growth along a bimaterial interface under impact shear loading. They assumed
that the material on each side of the band line is characterized by an isotropic
hyperelastic constitutive relation. A cohesive surface constitutive relation is also
specified that relates the tractions and displacement jumps across the bond line
and that allows for the creation of a new free surface. The resistance to crack
initiation and the crack speed history are predicted without invoking any addi-
tional failure criterion. A plane model of the configuration used in experimental
of ROSAKIS, SAMUDRALA and COKER [34] is analyzed. Calculations were carried
out for parameters characterizing a steel - PMMA bimaterial. For a sufficiently
low impact velocity, the crack speed increases smoothly to the PMMA Rayleigh
wave speed, whereas above a sharply defined transition impact velocity, the crack
speed reaches a value somewhat smaller than the PMMA dilatation wave speed.

Section 2 is devoted to the discussion of the experimental investigations per-
formed by ROsAKIS, SAMUDRALA and COKER [34] and GUDURU, ZEHNDER,
ROsAKIS and RAVICHANDRAN [13].

In Sec. 3 a general constitutive model of elasto-viscoplastic damaged polycrys-
talline solids is developed within the thermodynamic framework of the rate-type
covariance structure with a finite set of the internal state variables. A set of the
internal state variables consists of two scalars, namely of the equivalent plastic
deformation and volume fraction porosity.

The relaxation time is used as a regularization parameter. By assuming that
the relaxation time tends to zero, the thermo-elasto-plastic (rate independent)
response of the damaged material can be obtained. Fracture criterion based on
the evolution of microdamage is formulated.

It is noteworthy to stress that viscosity introduces implicitly a length-scale
parameter into the dynamical initial-boundary value problem, i.e. | = acT},,
where ¢ denotes the velocity of the propagation of the elastic waves in the mate-
rial, T}y, is the relaxation time for mechanical disturbances and is directly related
to the viscosity of the material. The proportionality factor o depends on the par-
ticular initial-boundary value problem under consideration and may also depend
on the microscopic properties of the material.

Section 4 discusses the identification procedure for assumed materials of the
cracked bimaterial thin specimen made of two identical elements joined by the
cohesive band. The material of joint elements (material A) and the cohesive
band (material B) are modelled as elasto-viscoplastic with isotropic hardening-
softening effects.

In Sec. 5 the formulation of the initial-boundary value problem and its solu-
tion are presented. The finite difference method with the explicit time integration
scheme (conditionally stable) is used. Particular attention is focused on the in-
vestigation of the macrocrack propagation along a bimaterial interface.
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2. EXPERIMENTAL MOTIVATION

2.1. Ewolution of crack speed

Classical dynamic fracture theories predict the surface wave speed to be
the limiting speed for propagation of in-plane cracks in homogeneous, linear
elastic materials subjected to remote loading. Cracks or fractures are displace-
ment discontinuities in an otherwise intact material. On the basis of the na-
ture of the displacement discontinuity near the crack tip, three distinct fracture
modes can be defined (cf. ROSAKIS, SAMUDRALA and COKER [34]): mode I,
the in-plane opening mode resulting from normal separation of the crack faces
(opening displacement discontinuity); mode II, the in-plane mode resulting from
relative sliding of crack faces perpendicularly to the crack edge (sliding dis-
placement discontinuity); and mode III, the anti-plane shearing mode result-
ing from relative out-of-plane sliding of the crack faces (tearing displacement
discontinuity).

RosAKIS, SAMUDRALA and COKER [34] sought to determine experimentally
whether in-plane intersonic crack growth could be obtained in laboratory speci-
mens under remote shear loading conditions. In monolithic, prenotched labora-
tory specimens subjected to shear loading, after initiation from the notch tip the
crack does not follow a straight path in line with the notch; it invariably kinks
in the local symmetric opening direction. To make the shear crack growth pos-
sible by suppressing kinking, they introduced a weak plane ahead of the notch
tip in the form of a bond between two identical pieces of isotropic material. The
bonding process was carefully chosen that the constitutive properties of the bond
were close to those of the bulk material. They thus constructed a material sys-
tem that, although not monolithic, can be considered homogeneous with regard
to its linear elastic constitutive description. However, fracture toughness along
the bond line is lower, so that the material is inhomogeneous with regard to its
fracture properties.

In the experimental investigation performed by ROSAKIS, SAMUDRALA and
COKER [34], dynamic photoelasticity was chosen for capturing the stress field
near the propagation crack tip because of its ability to visualize shear waves
anticipated by the intersonic crack solutions.

