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A finite element-based dynamic study of cut-out borne composite cylindrical shells rein-
forced with stiffeners is conducted. Isoparametric shell element with eight nodes and beam
element with three nodes are used to study the mode-frequency behavior of shells with varied
edge conditions. Anti-symmetric angle-ply laminates of two, four and ten layers with varying
lamination angles are considered. Ten-layer laminates are investigated further as they exhibit
better performance in fundamental frequency than two and four-layer laminates. The reduced
integration method is adopted to find the shell element’s stiffness and mass matrices and the
subspace iteration method is used for the eigenvalue solution of free vibration formulation.
Natural frequencies for the first five modes are considered. The effects of fiber orientation
angle (θ), degree of orthotropy (E11/E22), and width/thickness ratio (b/h) on the natural
frequency are determined through numerical studies. It is revealed that vibration behavior
strongly depends on both the number and arrangement of boundary constraints.
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1. Introduction

The cylindrical shell structures find wide use as a fundamental structural
member in different engineering applications in civil, mechanical and aerospace
engineering. Earlier such shell forms were made of conventional materials such
as steel. However, the dead weight of steel shells is high; thus, laminated com-
posites replace steel shells to take advantage of their large specific strength and
stiffness values. Accordingly, laminated composites have gained popularity in
weight-sensitive engineering uses. In civil and architectural constructions, large
column-free open area is covered by cylindrical roofing structures since they are



82 P. BASU CHAUDHURI et al.

easily fabricated. Laminated composite shell structures often include cut-outs
for the placement of windows, doors, inspection accessories, etc. Cut-outs are
incorporated deliberately sometimes as a means for avoiding resonance criteria.
The presence of cut-out imperfections leads to substantial stress concentrations
and, in turn, influences the dynamic and stability characteristics. Accordingly,
such cylindrical shells are typically stiffened along the boundaries of the cut-out
imperfections.

Laminated composite structures can improve different attributes of the struc-
ture by suitable modification of the sequential stacking of the layers. Such provi-
sion is generally absent in other kinds of structures. Moreover, laminated struc-
tures can combine the best attributes of the component layers to tailor appropri-
ate improved characteristics of the complete structure by way of judicious choice
of materials for different layers. Accordingly, the study of laminated structures
has gained importance in practical applications. The stability characteristics of
structures having cut-outs pose a hindrance to structural designers who need
to have prior knowledge of the dynamic response of structures. This aspect of
laminated composite structures in the presence of cut-outs has attracted the
attention of researchers who have utilized various methodologies for such ana-
lysis. Considering the cost of any experimental study for such structures with
imperfections, the finite element (FE) analysis has emerged as a viable alter-
native for determining structural responses in terms of vibration and stability.
Ritz’s minimization technique was extensively used for the evaluation of the
natural frequency and mode shapes for different shell geometries [1–4] and even
for pre-twisted cantilever trapezoidal laminates [5]. Recent studies on vibration
aspects have been reviewed as well [6]. Vibration studies of cut-out borne curved
panels [7] and stiffened square panels [8] were also reported. Higher-order shear
deformation theory was used for the free vibration study of cut-out borne spher-
ical shells [9] to evaluate the impact of plies, radius/thickness ratio, edge con-
straints and cut-out size. Free vibration of cut-out borne conoidal stiffened shell
was also analyzed [10]. Plate with different shapes of cut-outs was analyzed for
vibration behavior [11].

Composite cylindrical shell panel under nonlinear vibration was also re-
ported [12] to consider the effect of aspect ratios, lamination, cut-out and ma-
terial for simply supported edge condition. Laminated hyperbolic-paraboloid
(hypar) shell was studied for free vibration behavior [13] in the presence of
cut-out using the FE procedure. Higher order shear deformation theory and
Sander’s approximation were utilized to consider a nine-noded curved C0 FE
formulation for the dynamic study of composite shells with cut-outs [14]. The
sampling surface technique was extended to consider the 3D elasticity solutions
in cylindrical and spherical composite shells [15]. Talebitooti et al. [16] con-
sidered the acoustic response of composite cylindrical shells under excitation
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by an oblique sound wave. The vibration of doubly curved shells with variable
thickness has also been analyzed [17, 18]. Doubly curved shell panels with elastic
restraints have been considered for free vibration [19]. Innovative higher-order
theory [20] has been used to accurately evaluate natural frequencies.

