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This paper analyses the influence of nonlinearity of the damage evolution equation that
is introduced by exponent to the results obtained in the simulation of elastic-brittle material.
Constitutive equation of linear-elastic medium with damages is described by the linear-tensorial
function due to damage tensor. The nucleation and growth of microdamages are modelled
using a two-parameter equation of damage evolution, in which the current level of damage is
expressed by the principal values of Vakulenko-Kachanov and Murakami-Ohno damage tensors.
The study examines a relationship between the time of the first macro crack appearance,
principal values of damage tensor at the critical moment and the exponent adopted to the
equation of damage evolution. The subjects of the analysis are changes in both the qualitative
and quantitative variables characterizing the damage.
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1. Introduction

Modern structures and their components are exposed to impacts of high en-
ergy. These processes, during which a substantial amount of energy is produced,
are accompanied by elevated temperature field variable in time, which activates
creep phenomenon in engineering materials. The solutions presented in this work
examine the thermal field approximated by a constant function in finite, short
intervals of time. The solutions obtained with these assumptions will give some
approximations of the operation of the devices and structures in real situations.
Problems associated with reducing vulnerability to accumulation of dam-

age at elevated temperatures are mainly solved by changes in the structure of
the material. These changes are achieved by the appropriate selection of alloy
components and the application of technological components to the finished
construction.
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An important aspect of research is the theoretical estimation of the first
crack time and the time interval for achieving the load-carrying capacity of the
structure. Its solutions are used in the design of structures. Evidence of this is
intensive development of continuum damage mechanics [1–3] with the focus on
incorporating damage mechanics models into finite element procedures [4–6].
The issue related to carrying capacity of surface structures operating at

high temperatures can be considered in terms of growth restriction deflection
(usability condition), and in layered structures in terms of ensuring the dura-
bility of protective layers. The time of safe work of the structure is also as-
sociated with the reduction of load-carrying capacity due to the nucleation,
growth and propagation of micro damage. This phenomenon mostly occurs in
two stages. The first stage, starting at the initial period of work of the struc-
ture, involves the creation of hidden microdamages (before the failure criterion is
fulfilled), which combine to form macro cracks (when the failure criterion is ful-
filled). The second stage is the propagation of macro cracks, forming the damage
front.
The basic problem of structure’s design in a life time of a structure is an

approach that does not permit to initiate the formation of the previously men-
tioned second stage of macro crack front, while in the case of appearance of
the first macro cracks it allows to determine the time remaining to complete
destruction of the cross section of the structure.
In this study, the sensitivity of mathematical model to the behaviour of

surface structures, in terms of damage nucleation and propagation of the damage
front, is analysed, In particular, the coupling of the constitutive material with
decreasing stiffness is described.
Improvement of one of the existing commercial packages to add new mod-

elling capabilities, in this case the modelling of brittle damage, makes it possi-
ble to use the newly developed computing and graphics features and to become
a widely adapted method. This is in accordance with modern trends in engi-
neering design involving extensive use of computers and CAD software. In this
study, the commercial package ABAQUS [7] was selected to perform the calcu-
lations with the implemented constitutive model. Adapting ABAQUS program
for the analysis of surface structures with variable material characteristics re-
quires implementing the classical finite element method. This includes, apart
from the constitutive equations, and after developing algorithms and numeri-
cal procedures, the implementation of equations describing the development of
damage. Similar attempts can be found in literature. For example, the imple-
mentation of user subroutines set to perform finite element analysis connected
with the identification of damage material parameter (for nickel-based superal-
loy INC0718 and for steel) in the MSC.Marc computer code is described in [8].
The comparison of experiments with numerical simulations to investigate the
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properties of damage level in the material is presented in [9]. Here, the depen-
dency between the thermal properties and changes of material structure during
the damage process was the method of assessment of the damage stage. Interest-
ing results can also be found for the structures made of concrete material [10],
e.g., the implementation of coupled rate-dependent damage-plasticity concrete
model in LS-DYNA finite element code. The authors conducted a study of dam-
age mechanisms which develop in concrete under high rate loading. Moreover,
the comparison between numerical simulation and the tests carried out in labo-
ratory is given. The development of orthotropic properties in initially isotropic
materials described by the constitutive equations within the phenomenological
approach of continuum damage mechanics is presented in [11].