In Fig. 1 the dynamic photoelasticity setup is shown. A Homalite-100
(Rosakis, SAMUDRALA and COKER [33]) specimen is subjected to asymmetric
impact by a projectile fired from a high-speed gas gun. The coordinate system
(z1, ®o, x3) is centered at the crack tip. Dimensions are given in millimeters.
The specimen is 4 mm thick and the bond thickness is about 20 to 30 um. The
initial notch is 25 mm long and 2.3 mm wide. For Homalite-100, ¢y, = 2200 m/s
and cg = 1255 m/s. The steel projectile (length 75 mm, diameter 50 mm) im-
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pacts a steel piece, which was bonded to the specimen at the impact site to
prevent shattering and to induce a planar loading wave front. The compres-
sive longitudinal wave loads the notch tip in a predominantly shear mode. The
dynamic stress field produced by the loading was recorded using photoelastic-
ity in conjunction with high-speed photography. A coherent, monochromatic,
plane-polarized, collimated laser beam (diameter ¢ = 50 mm) was transmitted
through the specimen. The specimen was placed in a circular polariscope, and
the resulting isochromatic fringe pattern was recorded by a rotating mirror-type
high-speed camera, capable of recording 80 frames at framing rates up to 2 mil-
lion frames per second.
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Fic. 1. The dynamic photoelasticity setup (After Rosakis, SAMUDRALA and COKER [34]).

The specimen was subjected to asymmetric impact loading with a projectile
at 25 m/s.

Sequences of isochromatic fringe patterns were recorded around a shear crack
as it initiated and propagated along the interface between two Homalite halves,
cf. Fig. 2.

The frames included in the sequence are selected from two different ex-
periments performed under identical conditions, except for the position of the
field of view. Time after impact and crack tip speed are shown in each frame.
The fringe pattern around the propagating crack in the last frame is similar to
that in the previous frame, indicating that the propagating crack has reached
a steady state.

Evolution of a crack tip speed as the mode-II crack propagates along a weak
plane in Homalite-100 is presented in Fig. 3.
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Fic. 2. Selected sequence of high-speed images showing the isochromatic fringe pattern around

a propagating shear crack along a weak plane in Homalite-100. (A) Field of view enclos-

ing the notch tip. (B) Field of view ahead of the notch tip (After ROSAKIS, SAMUDRALA
and COKER [34]).
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Fig. 3. Evolution of crack speed as the shear crack propagates along a weak plane in Homa-

lite-100. Crack tip speed was obtained from crack length history (squares) and from shock

wave angles (circles) for a field of view around the notch tip (solid symbols) and for a field of
view ahead of the notch (open symbols) (After RosAkis, SAMUDRALA and COKER [34]).
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From the results of Fig. 3 we see that the initially recorded crack tip is close to
the shear wave speed of Homalite beyond it accelerates, thus becoming intersonic.
Thereafter, it continues to accelerate up to the plane stress dilatational wave
speed of Homalite, then decelerates and ultimately reaches a steady-state value
of about v/2 times the shear wave speed.

The experiments performed by ROSAKIS, SAMUDRALA and COKER [34] have
provided evidence that shearing mode conditions near a propagating crack tip
can drive the crack at intersonic speeds, what is found to be possible even in
purely homogeneous systems with only one distinct set of wave speeds.

2.2. Measurements of crack tip temperature

A detailed investigation of the evolution of temperature field at the tip of
a stationary crack subjected to dynamic loading in two different types of steels
(C 300 maraging steel and HY 100 steel) has been presented by GUDURU,
ZEHNDER, ROSAKIS and RAVICHANDRAN [14]. They used a high speed two-
dimensional infrared camera to image the temperature fields at the crack tips.
A sequence of thermal images obtained in the drop weight tower experiment with
an impact speed of 4 m/s for HY 100 steel specimen is shown in Fig. 4. A se-
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Fic. 4. A sequence of images showing the evolution of the temperature field at the crack tip
in a HY 100 specimen subjected to drop weight impact at 4 m/s (After GUDURU, ZEHNDER,
Rosakis and RAVICHANDRAN [14]).
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Fi1G. 5. A sequence of images showing the evolution of the temperature field at the crack tip
in a HY 100 specimen subjected to gas gun impact at 50 m/s (After GUDURU, ZEHNDER,
RosAKIS and RAVICHANDRAN [14]).

quence of images, obtained from the gas gun experiment with an impact speed
of 50 m/s is shown in Fig. 5. One major difference between the two experiments
is the maximum crack tip temperature rise at the time of failure initiation. It is
approximately 90 K in the drop weight experiment and about 150 K in the gas
gun experiment. The authors suggested that the explanation of this lies in the
rate-induced elevation of resistance to crack initiation.

3. THERMO-ELASTO-VISCOPLATIC MODEL OF A MATERIAL

3.1. Basic assumptions and definitions

Let us assume that a continuum body is an open bounded set B C IR3, and
let ¢ : B — S be a C! configuration of B in S. The tangent of ¢ is denoted
F = T¢ and is called the deformation gradient of ¢.
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Let {X4} and {2} denote coordinate systems on B and S respectively.
Then we refer to B C IR?® as the reference configuration of a continuum body
with particles X € B and to S = ¢(B) as the current configuration with points
x € §. The matrix F(X,t) = 0¢(X,t)/0X with respect to the coordinate bases
E4(X) and e,(x) is given by

0¢®
3.1 Fi(X,t) = —(X,t
( ) A( ) ) aXA( ) )7
where the mapping x = ¢(X, t) represents a motion of a body B.
We consider the local multiplicative decomposition

(3.2) F =F°. F?,

where (F¢)~! is the deformation gradient that releases elastically the stress on
the neighbourhood ¢(N (X)) in the current configuration.
Let us define the total and elastic Finger deformation tensors

(3.3) b=F -F', b°=F¢.F",

respectively, and the Eulerian strain tensors as follows

1k 1 -1
4 e o Bt ( L )
(3.4) et VL v eolE- B,
where g denotes the metric tensor in the current configuration.

