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The complex potentials governing the elastic equilibrium of a finite circular disc, elliptically
perforated at its center, are obtained using Muskhelishvili’s formulation. The disc is subjected
to non-uniform distribution of pressure along two symmetric finite arcs of its periphery. Given
the complex potentials, the stress- and displacement-fields can be determined everywhere on the
disc by introducing a novel flexible interpretation of the conformal mapping, suitably adjusted
to the computational process. The results of this procedure are given for various strategic loci
and are critically discussed. The length of the loaded arc is considered similar to that obtained
from the solution of the intact disc-circular jaw elastic contact problem assuming that the disc
is compressed between the steel jaws of the device suggested by the International Society for
Rock Mechanics for the implementation of the Brazilian-disc test. Concerning the distribution
of the externally induced pressure along the loaded arcs, it is proven that for the general
asymmetric configuration (i.e. the axes of the elliptical hole are neither parallel nor normal to
the loading axis) the induced asymmetric displacement field does not permit maintenance of
equilibrium of the disc as a whole in case the disc is considered exclusively under a distribution
of radial pressure: Additional tractions must be exerted along the loaded arcs, obviously in
the form of frictional stresses. Besides, providing full-field, analytic expressions for stresses
and displacements, the main advantage of the present solution is that, by properly choosing
the ratio of the ellipse’s semi-axes, the solution of three additional configurations, of major
importance in engineering praxis, are obtained: These of the intact disc, the circular ring and
the cracked disc.

Key words: circular disc, ring, complex potentials, stress field, displacement field, fracture
toughness, cracked Brazilian-disc test.

1. Introduction

The configuration of a circular disc of radius RO and thickness w, either
intact or centrally cracked, subjected to radial compressive loading along two
finite arcs (symmetric with respect to the disc’s center) of its periphery, is very
familiar among scientists working experimentally for the indirect determination
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of the tensile strength (intact disc) and the fracture toughness (cracked disc) of
brittle geomaterials. Although both tests are long ago standardized [1–3], quite
a few issues are still to be confronted, especially for the case of the cracked
configuration [4, 5]. These issues are mainly related to the lack of convinc-
ing closed-form solutions for the corresponding stress- and displacement-fields,
which is in turn responsible for the adoption of approximate (and quite often
erroneous) formulae for the respective Stress Intensity Factors (SIFs).
It is to be accepted from the very beginning that the specific problem, i.e.

to obtain accurate closed formulae for stresses and displacements for a cracked
body of finite dimensions, is very complicated, even in its simplest form, i.e. for
discs made of elastic, homogenous and fully isotropic materials. The accurate
simulation of the actual boundary conditions (distribution of radial pressure,
length of the loaded arcs) [6], the mutual contact of the crack lips (for specific
crack inclinations with respect to the loading axis) [7–9] and the rotation of the
crack axis during loading [9–11] are perhaps the main reasons for the difficulties
encountered when one is seeking for a reliable general solution of the problem.
Existing solutions are restricted to discs with a central mathematical crack

(an ideal cut of zero distance between its lips) of length 2α, loaded by a pair
of forces P linearly distributed along two generatrices of the disc (symmetric
with respect to the disc’s center) (Fig. 1a). The pioneering work of Atkinson
et al. [12] is perhaps the most representative and widely adopted approach of
this class. Recently, the problem was re-solved by considering a finite circular
disc with a relatively “short” central crack of mathematical nature assuming
that the external force P/w is uniformly distributed (Fig. 1b) along two arcs
of finite length equal to 2ωoRO [13]. In other words, the disc was assumed to
be loaded by uniform radial pressure σr = P/(2ROωow). It was shown that as

a) b)