Thus it is revealed from the review of available literature that free vibration
of stiffened cylindrical shells with cut-outs has been reported in different studies
to evaluate various parametric combinations. However, no study is available on
the higher-mode vibration behavior of cylindrical shells with cut-outs. A recent
study [21] of anti-symmetric angle-ply laminated composite hypar shells (hyper-
bolic paraboloid bounded by straight edges) presented mode-frequency analysis
of stiffened shell with cut-out. It remains unexplored whether the higher mode
vibration behavior of shells is specific to shell geometry or if some generalized be-
havioral pattern exists for different shell geometries. Thus, the aim of the current
study is two-fold. First, it attempts to provide information on the higher-mode
free vibration aspect of cylindrical shells with a cut-out, which is missing in
the literature. Secondly, it aims to compare the same with available results [21]
for another type of shell, namely, a hypar shell with cut-out. Accordingly, the
dependence of higher-mode natural frequencies on width/thickness ratio (b/h),
degree of orthotropy (E11/E22), and fiber orientation angle (θ) for cut-out borne
stiffened cylindrical shell with 10-layer laminates is evaluated for different edge
conditions used in practical applications.

2. Mathematical formulation

A laminated shell is composed of a large number of orthotropic layers, each
having uniform thickness, and orientation may be arbitrary with the shell coor-
dinates (ξ1, ξ2, ς). Here the shell is considered to have an orthogonal curvilinear
coordinate system (ξ1, ξ2, ς), where the ξ1 and ξ2-curves are lines of curvature
on the mid-surface, ς = 0, and ς-axes are straight lines perpendicular to the sur-
face ς = 0 (Fig. 1). Considering the shear deformation, the strain-displacement
relations for doubly curved shells are given by [22]

(2.1)

ε1 = ε0
1 + ςκ1,

ε2 = ε0
2 + ςκ2,

ε4 = ε0
4,

ε5 = ε0
5,

ε6 = ε0
6 + ςκ6,
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where

ε0
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+

w

Rx
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ε0
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− v

Ry
, ε0

5 = α+
∂w

∂x
− u

Rx
,

C0 =
1

2

(
1

Rx
− 1

Ry

)
, dx = θ1 dξ1, dy = θ2 dξ2.

Here, u, v, w represent the displacements in the directions of ξ1, ξ2, and ς axes,
and α, β denote the rotations of transverse normals about the ξ1, ξ2 axes, res-
pectively. The C0 term results from Sanders’ theory to consider the zero strain
condition as applicable for rigid body motion.

Fig. 1. Geometry of a doubly curved shell.

2.1. Governing equations

Considering the effect of shear deformation for the doubly curved panel, free
vibration is governed by the following equations [23, 24]:

(2.2)
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+

∂
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where Ni and Mi represent the stress and moment resultants, respectively,
whereas Qi are the shear force resultants:

(Ni,Mi) =
L∑
k=1

ςkˆ

ςk−1

σi (1, ς) dς, i = 1, 2, 6,

(Q1, Q2) =
L∑
k=1

ςkˆ

ςk−1

(
K2

1σ5,K
2
2σ4

)
dς.

Here K2
i (i = 1, 2) denote the correction factors for shear deformation, and the

resultants (Ni, Mi, Qi) may be related to (εi, κi) by

(2.3)

Ni = Aijε
0
i +Bijκi, i, j = 1, 2, 6,

Mi = Bijε
0
i +Dijκi,

Q1 = A45ε
0
4 +A55ε

0
5,

Q2 = A44ε
0
4 +A45ε

0
5,

where Aij , Bij , and Dij specify stiffness due to extension, flexure-extension
coupling and flexure, respectively, for the laminates. Details of the elasticity
matrix are available in [25, 26]

(Aij , Bij , Dij) =
L∑
k=1

ςkˆ

ςk−1

Qij
(
1, ς, ς2

)
dς,

and the shear coefficients are

(A44, A45, A55) =
L∑
k=1

ςkˆ

ςk−1

(
K2

1Q44,K1K2Q45,K
2
2Q55

)
dς,

Pi are the inertias:

(P1, P2, P3) =

L∑
k=1

ςkˆ

ςk−1

ρk
(
1, ς, ς2

)
dς,

P1 = I1 +
2I2

Rx
, P2 = I2 +

I3

Ry
,

P 1 = I1 +
2I2

Ry
, P 2 = I2 +

I3

Rx
,
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where

(I1, I2, I3) =
L∑
k=1

ςkˆ

ςk−1

ςk
(
1, ρ, ρ2

)
dς,

and L denotes the total number of layers present.

2.2. Finite element model

For the present analysis of the cylindrical shell panel (Fig. 2), an eight-noded
curved quadratic isoparametric finite element (Fig. 3) is used. The five degrees
of freedom taken into consideration at each node are u, v, w, α, β. The following
expressions establish the relations between the displacement at any point with
respect to the co-ordinates ξ and η and the nodal degrees of freedom.