By definition?)
1 -1
P — —ef =" e — <=1
(3.5) L (b b )

we introduce the plastic Eulerian strain tensor.

To define objective rates for vectors and tensors we use the Lie derivative?®).
Let us define the Lie derivative of a spatial tensor field t with respect to the
velocity field v as

35) Lut = o (8°0),

where ¢* and ¢, denote the pull-back and push-forward operations, respectively.
The rate of deformation tensor is defined as follows

1 1
(3.7) d’ =L, = Eng =5 (9acV® |p +9e5v o) € @ €,

DFor precise definition of the finite elasto-plastic deformation see PERZYNA [30].
Y The algebraic and dynamic interpretations of the Lie derivative have been presented by
ABRAHAM et al. [1], cf. also MARSDEN and HUGHES [20].
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where the symbol b denotes the index lowering operator and ® the tensor
product,

ovl
(38) v? Ib: w + ’)’gc‘l)c,

and ;.. denotes the Christoffel symbol for the general coordinate systems {z®}.
The components of the spin w are given by

39) o= 5 et o ~gev 1) = 3 (5 = 2.
Similarly

(3.10) d¢ =Lye?, d” =L,e”,

and

(3.11) d=d*+d".

Let T denote the Kirchhoff stress tensor related to the Cauchy stress tensor o
by

(3.12) v=Jo = p‘;"f o,

where the Jacobian J is the determinant of the linear transformation F(X,t) =
(0/0X)p(X, 1), pret(X) and p(x,t) denote the mass density in the reference and
current configuration, respectively.

The Lie derivative of the Kirchhoff stress tensor T € T?(S) (elements of
T?(S) are called tensors on S, contravariant of order 2) gives

(3.13) Lyt = ¢*%(¢*T) = {F ;% [F_l (Tog) .F—lT] .FT} o¢!

=t-(d+w) - T-71 (d+w),

where o denotes the composition of mappings. In the coordinate system (3.13)
reads

(3.14) (Lv'c)ab = FX% (Fc—1ATchd_13> Fg

a,rab 5 8Tab € — ch_ajii - Tac_aib

ot dz° oz¢ oz
Equation (3.14) defines the Oldroyd rate of the Kirchhoff stress tensor T
(cf. OLDROYD [23]).
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3.2. Constitutive postulates

Let us assume that: (i) conservation of mass, (ii) balance of momentum,
(iii) balance of moment of momentum, (iv) balance of energy, (v) entropy pro-
duction inequality-hold.

We introduce the four fundamental postulates:

(1)

(3.15)

(i)

(iii)

(3.16)

Existence of the free energy function. It is assumed that the free energy
function is given by

% = (e, F,0;p),

where e denotes the Eulerian strain tensor, F is deformation gradient, o
temperature and pu denotes a set of the internal state variables.

To extend the domain of the description of the material properties, and
particularly, to take into consideration different dissipation effects we have
to introduce the internal state variables represented by the vector p.

Axiom of objectivity (spatial covariance). The constitutive structure should
be invariant with respect to any diffeomorphism (any motion) &: S — S
(cf. MARSDEN and HUGHES [20]). Assuming that & : S — S is a regular,
orientation preserving map transforming x into x and TE is an isometry
from 7xS to T,»S, we obtain the axiom of material frame indifference
(cf. TRUESDELL and NOLL [38]).

The axiom of the entropy production. For any regular motion of a body B
the constitutive functions are assumed to satisfy the reduced dissipation
inequality

. 1
t:d— (nd +) — —q- gradd > 0,
e (9 + 1) 548

where prer and p denote the mass density in the reference and actual
configuration, respectively, T is the Kirchhoff stress tensor, d the rate of
deformation, 7 is the specific (per unit mass) entropy, and q denotes the
heat flow vector field. MARSDEN and HUGHES [20] proved that the re-
duced dissipation inequality (3.16) is equivalent to the entropy production
inequality first introduced by COLEMAN and NOLL [3] in the form of the
Clausius-Duhem inequality. In fact the Clausius-Duhem inequality gives
a statement of the second law of thermodynamics within the framework of
mechanics of continuous media, cf. DUSZEK and PERZYNA [11].

The evolution equation for the internal state variable vector p is assumed
in the form as follows:

LU”‘ 5 rh(ea Fa 19’ ”’)7
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where the evolution function m has to be based on careful physical inter-
pretation of a set of the internal state variables and analysis of available
experimental observations.

The determination of the evolution function m (in practice a finite set of
the evolution functions) appears to be the main problem of the modern
constitutive modelling.