Fig. 1. The circular disc under point forces (a) and uniform radial pressure (b).
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long as the length of the crack does not exceed one fourth of the disc’s radius,
the solution obtained was very close to that proposed by Atkinson et al. [12]
for point forces. In both cases, however, it was clearly indicated that for crack
inclinations (with respect to the loading axis) exceeding a certain limit (around
30◦) the crack lips are coming into mutual contact rendering the formulae for
stresses and displacements erroneous [12, 13].
In an effort to overcome the as above mentioned complexities, an alternative

approach is here proposed by considering a finite circular disc with a central
elliptical cut instead of either a mathematical crack [12, 13] or of a rectangular
slit (a cut of constant distance between its lips) [14]. In addition, instead of
adopting either uniform pressure [13] or point forces [12], a more realistic loading
scheme is adopted. This scheme is based on the parabolic distribution of radial
pressure obtained from the solution of the respective contact problem for the
intact disc [15]. As long as the solution is obtained for an arbitrary elliptical
hole, it is then straightforward to arrive to the solution of a cracked disc (by
letting the minor semi-axis of the ellipse approach zero), or to the solution of a
circular ring (by letting the minor semi-axis of the ellipse approach the major
one) or even to the solution of the intact disc (by assuming that the lengths of
the semi-axes tend to zero). In this way, the whole range of configurations (i.e.
from the solid disc to the circular ring and to the cracked disc) is covered.
In the present study attention is paid to the solution of the mathematical

problem (and the procedure followed to arrive at analytic expressions for the
stresses and displacements) as well as to the way the respective formulae are to
be applied (in conjunction with an alternative interpretation of the conformal
mapping) rather than to the practical aspects and applications of the formula
obtained.
The solution for the elliptically perforated disc is considered in juxtaposition

to the ones for the circular ring and the intact disc and interesting comparative
conclusions are drawn concerning the respective stress fields. Moreover, interest-
ing conclusions are drawn concerning the role of the boundary conditions and
especially for the kind of the distribution of the external loading. Interestingly
enough, it is shown that the equilibrium of the elliptically perforated disc cannot
be ensured (assuming that the crack is neither normal nor parallel to the loading
axis) by considering exclusively radial pressure along the loaded rims (as in the
case of the intact disc or the ring): Additional tractions (perhaps in the form of
shear/friction stresses) are required along the loaded arcs of the disc’s periphery.
In addition, the deformed shape of the disc and the elliptic cut is thoroughly

studied indicating that the axis of the ellipse is deformed obtaining a ‘sigmoid’
shape while on the other hand its lips are coming to partial contact either close
to their tips or at their central region, depending on both the ratio of the semi-
axes and the magnitude of the load.



134 CH.F. MARKIDES, S.K. KOURKOULIS

2. Theoretical preliminaries

2.1. Formulation of the mathematical problem

An elliptically perforated disc of radius RO and thickness w is squeezed by
a force Pframe between the curved jaws of the device suggested by the Interna-
tional Society for Rock Mechanics (ISRM) [1] for the implementation, according
to standardized manner, of the Brazilian-disc test (Fig. 2a). It is assumed that
the disc is at a state of global equilibrium (i.e. no rigid-body rotation is allowed).
Under the above assumptions the stress- and displacement-fields developed all
over the disc’s area are to be determined.

a)

b)

Fig. 2. a) Elliptically perforated disc compressed between the jaws of the ISRM device
for the standardized implementation of the Brazilian-disc test, b) the configuration

of the mathematical problem.
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Considering the problem as a plane one, the configuration of the isolated disc
is shown in Fig. 2b: An elliptically perforated circular disc of radius RO with
a stress-free central elliptical hole L is lying in the z = x + iy = reiφ complex
plane. The origin of the Cartesian reference is the centre of the disc. Denote
by α and b the major and minor axes of L, respectively. The major axis α of
L is aligned along x-axis. The external loading, Pframe, forms an angle φo with
respect to α. Pframe/w is distributed along two symmetric arcs t1t2 and t3t4 of
the disc’s periphery LO, each one equal to 2ROωo. For the time being the nature
of the distribution of Pframe on the disc’s cross section is considered unknown.
Assuming that the disc’s material is homogeneous, isotropic and linearly

elastic, Kolosov’s [17] and Muskhelishvili’s [18] complex potentials method is
employed. For the solution to be achieved advantage is taken of the complex
potentials characterizing the elastic equilibrium of a circular ring compressed
between the jaws of the ISRM’s suggested device for the implementation of the
Brazilian-disc test. This solution was recently obtained [19] and it is very briefly
recapitulated in Subsec. 2.2.
It is mentioned, however, that following an alternative approach, one could

equally well take advantage of the respective intact disc’s solution [20]. The
ring’s solution was chosen in the present study just because it was proven more
convenient for the particular case since it has been obtained in series form [19]:
It is therefore relieved from logarithmic terms (appearing in the intact disc’s
solution) which in turn render the procedure for obtaining the principal parts
of analytic functions (involved during the solution) much more complicated.