(2.4) u=
8∑
i=1

Niui, v=
8∑
i=1

Nivi, w=
8∑
i=1

Niwi, α=
8∑
i=1

Niαi, β=
8∑
i=1

Niβi,

Fig. 2. Cylindrical shell with a concentric cut-out stiffened along the margins.

a) b)

Fig. 3. a) Eight-noded shell element with isoparametric coordinates and b) three-noded
stiffener elements, where: (i) X-stiffener, (ii) Y -stiffener.
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where the shape functions derived from a cubic interpolation polynomial [27] are:

(2.5)

Ni = (1 + ξξi)(1 + ηηi)(ξξi + ηηi − 1)/4 for i = 1, 2, 3, 4,

Ni = (1 + ξξi)(1− η2)/2, for i = 5, 7,

Ni = (1 + ηηi)(1− ξ2)/2, for i = 6, 8.

The generalized displacement vector of an element is expressed in terms of
the shape functions and nodal degrees of freedom as:

(2.6) [u] = [N ] {de} ,

i.e.,

{u} =


u
v
w
α
β

 =

8∑
i=1


Ni

Ni

Ni

Ni

Ni



ui
vi
wi
αi
βi

.
The strain-displacement relation is given by

{ε} = [B] {de} ,

where

[B] =

8∑
i=1



Ni,x 0 0 0 0

0 Ni,y −Ni

Ry
0 0

Ni,y Ni,x 0 0 0

0 0 0 Ni,x 0

0 0 0 0 Ni,y

0 0 0 Ni,y Ni,x

0 0 Ni,x Ni 0

0 0 Ni,y 0 Ni



.

The element stiffness matrix is thus written as:

(2.7) [Ke] =

¨
[B]T [E] [B] dx dy.

The element mass matrix is obtained from the integral

(2.8) [Me] =

¨
[N ]T [P ] [N ] dx dy,
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where

[N ] =
8∑
i=1


Ni 0 0 0 0

0 Ni 0 0 0

0 0 Ni 0 0

0 0 0 Ni 0

0 0 0 0 Ni

, [P ] =
8∑
i=1


P 0 0 0 0

0 P 0 0 0

0 0 P 0 0

0 0 0 I 0

0 0 0 0 I

,

in which

P =

np∑
k=1

zkˆ

zk−1

ρdz

and

I =

np∑
k=1

zkˆ

zk−1

zρdz.

For modeling the stiffeners, three-noded curved isoparametric beam elements
(Fig. 3) are used. Stiffeners run only along the boundaries of the shell elements.
In the stiffener element, each node has four degrees of freedom, i.e., usx, wsx, αsx,
and βsx for X-stiffener and vsy, wsy, αsy and βsy for Y -stiffener. The generalized
force-displacement relation of stiffeners can be expressed as:

(2.9)
X-stiffener: {Fsx} = [Dsx] {εsx} = [Dsx] [Bsx] {δsxi},

Y -stiffener: {Fsy} = [Dsy] {εsy} = [Dsy] [Bsy] {δsyi},

where
{Fsx} =

[
Nsxx Msxx Tsxx Qsxxz

]T
,

{εsx} =
[
usx.x αsx.x βsx.x (αsx + wsx.x)

]T
,

{Fsy} =
[
Nsyy Msyy Tsyy Qsyyz

]T
,

{εsy} =
[
vsy.y βsy.y αsy.y (βsy + wsy.y)

]T
.

The generalized displacements of the Y -stiffener and the shell are related by
the transformation matrix {δsyi} = [T ] {δ}, where

[T ] =


1 +

e

Ry
symmetric

0 1

0 0 1

0 0 0 1

.
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This transformation is required due to the curvature of the Y -stiffener and
{δ} is the appropriate portion of the displacement vector of the shell, excluding
the displacement component along the x-axis.