2. Measures of damage, evoluton equation

The development of damage defects in a material is described by the damage
evolution equation. In the case of scalar damage measure, mainly formulated
for uniaxial stress states, this equation has an uncomplicated form such as an
equation for a scalar measure introduced by Kachanov [12], where φ is defined
as the loss of effective cross-sectional area, which is a ratio of the effective area
to the undamaged area:

dφ

dt
= −A

[
σ

φ

]m
,

where A and m are material constants while σ is the maximum tensile principal
stress. This equation expresses the rate of change in time of the effective stress
(σ/φ) defining the value of the stresses per unit surface area of the undam-
aged material. Scalar measures can be relatively easily included in the physical
model; therefore, they have practical importance and are used in engineering
calculations, especially for isotropic damage [13].
When considering the development of defects in real structures, working in

a multi-axis stress state, more realistic results can be obtained using the tensor
measurement. In this paper, it is assumed that the material damage state is
represented by the tensor damage measure denoted by symbol Ω and presented
by Murakami and Ohno in [14] and by equivalent D introduced by Vakulenko
and Kachanov in [15].
The damage tensor Ω is defined as the ratio between the elementary surface

dA plane with the normal unit n lying in the damaged configuration (current)
and the elementary area dA∗ in the same plane with normal n∗ lying in the
configuration without damage (ideal) with reduced cross section area

n∗dA∗ = (I−Ω)n dA,
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where I is a unit tensor of the second order. The principal values of Ω and D
tensors are related by the following formula:

Ωi = Di/(1 +Di), i = 1, 2, 3.

With such damage measure assumption the main components of effective
stress are defined by the relationship

(2.1) σ∗i =
σi

(Ii −Ωi)
, i = 1, 2, 3,

where σ∗ is a tension stress in the ideal configuration and σ is the stress in
a damaged configuration. From the definition it follows that the theoretical
values Ωi are in the interval [0, 1). In accordance with the experimental results
in the critical time of macro cracks appearance, Ωi is smaller than a unity.
In the general formulation of the constitutive model the damage tensor is

an internal variable whose current value should be determined on the basis of
the equation of evolution. For many internal parameters describing processes in
the material at the level of microstructure, the evolution of internal parameters
βi(t) frequently depends on the state of all the internal variables βj(t) and the
state of macroscopic variables [14, 16]

dβi
dt

= fi(βj ;σ, t, h),

where h stands for the hardening parameter, t for the time and σ is the stress
tensor.
Leaving aside the hardening parameter, we obtain the following form of the

equation of evolution [17, 18]:

(2.2)
dΩ

dt
= f(Ω;σ).

This is the tensor function of two independent symmetric tensor variables Ω
and σ. Based on the theory of tensor function representation (for a symmetric
second-order tensor), the right side of Eq. (2.2) is the product of the stress and
damage tensors to the powers of no more than two and the function of tensor
invariants.
The assumption of proportionality of rate increase in the damage tensor

principal values to the positive principal values of the stress tensor is due to the
lack of evolution of the damage in compressive stress directions. Also according
to the experimental results, it is assumed that the principal directions of stress
tensors and damage coincide and the factor determining the evolution of the
damage, in addition to the positive principal stresses, is the second invariant of
the stress deviator and the first invariant of the stress tensor.
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According to the proposal set out in the paper of Litewka [17], the evolution
equation was adopted in the form of

(2.3)
dΩ

dt
= B1Φ

m
e I+

B2

(2E)n
Φn
eσH(σ),

where H is the Heaviside function eliminating damage to the directions of the
negative stress, B1 and B2 are the material constants, and m and n are the
material parameters. The symbol Φe in Eq. (2.3) is the elastic energy density
expressed by the following formula:

Φe =
1

2
tr(σε),

where ε is the strain tensor.
The first part of Eq. (2.3) corresponds to the development of isotropic dam-

age (i.e., it does not show privileged directions), which in the case of metal
working at elevated temperatures does not confirm the results of experiments;
therefore, further considerations take into account only the second element re-
sponsible for the development of anisotropy [17]

(2.4)
dΩ

dt
= kΦn

eσH(σ),

where k = B2/(2E)n.
The problem of selection of the coefficient n was described by Litewka [19],

where the author considered using the exponent 1, 2 and 3, depending on the
type of material used.
The set of equations that model the adopted material also complements also

constitutive equation for a damaged solid [19]:

(2.5)

εij = Aijkl(Dmn) · σkl,

Aijkl = − ν

E
δijδkl +

1 + ν

2E
(δikδjl + δilδjk)

+
D1

4(1 +D1)E
(δikDjl + δilDjk + δjkDil + δjlDik),

where the compliance matrix Aijkl is the function of the components of the
damage tensor D and the constants of the undamaged material at current tem-
perature (Young’s modulus E and Poisson’s ratio ν). The critical combination
of damage tensor components is calculated from the failure criterion [17]