2.2. The complex potentials for the circular ring under parabolic pressure [19]

A circular ring of the same dimensions as the elliptically perforated disc
(thickness w, outer radius RO) is considered with an inner hole of radius RI . Its
cross-section lies at the z = x + iy = reiφ complex plane and the origin of the
Cartesian reference is taken at its centre. The ring is assumed to be subjected
to a parabolic pressure σr = −P (φ) (statically equivalent to the overall load
Pframe) along two symmetric arcs of its outer periphery LO, each one of length
2ROωo. The axis of symmetry of the externally induced load forms an angle
φo, measured in the counter clockwise direction from x-axis (Fig. 3). Both P (φ)
and ωo are assumed to be given by the respective contact problem through the
expressions [15, 16]:

(2.1) ωo = Arcsin

√

6KPframe
πROw

and P (φ) = Pc

[

1− sin2 (φo − φ)

sin2 ωo

]

,

where

(2.2) K =
κ+ 1

4µ
+
κJ + 1

4µJ
and Pc = P (φ)max =

√

3πPframe
32KROw

.
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In Eqs. (2.1) and (2.2) Pc is the maximum value of P (φ) attained at φ = φo.
In addition, κ, κJ and µ, µJ are Muskhelishvili’s [18] constants (which are equal
to (3−4ν) for plane strain and (3−ν)/(1+ν) for plane stress, with ν denoting the
Poisson’s ratio) and shear moduli of the disc’s and jaw’s materials, respectively.
Alternatively, one can arbitrarily prescribe angle ωo and thus avoid resorting

to the contact problem. In this case, instead of using Eq. (2.2)2, parameter Pc

should be defined as:

(2.3) Pc = P (φ)max =
2Pframe sin

2 ωo

ROw (sin 2ωo − 2ωo cos 2ωo)
.

According to Ref. [19], the complex potentials characterizing the ring’s equi-
librium are:

(2.4) φo(z) =
Pc

π

{

b0z +
B2

3
z3 −B−2z

−1

+

∞∑

n=1

[
B4n

4n+1
z4n+1−B−4n

4n−1
z−(4n−1)+

B2(2n+1)

4n+3
z4n+3−

B−2(2n+1)

4n+1
z−(4n+1)

]}

,

(2.5) ψo(z) =
Pc

π

{

B′

0z+
B′

2

3
z3 − b′

−2z
−1 − B′

−4

3
z−3

+

∞∑

n=1

[

B′

4n

4n+1
z4n+1+

B′

2(2n+1)

4n+3
z4n+3−

B′

−4(n+1)

4n+3
z−(4n+3)−

B′

−2(2n+1)

4n+1
z−(4n+1)

]}

.

The complex constants Bj , B′

j, which appear in Eqs. (2.4) and (2.5), are
straightforwardly obtained from the respective constants bj , b′j, which were de-
termined in Ref. [19], by simply rotating the co-ordinate system adopted in
Ref. [19] through a positive angle (π/2 − φo). For brevity, the explicit expres-
sions of these constants are given in Appendix A.

3. The stress- and displacement-fields
in an elliptically perforated disc

3.1. The complex potentials

For the transition from the ring’s configuration to that of the elliptically
perforated disc to be achieved, consider an ellipse L of major axis α and minor
axis b (where α is aligned along x-axis) at the center of the ring of Fig. 3, as it
is shown in Fig. 4a. By properly removing parts from the ring and/or adding
patches of the very same material to it (see the dashed areas in Fig. 4a), the
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Fig. 3. The circular ring under parabolically distributed pressure.

a) b)

c) d)