Elasticity matrices are as follows:

(2.10)

[Dsx] =



A11bsx B′11bsx B′12bsx 0

B′11bsx D′11bsx D′12bsx 0

B′12bsx D′12bsx
1

6
(Q44 +Q66) dsxb

3
sx 0

0 0 0 bsxS11


,

[Dsy] =



A22bsy B′22bsy B′12bsy 0

B′22bsy
1

6
(Q44 +Q66)bsy D′12bsy 0

B′12bsy D′12bsy D′11dsyb
3
sy 0

0 0 0 bsyS22


,

where D′ij = Dij+2eBij+e2Aij , B′ij = Bij+eAij , and Aij , Bij , Dij , and Sij are
explained in [27]. Here the shear correction factor is taken as 5/6. In order to
maintain compatibility between the shell and beam elements, the stiffener nodal
degrees of freedom are to be transformed to shell degrees of freedom consider-
ing the eccentricity and curvature of the stiffener. The sectional parameters are
calculated with respect to the mid-surface of the shell by which the effect of ec-
centricities of stiffeners is automatically included. The element stiffness matrices
are of the following forms:

(2.11)
for X-stiffener: [Kxe] =

ˆ
[Bsx]T [Dsx] [Bsx] dx,

for Y -stiffener: [Kye] =

ˆ
[Bsy]

T [Dsy] [Bsy] dy.

The integrals are converted to isoparametric coordinates and are carried out
by 2-point Gauss quadrature method. Finally, the element stiffness matrix of the
stiffened shell is obtained by appropriate matching of the nodes of the stiffener
and shell elements through the connectivity matrix and is given as:

(2.12) [Ke] = [Kshe] + [Kxe] + [Kye] .

The element stiffness matrices are assembled to get the global matrices.
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The element mass matrix for the stiffener element is written as:

(2.13)
for X-stiffener: [Msx] =

¨
[N ]T [P ] [N ] dx,

for Y -stiffener: [Msy] =

¨
[N ]T [P ] [N ] dy.

Here [N ] is a 3× 3 diagonal matrix.

for X-stiffener: [P ] =

3∑
i=1



ρbsxdsx 0 0 0

0 ρbsxdsx 0 0

0 0
ρbsxd

2
sx

12
0

0 0 0
ρ(bsxd

3
sx + b3sxdsx)

12


,

for Y -stiffener: [P ] =

3∑
i=1



ρbsydsy 0 0 0

0 ρbsydsy 0 0

0 0
ρbsyd

2
sy

12
0

0 0 0
ρ(bsyd

3
sy + b3sydsy)

12


.

The mass matrix of the stiffened shell element is the sum of the matrices of
the shell and the stiffeners matched at the appropriate nodes.

(2.14) [Me] = [Mshe] + [Mxe] + [Mye] .

The element mass matrices are assembled to get the global matrices.
The finite element code developed here takes the position and size of the

cutout as input. The program is capable of generating non uniform finite element
mesh all over the shell surface. So the element size is gradually decreased near the
cutout margins. Such finite element mesh is redefined in steps and a particular
grid is chosen to obtain the fundamental frequency when the result does not
improve by more than one percent on further refining. Convergence of results is
ensured in all the problems considered here.

2.3. Equations of motion

For the present case, the dynamic form of the principle of virtual work can
be represented as:
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(2.15) 0 =

ˆ

Ω

[
N1δε

0
1 +N2δε

0
2 +N6δε

0
6 +M1δκ1 +M2δκ2 +M6δκ6 +Q1δε

0
5

+Q2δε
0
4 + (P1 ü+ P2α̈) δu+

(
P1 v̈ + P2β̈

)
δv + I1ẅδw

+ (I3α̈+ P2ü) δα+
(
I3α̈+ P 2v̈

)]
θ1θ2 dξ dη.

The governing equations of motion are obtained from Eq. (2.15) by carrying
out integration by parts of the displacement gradients in εi. Thus it yields:

(2.16) [K {∆}] +
[
M
{
∆̈
}]

= 0,

where {∆} = {{u}, {v}, {w}, {α}, {β}}T, [K] is the element stiffness matrix
and [M ] is the element mass matrix. In the case of the eight-node quadratic
element, the size of the element stiffness matrix is 40× 40. Its evaluation requires
numerical integration. A reduced integration technique is employed to obtain the
coefficients dealing with the shear energy terms in order to avoid any locking
effect.

For undamped free vibration study, assembly of the elemental Eq. (2.16)
yields the following eigenvalue form with ∆(t) = ∆eiωt:

(2.17)
(
[K]− ω2 [M ]

)
{∆} = 0,

where ω is the circular frequency and ∆ denotes the mode shape. This is a ge-
neralized eigenvalue problem and is solved by the subspace iteration algorithm
with proper consideration of the boundary conditions.

3. Validation study and numerical examples

In order to ascertain the validity of the stiffener formulation, the natural
frequency of a square plate with clamped edges and central stiffeners is com-
puted and compared with the literature values [28, 29]. The plate dimensions
are: length = breadth = 0.2032 m, the thickness of shell = 0.0013716 m, depth
of stiffener = 0.00635 m, the stiffener is placed eccentrically at the bottom, the
material property is E = 6.87 · 1010 N/m2, and ν = 0.29, ρ = 2823 kg/m3.
The comparison shown in Table 1 reveals a good agreement of the results from

Table 1. Natural frequency in Hz for the clamped square plate with central stiffener.