(2.6) [C1 C2 C3]
[
tr2σ trS2 tr(σ2

D)
]T − σ2u = 0,
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where S is the stress deviator and σu is the time-dependent ultimate strength of
the undamaged material. The application of Eq. (2.6) to three different states
of the stress: uniaxial tension in the perpendicular directions (coaxial with prin-
cipal directions of the damage tensor) and biaxial tension in the same directions
leads to the following three algebraic equations set in respect to the components
of C vector:




(1−Ω1)
2 2

3
(1−Ω1)

2 (1−Ω1)
2Ω1

(1− r2Ω1)
2 2

3
(1− r2Ω1)

2 (1− r2Ω1)r2Ω1

4(1 −Ω1)
2 2

3
(1−Ω1)

2 2(1 −Ω1)Ω1







C1

C2

C3


 = I,

ri = σiH(σi), i = 1, 2, 3.

where Ω1 stands for the maximum principal value of the damage tensor Ω.

3. Numerical examples

Numerical calculations were carried out using the standard ABAQUS FEA
program [7], in which the mathematical model consisting of constitutive equation
(25), the damage evolution equation (24) and the failure criterion (26) is defined
using the procedure UMAT written by the user [20]. The iterative procedure
adopted here assumes that the structure is made of a material with stiffness
varying over time, due to progressive degradation. For a given load-induced
stress level, the evolution equation is solved and the criterion of damage is
checked. In the second and subsequent steps, solutions are obtained taking into
account the distribution of stresses caused by the occurrence of microdamages
and macro cracks.
With the assumption of a constant value of the exponent n (n = const)

the equation of damage evolution (2.4) is replaced by a one-parameter formula,
only dependent on the material constant k. The impact of parameter n on
the process of damage evolution and the time of macrocracks were analysed
in numerical studies. The calculations were performed for four values of the
parameter n = 1, 2, 3 and 4.
The focus was on determining the time interval from structure loads to the

appearance of the first macro cracks.
In the numerical analysis the assumed dimensionless magnitudes of material

data are referred to carbon steel at the temperature of 811 K with dimensionless
Young’s modulus E/σu = 417, Poisson’s ratio ν = 0.47 and ultimate strength
σu = 288 MPa [19]. The results are illustrated for four different coupling pairs



INFLUENCE OF EXPONENT IN DAMAGE EVOLUTION EQUATION. . . 469

of material parameters n and k: (n = 1, k = 3.42), (n = 2, k = 8.21E1),
(n = 3, k = 1.97E7) and (n = 4, k = 4.73E12). The analysis is performed for
middle-thick plate with all hard clamped edges and the surface uniform load
q = q/σu = 4.2 · 10−2 (Fig. 1).

Fig. 1.

The first rupture occurs simultaneously in the middle of the clamped edge
(symmetry point A1) of the upper surface of the plate in each case of n param-
eter. The more detailed analysis of the obtained results is conducted in the area
where the first rupture appears. The histories of the first principle values of the
functions of damage tensor Ω1 (Fig. 2 for n = 1, Fig. 3 for n = 2, Fig. 4 for
n = 3 and Fig. 5 for n = 4), the nominal stresses S1 (Fig. 6) and the effective
stresses N1 (Fig. 7) (T denotes the dimensionless time) in the neighbourhood

Fig. 2.
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Fig. 3.

Fig. 4.

Fig. 5.

of the first macro crack place in the plate are shown below. The dimensionless
principal values of the stress tensor are related to the ultimate strength σu in
the virgin state.
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Fig. 6.

Fig. 7.

The names in the legend correspond to the element numbers in Fig. 1. In all
the cases, the second macro crack is located in the neighbourhood of element A2
in the same top layer. The process develops almost simultaneously in the second
layer of the plate containing point AB. As far as the level of material deteri-
oration is concerned, we notice almost identical values of critical Ω1 in points
of the top layer A1 for each n parameter. The differences appear for point AB
of the second layer; in this case we notice a decrease of level of material dete-
rioration accompanied by greater values of n. The important difference can be
noticed, however, for time periods before the first rupture appears. The vertical
lines indicate the rupture time in the elements. For comparison, dimensionless
time was normalized with respect to time of the first macro crack, which was
obtained assuming the exponent n = 2. Adoption of the exponent n = 2 is
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done according to research carried out for the samples made of metal working
at high temperatures, which in these conditions exhibit characteristics of brittle
materials. For such materials, assuming a state of uniaxial tension, compliance
with the experimental results was obtained by adopting the exponent equal to
n = 2. For n = 1 the first time interval is equal to 0.4, for n = 3 this time is
almost 10 times longer and for n = 4 it is equal to 40. After the appearance of
first macro cracks in the upper layer, the process becomes avalanche-like with
successive elements cracking in both the upper layer (toward the corner) and
the cross-sectional direction (point K).
Material deterioration, determined by elastic energy density and directions