The main objective is to develop the rate-type constitutive structure for an
elastic-viscoplastic material in which the effects of the plastic non-normality,
micro-damage mechanism and thermomechanical coupling are taken into con-
sideration. To do this it is sufficient to assume a finite set of the internal state
variables. For our practical purposes it is sufficient to assume that the internal
state vector p has the form

(3.18) p=(€8),
where €P is the equivalent viscoplastic deformation, i.e.
; 5 1/2
(3.19) eP= / (gd” : dp> dt,
0

and ¢ is the volume fraction porosity and takes account of micro-damage effects.
Let us introduce the plastic potential function f = f(Ji, J2, ¥, u), where Jy,
Jo denote the first two invariants of the Kirchhoff stress tensor T.
Let us postulate the evolution equations as follows:

(3.20) d2 = AR By

where for elasto-viscoplastic model of a material we assume (cf. PERZYNA
[24-26, 30])

(3.21) A=%<@<£— >>

T, denotes the relaxation time for mechanical disturbances, the isotropic work—
hardening-softening function x is

(3.22) K = k(€P,9,¢),

& is the empirical overstress function, the bracket (-) defines the ramp function,

-2 ()
£=const ;

3:23 P=—
( ) ot ot
= denotes the evolution function which has to be determined.
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3.8. Intrinsic micro-damage mechanisms

To take into consideration experimentally observed time dependent effects it
is advantageous to use the proposition of the description of the intrinsic micro—
damage process presented by PERZYNA [28, 29] and DUSZEK-PERZYNA and
PERZYNA [12].

Let us assume that the intrinsic micro-damage process consists of the nucle-
ation and growth mechanism?).

Physical considerations (cf. CURRAN et al. [4] and Perzyna [28, 29]) have
shown that the nucleation of microvoids in dynamic loading processes which
are characterized by very short time duration is governed by the thermally-
activated mechanism. Based on this heuristic suggestion and taking into account
the influence of the stress triaxiality on the nucleation mechanism we postulate
for rate-dependent plastic flow?®

: e m*(«?) | jn_Tn(é,ﬂaep) ,
(3.24) (¢ = 7oh(69) lexp = . 1} )

where k denotes the Boltzmann constant, h*(€,9) represents a void nucleation
material function which is introduced to take account of the effect of microvoid
interaction, m*(¢¥) is a temperature-dependent coefficient, 7,(&,9,€P) is the
porosity, temperature and equivalent plastic strain-dependent threshold stress
for microvoid nucleation,

(3.25) I, =a1J1 + ag\/}g + a3 (J;;)l/a

defines the stress intensity invariant for nucleation, a; (i = 1,2, 3) are the mate-
rial constants, J; denotes the first invariant of the Klrchhoff stress tensor T, Jg
and J3 are the second and third invariants of the stress deviator T .

For the growth mechanism we postulate (cf. JOHNSON [15]; PERZYNA
[28, 29]; PERZYNA and DRABIK [31] and DORNOWSKI and PERZYNA (8, 9))

- *&, 9
(3.26) (é)grow = %%;) [Ig 2 Teq(§7"97 Ep)] )

*Recent experimental observation results (cf. SHOCKEY et al. [36]) have shown that coa-
lescence mechanism can be treated as nucleation and growth process on a smaller scale. This
conjecture simplifies very much the description of the intrinsic micro-damage process by taking
account only of the nucleation and growth mechanisms.

) An analysis of the experimental observations for cycle fatigue damage mechanics at high
temperature of metals performed by SIDEY and COFFIN [37] suggests that the intrinsic micro-
damage process does very much depend on the strain rate effects, the wave shape effects as
well as on the stress triaxiality.
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where Ty,ko denotes the dynamic viscosity of a material, g*(£,?) represents a
void growth material function and takes account of void interaction, 7eq(§, %, €P)
is the porosity, temperature and equivalent plastic strain-dependent void growth
threshold stress,

(3.27) L=bJi+ bz\/}‘; + b3 (J;;)l/3 )

defines the stress intensity invariant for growth and b; (¢ = 1,2, 3) are the mate-
rial constants.
Finally the evolution equation for the porosity ¢ has the form

(3.28) fiss h*(Té’ﬂ) [exp m*(9) | In ;;n(é,ﬂ, e | 1]
“(£,9
t gqu;ﬁo) [Ig L) Teq(f, 79, Ep)] g

This determines the evolution function =.

3.4. Thermodynamic restrictions and rate type constitutive equations

Suppose the axiom of the entropy production holds. Then the constitutive
assumption (3.15) and the evolution equations (3.20) lead to the results as follows

(3.29) T= PRefa_d) L. 2U %

1
o 1Y __'Iull__ i 9> 0.
Oe’ " 09’ ou pﬁq gradd = 0

The rate of internal dissipation is determined by

A'—_a_d;. ¥ ) 8_¢ﬁ _@:
(3.30) = i Lyu= (361’ 3)A o

Operating on the stress relation (3.29); with the Lie derivative and keeping the
internal state vector constant, we obtain (cf. DUSZEK-PERZYNA and PERZYNA

[12])

(331)  Lyt=Lf:d— L — [(L°+ g7+ Tg) :P]i<¢ (i—1)>,

Fn K
where
0% 0%y
s th —
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Substituting 3 into the energy balance equation and taking into account the
results (3.29)3 and (3.30) we obtain

(3.33) pdn = —divq + pos.