Mode no. Ref. [28]
Ref. [29]

Present model
N8(FEM) N9(FEM)

1 711.8 725.2 725.1 733
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the present method with earlier ones. Thus, the stiffener formulation is imple-
mented adequately in the present model.

Next, the suitability of cut-out formulation is determined by comparing the
fundamental frequency of a cut-out borne cylindrical shell of (0/90)4 lamina-
tion for the following support conditions, viz., corner point supported, simply
supported, and clamped. The geometric properties considered are: a/b = 1,
a/h = 100, a′/b′ = 1, h/Rx = 0, h/Ry = 1/300. Table 2 presents the fundamen-
tal frequencies calculated by the present method and benchmark results [30]. The
results agree well with each other. Thus it can be ascertained that the cut-out
formulation is correctly implemented in the present method. The fundamental
frequency is taken to be converged for a particular finite element grid if fur-
ther refinement of the grid does not yield a change in result by more than 0.1%.
With this criterion, a 10× 10 mesh is found to be appropriate. With eight-noded
curved quadratic isoparametric elements having five degrees of freedom at each
node, the total number of degrees of freedom ranges between 1381 and 1571,
depending on the boundary conditions considered here. Thereby, the present FE
model is capable of tackling the vibration behavior of cut-out borne stiffened
cylindrical shells successfully.

Table 2. Fundamental frequency (ω) for the cut-out borne composite cylindrical shell.

a′/a Ref. [30]
Present model

8× 8 10× 10 12× 12

Corner point supported

0.0 11.486 11.339 11.336 11.352

0.1 11.679 11.375 11.371 11.349

0.2 11.708 11.367 11.338 11.354

0.3 11.688 11.342 11.368 11.382

0.4 11.684 11.363 11.345 11.394

Simply supported

0.0 26.990 26.991 26.995 27.004

0.1 27.042 27.034 27.005 27.001

0.2 27.291 27.263 27.258 27.251

0.3 27.913 27.897 27.876 27.861

0.4 28.711 28.686 28.667 28.637

Clamped

0.0 69.360 69.156 69.016 68.979

0.1 68.776 69.044 68.659 68.439

0.2 64.751 64.569 64.232 64.065

0.3 59.317 59.282 58.829 58.819

0.4 59.303 59.568 59.107 59.180



A PARAMETRIC STUDY OF HIGHER-MODE NATURAL FREQUENCIES. . . 93

An anti-symmetric angle-ply cylindrical shell panel (Fig. 2) is taken up for
further analysis to consider vibration behavior at higher modes for different
parametric variations. The cut-out imperfection is considered to be located
concentric on the shell, and stiffeners run along the edges of perforation and
extend to the edge of the shell. The material chosen has the following proper-
ties: E11/E22 = 25, G23 = 0.2E22, G13 = G = 0.5E22, ν12 = ν21 = 0.25, and
ρ = 100. The geometric properties considered are: a/b = 1, a/h = 100, a′/b′ = 1,
h/Rx = 0, h/Ry = 1/300. The width of the stiffener is the same as the shell
thickness h in all cases. The ratio of stiffener depth to shell thickness (dst/h) is
taken as 2 unless stated otherwise. Single-layer stiffener has ply orientated along
the length direction of the stiffeners.

Anti-symmetric angle-ply stacking sequences are considered with (θ/− θ)n,
where n is the number of layers, and fiber orientation angle θ varies as 0◦,
15◦, 30◦, 45◦, 60◦, 75◦, and 90◦. Numerical experimentation is carried out to
observe the effect of the degree of orthotropy (E11/E22 = 5, 10, 20, 25, 30, 40
and 50), and width/thickness ratio (b/h = 10, 20, 50, 100) on non-dimensional
natural frequencies [ω = ω a2

(
ρ/E22h

2
)1/2]. For the present numerical study,

six different boundary conditions are taken up: CSCS, CSSC, FCCF, FCFC,
FSFS, and FSSF. Here, C stands for clamped, S stands for simply supported,
and F stands for free boundary. The four boundaries are designated in counter-
clockwise order starting from the boundary x = 0. For example, the CSCS
boundary implies that the shell is clamped along x = 0, simply supported along
y = 0, clamped along x = a, and simply supported along y = b. A schematic
representation of the arrangement of boundary conditions is given in Fig. 4.