of principal stresses, decreases the stiffness of a structure [21]. The course of the
maximum principal value of stress tensor S1 (Fig. 6, the number after the symbol
of element symbolizes the value of n index) in the first macro crack point A1
is similar in each case, i.e., it increases what makes the process develop. In the
neighbouring elements (AB and A2) the opposite phenomenon is noticed, the
stresses decrease till the moment of the first macro crack appearance.
The effective stresses (2.1) take into account the current state of damage

accumulation making therefore the strength of the structure objective. Despite
a decrease in the effective stressN in each element, damage accumulation process
develops under the influence of load (Fig. 7).
The development of the orthotropic properties of the material causes the

differentiation of the principal values of damage tensor Ω1, Ω2, Ω3 at each of
the directions for all the adopted parameters n (Fig. 8), revealing a significant
difference in damage to the material (close to 49% between principal direction 1
and 2 and close to 75% between principal direction 1 and 3) in each of the
principal directions.

Fig. 8.
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The adopted form of damage evolution Eq. (2.4) indicates the necessity of
examining also the course of functions Φ and dΩ1/dt. Small changes in the energy
density Φ (Figs. 9–12) in the elements forming the damage front, in the process
of microdamages evolution, result from two factors: an increase in the damage

Fig. 9.

Fig. 10.

Fig. 11.
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Fig. 12.

of the material (higher values of the damage tensor principal components Ω)
and a reduction in stiffness of the structure (decrease in the stress N).
The change of the damage rate illustrated in Figs. 13–16 reflects slowing

material degradation resulting from the acceptance of a larger exponent n.

Fig. 13.

Fig. 14.
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Fig. 15.

Fig. 16.

In the initial period, the formation of microdamages is accelerated. Decreas-
ing stresses slow down this process. The smallest rate of change of the principal
damage tensor value preceding the macrocrack corresponds to n = 4.
Summing up, the results for the first macro crack point A1 are illustrated in

Figs. 17–19.
From calculations made for the plate structure it is disclosed that there is a

high dependence of the critical time, understood as the time interval from the
moment of structure loads to the first macro crack appearance, on the adopted
exponent n (Fig. 17). An asymptotic increase of critical time for increasing n
parameter is illustrated in Fig. 17, contrary to asymptotic decreasing of dΩ1/dt
(Fig. 18).
Despite the significant influence of the change of the parameter n at the

critical time there was no significant influence of this parameter on the level of
damage at the critical time (critical principal values of the damage tensor Ω1

are in the range 0.7–0.75) (Fig. 19).
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Fig. 17.

Fig. 18.

Fig. 19.

Figure 20 illustrates the variation of the normalized maximum structure
deflection depending on the density distribution of finite element (FE) mesh
assuming n = 2. The moment of the asymptotic growth of deflection indicates
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Fig. 20.

a critical time for the structure. Comparable quality solutions for all FE mesh
have shown a lack of pathological dependence on the mesh density. Moreover,
as the mesh thickens the improvement in the convergence of the results is ob-
served.

4. Final remarks

The numerical research of damage development for different exponent n, de-
fined as a material constant, indicates the existence of qualitatively convergent
growth mechanism of damage, but with major differences in the time interval
from the moment of structure loads until the first macro crack. The results of nu-
merical calculations show that the qualitative nature of microdamages evolution
does not depend on the exponent n, since the difference between the principal
values of the damage tensor Ω1 at critical moment, for each parameter n, does
not exceed 5%, which indicates a similar level of material damage. This justifies
accepting the evolution equation (2.4) as one parameter description of rupture
modelling for a given value of the exponent n [19].
Proper selection of the parameter n, together with the material parameter k,

allows for more flexible adaptation of the damage function evolution to experi-
mental results, to achieve compliance of the first critical time and the shape of
the evolution course, but the specification of this requires further investigations
confirmed by experimental data.
A very high sensitivity of the lifetime of a structure with respect to the value

of the exponent n allows to treat this exponent as the second material constant
for more precise rupture modelling.
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