Operating on the entropy relation (3.29)9 with the Lie derivative and substi-
tuting the result into (3.33), we obtain

: 9 ;
(3.34) pepd = —divq + 19/51,: f 5% :d + px i dP + px**E,
S)
where the specific heat
0%
(335) Cp = — W

and the irreversibility coefficients x* and x** are determined by

X="\oer "w0er | V37D
Ko TR saghe | ¢

So, a set of the constitutive equations of the rate type has the form as follows

(3.36)

5 S At B [(£e+gT+Tg):P]TL<q§(£—1>>,

g . P ot * 1 f *k &
s — — —-—-——-: [ :
(3.37) pcp¥ = —divq + 9 — 59 d + px T <d5 (———~1)>T P+ px™¢,

. Rh*(£,9) m*(9) | I — (£, 9, €P) |
(=" [eXp ) N 1]
* ’,19
=t gf['(rf/ﬁ(]) [Ig o Teq(fa'ﬁ, Ep)] g

All the material functions and the material constants should be identified based
on the available experimental data.
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3.5. Fracture criterion based on the evolution of micro-damage

We base the fracture criterion on the evolution of the porosity internal state
variable €. The volume fraction porosity € takes account of microdamage effects.

Let us assume that for ¢ = &F catastrophe takes place (cf. PERZYNA [27]),
that is

(3.38) k= R(EP,0,6)|¢eer = 0.

It means that for ¢ = ¢F" the material loses its carrying capacity. The condition
(3.38) describes the main feature observed experimentally that the load tends to
zero at the fracture point. The critical value of porosity ¢¥ is usually determined
from structural metallurgical investigation of a material.

It is noteworthy that the isotropic hardening-softening material function &
proposed in Eq. (3.22) should satisfy the fracture criterion (3.38).

3.6. Length-scale sensitivity of the constitutive model

The constitutive equations for a thermo-elastic-viscoplastic model introduce
implicitly a length-scale parameter into the dynamic initial-boundary value prob-
lem, i.e.

(3.39) =,

where Tj, is the relaxation time for mechanical disturbances, and is directly
related to the viscosity of the material, ¢ denotes the velocity of propagation of
the elastic waves in the problem under consideration, and the proportionality
factor a depends on the particular initial-boundary value problem and may also
be conditioned on the microscopic properties of the material.

The relaxation time 7}, can be viewed either as a microstructural parameter
to be determined from experimental observations or as a mathematical regular-
ization parameter.

To go deeply into length-scale sensitivity of the constitutive model, let us con-
sider one-dimensional longitudinal wave propagation for an elastic-viscoplastic
material. The constitutive equations are assumed in the form as follows

. .p
(3.40) éP=é—%, d=hé’°+5;9%,
where y denotes the viscosity parameter, oy the yield stress and h the hardening-
softening parameter.

The wave equation takes the form

C(l %9 - 0% ) E + h 0% 0%

(3.41) =0,

2o 0x20t ¢ o 9z
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where

(3.42) g (;—0 = 06Tm

denotes the macroscopic viscosity (or dynamic viscosity) and ¢ = (E/p)'/2.

For v = o0 = ¢ — 0 (3.41) reduces to the wave equation for an elastic-
plastic rate-independent material. To investigate the dispersive nature of wave
propagation in an elastic-viscoplastic medium, a general solution for a single
linear harmonic wave with angular frequency w and wave number k£ is assumed

(3.43) 9 = Aetlbe—wt) =2

and A denotes the amplitude.
To satisfy the Eq. (3.41), k and w have to be related by the dispersion relation

(3.44) ¢ <l2w3 & k%) i-Zthe me o,
C C

By sophisticated analysis of the dispersion relation (3.44) we can obtain the
result for the internal length-scale parameter

200

Comparison of (3.45) with (3.39) gives
20’0

for the one-dimensional longitudinal wave propagation problem.

4. IDENTIFICATION PROCEDURE

4.1. Assumption of the material functions for an adiabatic process

To do the proper identification procedure we first make assumption of the
material functions (cf. DORNOWSKI and PERZYNA [8]).

The plastic potential function f is assumed in the form (cf. PERZYNA [27]
and SHIMA and OYANE [35])

(4.1) £ = {7+ @) +na@)e) 72}
where

(4.2) ni(9) =0, n2(¥) = n = const.
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The isotropic work-hardening-softening function « is postulated as (cf. PERZYNA

[28] and NEMES and EFTIs [22])

(4.3) k = k(€P,9,¢)

= {Ro®) = [ra(0) = mol@N exp[-59) €71} {1 - (é)ﬁw)] ,

Ks(9) = K% — K29, Ko (9) = K§ — K5,

5(9) = &* — 69, B = B* — B**9, 9=

The overstress function @ <£ — 1> is assumed in the form
K

ws o(1-1)=(L-1)"

The evolution equation for the porosity £ is postulated as

(4'6) é = égrow = ;;(:(;29)) [Ig = Teq(f»'ﬂ, Ep)]

where (cf. DORNOWSKI [5])
R = £
g (5,19) i 01(19)1 = é-a
I, = biJi +bo/ s,

4D a6 9,€”) = ald)(1 = &) ln £{20(0) = [rs(0) = o] Fleo,€.9)

c1(9) = const, co(¥) = const,
— £\ 230 1—¢\230
= (82 ™ (18

As in the infinitesimal theory of elasticity we assume linear properties of the
material, i.e.