Fig. 4. Arrangement of boundary conditions.
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4. Results and discussion

Non-dimensional fundamental frequencies (first-mode) of shells with cut-out
for 2, 4, and 10-layered cases are presented in Table 3. A column-wise highest
value of frequency is marked with an asterisk. For all the cases considered here,
it is evident that the fundamental frequency increases as the number of bound-
ary constraints increases. Thus, the performance of CSCS and CSSC shells is
better than FCCF and FCFC shells, followed by FSFS and FSSF shells. The re-
sults vary the most for the FCFC boundary condition. It can also be noted that
the maximum frequency values for each boundary condition occur at 10-layer

Table 3. Non-dimensional fundamental frequency of multi-layered shell with cut-out.

Angle of ply [°] Boundary condition 2-layer 4-layer 10-layer

0 5.477 5.477 5.477

15 6.747 7.583 7.743

30 6.561 8.737 9.231

45 CSCS 7.048∗ 9.011∗ 9.453∗

60 6.787 8.293 8.647

75 5.695 6.717 6.966

90 6.032 6.032 6.032

0 6.998 6.998 6.999

15 7.351∗ 8.695 8.940

30 6.980 8.976∗ 9.376∗

45 CSSC 7.048 8.847 9.213

60 6.475 7.797 8.056

75 5.035 5.900 6.966

90 4.898 4.898 4.898

0 2.382 2.380 2.383

15 2.441 2.819 2.900

30 2.707 3.410 3.552

45 FCCF 3.052 3.919 4.102

60 3.216∗ 4.157∗ 4.371∗

75 2.960 3.382 3.473

90 2.848 2.848 2.848

0 13.450∗ 13.451∗ 13.451∗

15 8.847 11.873 12.571

30 6.468 9.465 10.123

45 FCFC 4.706 6.574 6.998

60 3.460 4.127 4.291

75 2.946 3.007 3.022

90 2.874 2.874 2.874
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Table 3. [Cont.].

Angle of ply [°] Boundary condition 2-layer 4-layer 10-layer

0 4.469 4.469 4.469

15 4.710∗ 5.173 5.263

30 4.452 5.688∗ 5.770∗

45 FSFS 3.321 4.602 4.892

60 2.504 2.966 3.078

75 2.124 2.174 4.469

90 2.017 2.017 2.017

0 2.116 2.116 2.117

15 2.178 2.508 2.578

30 2.421 3.081 3.210

45 FSSF 2.688 3.521 3.692

60 2.853∗ 3.583∗ 3.736∗

75 2.469 2.811 2.882

90 2.230 2.230 2.230

laminates. As the 10-layer laminate is found to exhibit the best performance in
terms of fundamental frequency, subsequent studies concentrate on these lami-
nates only.

4.1. Role of fiber orientation

The fiber orientation angle of 10-layer anti-symmetric angle ply laminate is
varied as 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, and 90◦, keeping total thickness and layers
the same. Variation of the non-dimensional natural frequency with boundary
conditions and lamination angles is plotted in Fig. 5. Seven stacking sequences
for anti-symmetric angle-ply laminations are considered: (0/−0)10, (15/−15)10,
(30/−30)10, (45/−45)10, (60/−60)10, (75/−75)10, and (90/−90)10 with six dif-
ferent boundary conditions for the shell edges, viz., CSCS, CSSC, FCCF, FCFC,
FSFS, and FSSF.

In the case of CSCS and FSSF shells, for the 1st, 2nd, 3rd, 4th, and 5th
mode, the non-dimensional frequency has an increasing trend with fiber orien-
tation angle varying from 0◦ to 45◦. In the case of CSSC and FSFS shells, natural
frequency increases with fiber orientation angle increasing from 0◦ to 30◦. When
the lamination angle is increased further, natural frequencies decrease. Simi-
larly, for FCCF shells, the natural frequency increases with a fiber orientation
angle up to 60◦, whereas the natural frequencies of FCFC shells decrease as
the fiber orientation angle increases. The lamination angle and boundary con-
ditions interrelate in a complex way; hence, no unified trend can be observed.
Frequencies depend on three contributions: extensional stiffness, bending stiff-
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Fig. 5. Variation of non-dimensional fundamental frequency with the fiber orientation angle.

ness, and bending-stretching coupling stiffness. These factors depend on shell
geometry, lamination and boundary conditions. For different laminations and
edge conditions taken up here, natural frequency has increasing nature from
the first to fifth mode significantly, barring a few cases where the difference
in frequency parameter of two consecutive modes is insignificant. However, for
different lamination angles taken up here, the performance of CSSC and FCFC
shells is better than CSCS, FCCF, and FSFS shells, followed by the FSSF shell.
Thus, not only the number of boundary constraints but also the arrangement
of boundary constraints play an important role in free vibration performance.

4.2. Role of material anisotropy

Variation in material anisotropy affects the frequencies of 10-layer anti-sym-
metric angle-ply shells with cut-out, and the results are presented in Figs. 6–12
for varying fiber orientation angles (0◦, 15◦, 30◦, 45◦, 60◦, 75◦, and 90◦) and
boundary conditions (CSCS, CSSC, FCCF, FCFC, FSFS, and FSSF bound-
ary conditions). The material properties are considered as G12/E22 = 0.5,
ν12 = 0.25, and E11/E22 ratio is varied as 5, 10, 20, 25, 30, 40, 50. As can
be observed in these figures, the 1st, 2nd, 3rd, 4th, and 5th mode frequency
parameter increases monotonically with the degree of orthotropy for different
laminations and boundaries considered here.
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Fig. 6. Variation of non-dimensional fundamental frequency with material anisotropy
for (0/−0)10 lamination.

Fig. 7. Variation of non-dimensional fundamental frequency with material anisotropy
for (15/−15)10 lamination.
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Fig. 8. Variation of non-dimensional fundamental frequency with material anisotropy
for (30/−30)10 lamination.

Fig. 9. Variation of non-dimensional fundamental frequency with material anisotropy
for (45/−45)10 lamination.
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Fig. 10. Variation of non-dimensional fundamental frequency with material anisotropy
for (60/−60)10 lamination.

Fig. 11. Variation of non-dimensional fundamental frequency with material anisotropy
for (75/−75)10 lamination.
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Fig. 12. Variation of non-dimensional fundamental frequency with material anisotropy
for (90/−90)10 lamination.

In Figs. 6–12, it is clearly observed that the change in frequency due to
material anisotropy is very pronounced in shells with CSCS and CSSC boundary
conditions. With the increase in lamination angle, the effect of anisotropy is more
pronounced. The effect of anisotropy in FCFC shell is also prominent for lower
lamination angles. At higher lamination angles, the effect of anisotropy is not
so significant. But the frequency parameters at each lamination angle increase
with the increase in E11/E22 ratio from the 1st mode to the 5th mode, except
very few cases. In Fig. 8, it is observed that CSCS shells yield the maximum
value of natural frequency at E11/E22 = 10. In all other cases, the values of
non-dimensional frequency would reach their maximum value at E11/E22 = 50.
The variations are clearly visible in the case of CSCS, CSSC and FCFC shells.
Such an increase in frequencies is not so significant in the case of FCCF, FSFS
and FSSF shells. For very few cases, it is observed that the frequency does not
alter much for consecutive modes.

4.3. Role of width-to-thickness ratio

For a 10-layer laminate with constant width, an increase in width/thickness
ratio means a decrease in the thickness of the shell. Figures 13–19 show the
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Fig. 13. Variation of non-dimensional fundamental frequency with b/h ratio
for (0/−0)10 lamination.

Fig. 14. Variation of non-dimensional fundamental frequency with b/h ratio
for (15/−15)10 lamination.
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Fig. 15. Variation of non-dimensional fundamental frequency with b/h ratio
for (30/−30)10 lamination.

Fig. 16. Variation of non-dimensional fundamental frequency with b/h ratio
for (45/−45)10 lamination.
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Fig. 17. Variation of non-dimensional fundamental frequency with b/h ratio
for (60/−60)10 lamination.

Fig. 18. Variation of non-dimensional fundamental frequency with b/h ratio
for (75/−75)10 lamination.
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Fig. 19. Variation of non-dimensional fundamental frequency with b/h ratio
for (90/−90)10 lamination.

variation of frequency for the 1st, 2nd, 3rd, 4th, and 5th mode with change in
width/thickness ratios and edge supports for varying lamination angles (0◦, 15◦,
30◦, 45◦, 60◦, 75◦, and 90◦). Ten-layer anti-symmetric angle-ply laminates with
changing width/thickness ratios (b/h = 10, 20, 50, 100) are analyzed. It is clearly
seen in the figures that the values of frequency decrease with the increase of the
width-thickness ratio. It is obvious that due to the increase in thickness stiffness
of the shell increases. A significant decrease in frequency is observed for CSCS,
CSSC, FCFC, and FCCF shells with higher values of the width/thickness ratio.
But for FSSF and FSFS shells, the change in frequency due to change in width-
to-thickness ratios is not so significant. For a thick shell, when two opposite
edges or two adjacent edges are clamped, due to increased stiffness of the shell
frequency increases significantly. But when the thickness of the shell decreases,
stiffness decreases significantly. So the effect of shell thickness on free vibration
response is more pronounced than the number of support constraints in the case
of shells with a greater number of edge constraints. A similar trend is observed
for higher modes as well.