(4.8) Lf=2ul+ g ®8g)

where p and X\ denote the Lamé constants, and the thermal expansion matrix is
postulated as

(4.9) L* = (2u + 3))0g,

where 0 is the thermal expansion constant.
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4.2. Assumption of the material functions for an isothermal process

Let us assume the plastic potential function in the form

, 1/2
(4.10) f=(n+ nng) :
the isotropic hardening-softening function
¢ B
(4.11) Kk = [ks — (ks — ko) exp (—6 €P)] |1 — (?) :
F

and the functions in the evolution equation for porosity

¥ § 1=
g =Cli'“_”—§, Iy = b1J1 + bay/ J,

(412 7ql6€) = aall =l — (= ro) FlEn,6)]

— £\ 2/3(9) — £\ 2/309)
e = (F220) 4 (2E)

We keep the form of the overstress function as in (4.5).

4.8. Determination of the material constants

To determine the material constants assumed we take advantage of the exper-
imental observations presented by CHAKRABARTI and SPRETNAK [2]. They in-
vestigated the localized fracture mode for tensile steel sheet specimens simulating
both the plane stress and plane strain processes. The material used in their study
was AISI 4340 steel. The principal variable in this flat specimen test was the
width — to — thickness ratio. Variation in specimen geometry produces significant
changes in the stress state, directions of shear bands, and ductility. They found
that fracture propagated consistently along the shear band localized region.

Let us now consider the isothermal dynamic process for a thin steel plate un-
der the condition of plane stress state, cf. DORNOWSKI and PERZYNA [8]. In fact
we idealize the initial-boundary value problem investigated by CHAKRABARTI
and SPRETNAK [2] by assuming the velocity-driven isothermal process for a thin
steel plate. The problem has been solved by using the finite difference method.

In numerical calculations it is assumed:

(4.13) Vo=15m/s, to=50ps, t;=800 s.

The material of a plate is AIST 4340 steel.
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Based on the best curve fitting of the experimental results obtained by
CHAKRABARTI and SPRETNAK [2] for the stress-strain relation, the identifi-

cation of the material constants has been done for both materials A and B, cf.
Tables 1 and 2.

Table 1. Material A (plate).

PRef = 7830 kg/m® | E =208 GPa v=0.3 Ko = 635 MPa
ks = 808 MPa §=28 B =22 T = 0.001 ps
m=1 1 = 0.202 c2 =0.067 | by =1.0
by = 1.3 & =6-10""* Er =02 n=0.25

Table 2. Material B (cohesive band).

PRef = 1190 kg/m® | E=3.24 GPa | v=0.35 Ko =5 MPa
ks = 92 MPa 5§ =280 B =20 Tm = 0.001 ps
m=1 c1 = 0.202 o = 0.067 by =1.0
by =1.3 € =6-10"1 £r =0.09 n-= 025

Let us now assume the velocity-driven adiabatic process for a thin steel plate
and proceed similarly as in the case of an isothermal process (cf. DORNOWSKI
and PERZYNA [8]). Then the material constants for an adiabatic process for both

materials A and B can be determined, cf. Tables 3 and 4.

Table 3. Material A (plate).

k; = 808 MPa Ky" =230 MPa ko = 635 MPa Kko" = 181 MPa

J* =28 0"t =8 B* =22 B** =0.63

9o =293 K €r =02 pRef = 7850 kg/m® E =208 GPa
vr=03 0=12107% K+ T = 0.001 ps m=1

c1 = 0.202 c2 = 0.067 by = 1.0 by =1.3

o= 6,107 n =025 X" =0.9 cp = 455 J/kg K

Table 4. Material B (cohesive band).

Ky = 92 MPa K;* = 26 MPa ko =5 MPa ko' = 1.5 MPa
5" =80 31h=09 B* =2.0 B** =0.57

Jo =293 K &r =0.09 pRref = 1190 kg/m® E =3.24 GPa
v=0.35 0=12-107%K"! Tm = 0.001 ps m=1

c1 = 0.202 c2 = 0.067 by1:=1.0 bz:= 1.3
fo=6-10"" n =0.25 X" =0.9 cp = 455 J/kg K

We can now determine the internal length-scale parameter for the case of
one-dimensional wave propagation for both the materials assumed. For material

A (plate) (i.e. AISI 4340 steel) we have [ = 3 um, and for material B (cohesive
band) [ = 0.5 um.
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5. NUMERICAL SOLUTION OF THE INITIAL BOUNDARY-VALUE PROBLEMS
5.1. Formulation of the initial boundary-value problem

We analyse isothermal and adiabatic processes for the thin flat specimen
made of two identical elements (material A) joined by a band (material B),
Fig. 6. Initial dimensions of the specimen are taken as follows: the height is
equal 0.15 mm and width is 0.3 mm. The width of the cohesive band is 1 pum,
so it is the mesoscale size range. In this cohesive band the initial notch 0.03 mm
is localized symmetrically.

moving edge

Vo =3 mls
to = 0.1 nanosec.

to
F1G. 6. Specimen geometry and its kinematical constraint (all dimensions are in millimeters).