4.4. Mode shapes

The typical mode shapes corresponding to the first five modes of vibration
for (60/−60)10 lamination and central cut-out with size 0.2 are plotted in Fig. 20
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a)

b)

c)

Fig. 20. Typical mode shapes corresponding to (60/−60)10 laminated shell with central cut-out
for the CSCS boundary condition for the first five modes: a) E11/E22 = 10, b) E11/E22 = 25,

c) E11/E22 = 40.

for three different values of degree of orthotropy. The boundary condition con-
sidered here is CSCS and b/h is 100. The normalized displacements are drawn
with the shell mid-surface as the reference. Mode shapes get complicated with
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an increase in mode number as a combination of bending and torsional modes
are present. The positions of crests and troughs also change with the mode num-
ber. It can be seen in these plots that the mode shapes do not alter significantly
with the variation of orthotropy features. Details of mode shapes for other shell
configurations are omitted for brevity. For other laminations, boundary condi-
tions, degree of orthotropy, width-to-thickness ratios and cut-out sizes, the mode
shapes do not change to an appreciable amount.

4.5. Comparison with other shell forms

It remains interesting to see if the foregoing results and variations are spe-
cific to cylindrical shells or hold good for cut-out borne shell of any geometry.
To explore it, a comparison of the present results with those for anti-symmetric
angle-ply laminated composite hypar shells (hyperbolic paraboloid bounded by
straight edges) with cut-out [21] is attempted. It was reported for hypar shells
that as the number of layers increases, the fundamental frequency increases.
With the increase in lamination angle, the non-dimensional natural frequency
may increase or decrease, but from the first mode to the fifth mode, natural
frequency always increases or remains the same in very few cases. The first,
second, third, fourth, and fifth non-dimensional frequency parameter increases
monotonically with a degree of orthotropy for all the laminations and boundary
conditions. With the increase in width-to-thickness ratios, frequencies decrease
from the first mode to the fifth mode. In a nutshell, the free vibration behavior
of hypar shells was found to primarily depend on the number of boundary con-
straints irrespective of other parametric variations in terms of fiber orientation
angle, degree of orthotropy and width-to-thickness ratio. Thus by comparing
the results from the present analysis with those reported earlier for hypar shells
[21], it may be inferred that the mode-frequency behavior of cut-out borne stiff-
ened composite shells do follow some similar trends, but the exact behavioral
pattern depends on the shell geometry. No generalized pattern applicable for all
types of shells, e.g., cylindrical, spherical, hypar, elliptic paraboloid, conoidal,
etc., can be obtained. One has to treat each individual shell separately and per-
form a similar analysis to obtain the higher mode frequencies and their variation
with change in different parametric conditions, including geometry, size, bound-
ary conditions, laminations, degree of orthotropy, etc., for effective use of these
shell form in the presence of cut-out. In the present study, the dynamic behav-
ior of laminated composite stiffened cylindrical shell with cut-out is studied by
considering the natural frequencies of the first five modes. For civil and archi-
tectural structures where such laminated cylindrical shells are commonly used,
consideration of first few modes is sufficient. However, there is always scope for
consideration of even higher frequencies.
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5. Conclusions

Higher modes of vibration of the laminated stiffened cylindrical shell with
cut-out were analyzed using the finite element method. Analyzing the results,
the following can be concluded.

1) Fundamental frequency increases with an increase in layers.
2) If the fiber orientation angle increases, the non-dimensional fundamental

frequency may increase or decrease depending on boundary conditions.
The laminations and edge conditions interrelate in a complex fashion, and
a uniform trend cannot be determined. This is because stiffness due to ex-
tension, bending, and bending-stretching coupling contribute to frequency.
In turn, the frequency depends on shell geometry, lamination and edge
conditions.

3) As the lamination angle increases, the effect of anisotropy is not so signif-
icant. But the frequency parameters under each lamination angle increase
with the increase in E11/E22 ratio from the 1st mode to 5th mode, except
very few cases.

4) The effect of shell thickness on free vibration response is more pronounced
than the number of edge constraints in shells with a higher number of edge
constraints. A similar trend is observed for higher modes also.

Moreover, comparison with hypar shells reveals that although the mode-
frequency behavior of cut-out borne stiffened composite shells follows somewhat
similar trends, the exact behavioral pattern depends on the shell geometry.
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