It is assumed that the boundary conditions are modelled by the speed of
the upper edge of the specimen, while the lower edge is clamped. The initial
conditions of the problem are homogeneous.

A two-dimensional, plane stress, finite difference model for the entire spec-
imen is applied. The regular mesh consists of a total of 45 000 nodes and the
discretization parameters are Az = Ay = lum, At = 0.3685-10"11s.

Both materials of the specimen are modelled as elastic-viscoplastic with
isotropic hardening-softening effects.

It is assumed that the material softening is caused by the intrinsic micro-
damage mechanisms.

We have modelled the boundary by the velocity of nodes lying on the upper
edge according to the relation
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(5.1) V(t) = V()t/to for t <ty and V(t) =W aforiit sty

The numerical results are obtained for V) = 3 m/s and the rise time ¢y = 10~10g,

The finite difference method with explicit time integration scheme (condition-
ally stable) is used. The elaborated algorithm satisfies the material objectivity
principle with respect to any diffeomorphism (any motion).

5.2. Investigation of the macrocrack propagation along a bimaterial interface
band

Figure 7 shows an evolution of an opening stress 7%Y in the specimen at
several instants of the isothermal loading process. The opening stress wave starts
from the loading edge and moves towards the cohesive band. This wave reaches
the cohesive band at 15 ns and after a part of it is reflected from the interface
band, and another one transfers to the lower part of the specimen simultaneously
decreasing its own amplitude. This effect results from the energy dissipation on
plastic deformation of the cohesive material. It can be observed from Fig. 7
that there is an intense concentration of the opening stress in the vicinity of
the notch tip. This phenomenon precedes directly the cracking phase illustrated

-3 -
-1 ‘]
1 1
7 3
-1 -1
‘1 -1
“q T
-1 ‘1
Ef l

F1c. 7. Evolution of a opening stress 7YY in the specimen at several instants of the
isothermal loading process.
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t = 47.5 nanosec. t = 62.5 nanosec.

82283883838
opening stress [MPa
y-direction [mm]

°

015
x-direction [mm]

t = 65.0 nanosec.

0.05 0.10 0.15 0.20 025 030 "0 0.05 0.10 0.15 0.20 025 030
x-direction [mm] x-direction [mm]

Fic. 8. Evolution of a opening stress 7¥Y in the specimen during propagation of the interface
crack.

most precisely in Fig. 8. It can also be seen from these figures that the unloading
region (green region) is deepened according to the crack growth.

Figure 9 shows the crack tip position history for the isothermal and adiabatic
loading processes. It can be observed that the crack starts from the initial crack
tip from 53 ns and reaches the opposite edge at 68 ns. Also, it is clear from the
above results that the effect of temperature is unimportant in this case.

The crack tip speed history is shown in Fig. 10. It is seen that for the crack
extension to 80 pum the speed of cracking increases to 18 000 m/s, and then
decreases to about 4 000 m/s. These values exceed many times the dilatational
wave speed for the both materials. Some visible crack speed oscillations result
from the wave interaction.

The evolution of the equivalent plastic strain in the node immediately ahead
of the notch tip is displayed in Fig. 11. Here, the equivalent plastic deformation
may be treated as a measure of the cohesive band deformability. This figure shows
that the equivalent plastic strain evolves almost linearly during the time interval
15 to 40 ns and then evolves rapidly. It indicates that after 40 ns the intensity
growth of microdamage takes place in the considered node. The equivalent plastic
strain reaches its greatest value (about 3%) at the local fracture of a material.
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120 /
/
———— adiabatic process
E -------- - - - isothermal process
.§ ®
52 56 60 64 68
Time [nanosec.]

Fic. 9. Crack tip position history.

" e ) b

I
SN

0 40 80 120 160

:
=

Crack tip speed [m/s]
5
g

e
N
P

FiG. 10. Crack tip speed history.

Equivalent plastic strain [%]
N

FiGg. 11. Equivalent plastic strain at the initial crack tip as a function of time.
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In Fig. 12 the equivalent viscoplastic strain rate at the notch tip as a func-
tion of time is presented. Very serious increase of the viscoplastic strain ra-
te is observed when the process of the interface band microdamage takes

place.

Fi1G. 12. Equivalent plastic strain rate at the initial crack tip as a function of time.

The corresponding variation of the equivalent stress (7, =

Equivalent plastic strain rate [1/s]

1E+007
\
6E+006 \
adiabatic p
PRI w g ol isothermal process
2E+H006 /
WW
OE+000 T
10 20 30 40
Time [nanosec.]

50

2.y Es ., .
37 T ) in time

is presented in Fig. 13. It may be treated as an illustration of the cohesive band
strength evolution rapture. The equivalent stress reaches its maximal value of
80 MPa at 40 ns, and then the softening of material can be observed. As a result,
the cohesive band loses its carrying capacity and crack initiation takes place

in 45 ns.

Equivalent stress [MPa]

Fie. 13i

100
80 Pl SAom.
/\ """"" i o
= \
=l A
40
20
0 /
0 40 60 80

Equivalent stress at the initial crack tip as a function of time.

Time [nanosec.]
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An evolution of the microdamage parameter in the initial crack environment
is shown in Fig. 14. From this figure, it can be observed that the void fraction
reaches the prescribed failure value of £ = 0.09 in 45 ns.

A dependence of the equivalent stress on the equivalent plastic strain at
the considered node is presented in Fig. 15. This figure illustrates mainly the
nonelastic stress—strain characteristic of the cohesive band. At the beginning
of deformation, the cohesive material undergoes isotropic hardening, later the
material softening and fracture are observed.

The equivalent stress as a function of microdamage is shown in Fig. 16. It
can be noticed that the value of microdamage for which the equivalent stress
reaches the maximum is about 0.02.

The evolution of temperature is presented in Fig. 17. In the considered case
the change of temperature is about 4 K, and thus it is very small.

0.1

===

Microdamage
o
8
\

o
®

0.02

0 20 40 60 80
Time [nanosec.]

Fic. 14. Microdamage at the initial crack tip as a function of time.

100 :
—————— adiabatic process
e e L o ey isothermal process
S : PN
| N
0 r
0 1 2 3 1

Equivalent plastic strain [%]

Fic. 15. Equivalent stress at the initial crack tip as a function of the equivalent plastic strain.
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100
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Equivalent stress [MPa]
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------------ isothermal process
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0 0.02 0.04 0.06 0.08 0.1
Microdamage

Fic. 16. Equivalent stress at the initial crack tip as a function of the microdamage.

297
o {
=
£ 205
:
294 T
L
—'_,_I—'J—adabaﬁcprm
293 I T T
0 20 40 60 80

Time [nanosec.]

Fi1G. 17. Temperature at the initial crack tip as a function of time (adiabatic process).

t =47.5 nanosec.

Equivaent stress [MPg]

0 0.1 0.2 0.3
X-direction in the cohesive band [mm]

Fic. 18. Evolution of the equivalent stress along the weak cohesive band during an
isothermal process.
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Figures 18, 19 and 20 show the evolution of some macroscopic values along
the weak cohesive band during the cracking process.

4_

isothermal process

w
L

47.5 nanosec.

REY
L

t

Equaivalent plastic strain [%]
N

0.1 0.2 03
X-direction in the cohesive band [mm]

o

Fic. 19. Evolution of the equivalent plastic strain along the weak cohesive band during an
isothermal process.

0.1
isothermal process
inq
é 0.06 _
e
© 004 o
0.02 4
0

0 0.1 0.2 0.3
X-direction in the cohesive band [mm]

Fi1c. 20. Evolution of the microdamage along the weak cohesive band during an isothermal
process.

5.8. Discussion of the results

To have a better evaluation of the results obtained, let us formulate and
solve the same initial-boundary value problem as in Sec. 5.1 but for the thin flat
specimen 10 times longer than the previous specimen. The width of the cohesive
band is now 10 pm, so it is still a mesoscale size range. The initial and boundary
conditions are assumed the same as in the previous case.

Figure 21 shows the evolution of the opening stress 7%¥ in the specimen at
several instants of the isothermal loading process considered. Figures 22 and
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23 show the crack tip position and crack tip speed histories, respectively. We
observe that at the instant of 360 nanosec we have very sharp increase of the crack
extension and the crack tip speed at this instant is very high. So, we have almost
instantaneous delamination of the two parts of the thin flat specimen. From
the comparison of these two solutions of the initial-boundary value problems

=310 mamosec. _ 2 =334 mamosec. e

Fic. 21. Evolution of a opening stress 7% in the specimen at several instants of the
isothermal process.

1600
1200 ‘ isothermal process i
g Ao
&
§ 800
:
]
400 /
0 el
280 320 360 400
Time [nanosec.]

Fic. 22. Crack tip position history.
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100000
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% / \\A
0 ///
280 320 360 400

Time [nanosec.)

Fi1Gc. 23. Crack tip speed history.

considered we can conclude that smaller is stronger. This result can have
important implications for an increasing number of applications in electronics,
structural materials and other modern technological parts.

6. CONCLUSIONS

In this study we have analysed isothermal and adiabatic processes foe the
thin flat specimen performed from two identical elements (material A) joined by
a band (material B). The material of joined element and the cohesive band are
modeled as elastic-viscoplastic with isotropic hardening-softening effects. It is
assumed that the material softening is caused by intrinsic microdamage mecha-
nism and temperature rise. The spatial description is assumed as physically most
natural. Such an approach has also a reson, which results from application of
constitutive equations to the description of plastic flow processes in the actual
state.

In the proposed numerical integration algorithm for the given constitutive
equations, the properties of the convective description are used. In the con-
vective coordinate system the rates of spatial tensor fields, objective with re-
spect to the arbitrary spatial diffecomorphism (regular motion), are represented
by matrices of partial time derivatives of suitable components of these fields
(cf. DORNOWSKI [6]).

This property directly leads to the incremental expressions, which are objec-
tive in the above sense. The explicit-implicit integration scheme for the plastic
flow rule is the essential part of the used algorithm. The method of determi-
nation of the flow stress is based on the iterative solution of the dynamic yield
condition with respect to the norm of the viscoplastic deformation tensor.
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The numerical results have proven the usefulness of the presented constitutive

theory and have shown, at least qualitatively, the type of crack speed histories

an

d crack tip fields seen in the experiments.
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