Fig. 4. a) The transition from the ring to the elliptically perforated disc, b) the elliptically
perforated disc under an overall external force Pframe, c) the solution of the elastic intact
disc-jaw contact problem and d) the implication due to the asymmetric configuration of the

elliptically perforated disc.
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configuration of the elliptically perforated disc is obtained. In this case, the
solution of the elliptically perforated disc is sought in the following form:

(3.1)
ϕ(z) = ϕo(z) + ϕ∗(z),

ψ(z) = ψo(z) + ψ∗(z),

where ϕo(z), ψo(z) represent the solution of the circular ring (Eqs. (2.4) and (2.5))
while ϕ∗(z) and ψ∗(z) are additional analytic functions, due to the presence of
the elliptical hole, which are to be determined.
The configuration of the elliptically perforated disc is shown in Fig. 4b. In

this figure, the set of functions of Eqs. (3.1) shown are to emphatically stress
that the nature of the distribution of Pframe along the loaded arc is not a-priori
known whereas it is known that the state of elastic equilibrium is governed by
these functions. In other words, the parabolic distribution of radial pressure
obtained in Ref. [15] refers to the case of two symmetric semi-infinite circular
bodies (the disc and the jaw of the ISRM device) which come in smooth mutual
contact (Fig. 4c). Obviously, this is definitely not the case for the asymmetric
problem solved here, since the disc contains an elliptical hole the dimensions of
which are well comparable to the disc’s radius (Fig. 4d).
From the theoretical point of view, the transition from the ring to the ellipti-

cally perforated disc is realized according to the following two-steps procedure:
i. Firstly, the region of the ring outside L is conformally mapped onto the
region outside the unit hole γ (Fig. 5) in the mathematical ζ = ξ+iη = ρeiθ

complex plane (s = eiθ denotes the point ζ on γ) through the function:

(3.2) z = ω(ζ) = R(ζ +m/ζ).

In Eq. (3.2) parameters R and m are defined as R = (α + b)/2 and m = (α −
b)/(α+ b). In accordance with this transformation, Eqs. (3.1) are re-written as:

(3.3)
ϕ(ζ) = φo(ζ) + ϕ∗(ζ),

ψ(ζ) = ψo(ζ) + ψ∗(ζ),

ii. As a second step the boundary L is demanded to be free from stresses. In
other words, the following boundary condition is imposed [18]:

(3.4) ϕ(s) +
s2 +m

s(1−ms2)
ϕ′(s) + ψ(s) = 0.

In Eq. (3.4) over-bar denotes the complex conjugate while prime indicates first
order derivative.
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a) b)

Fig. 5. The conformal mapping of the elliptically perforated disc (a) to the unit circle (b).

Introducing Eqs. (3.3) into Eq. (3.4) one arrives at the following equation
for the functions ϕ∗(ζ) and ψ∗(ζ) which were to be determined:

(3.5) ϕ∗(s) +
s2 +m

s(1−ms2)
ϕ′

∗
(s) + ψ∗(s)

= −
[

ϕo(s) +
s2 +m

s(1−ms2)
ϕ′

o(s) + ψo(s)

]

︸ ︷︷ ︸

f∗(s)

.

At this point LO is considered as if it were lying at infinity and ϕ∗ and ψ∗

were vanishing there. In such a case Muskhelishvili’s [18] formulae for the
infinite plate provide these functions as:

(3.6)

ϕ∗(ζ) = − 1

2πi

∫

γ

f∗(s) ds

s− ζ
,

ψ∗(ζ) = − 1

2πi

∫

γ

f∗(s) ds

s− ζ
− ζ

1 +mζ2

ζ2 −m
φ′
∗
(ζ).

Combining now Eqs. (2.4), (2.5), (3.2), (3.5), (3.6) one obtains the functions
ϕ∗(ζ) and ψ∗(ζ). Then by taking advantage of Eqs. (3.3) the functions ϕ(ζ) and
ψ(ζ) are determined as follows:
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(3.7) ϕ (ζ) =
PcR

π

{

(
b0 +mR2B2

)
ζ +

R2B2

3
ζ3

−
mb0 +B′

0 +R2
[(
1 + 2m2

)
B2 +mB′

2

]

ζ
−
(

mB2 +
B′

2

3

)

R2

ζ3

+
∞∑

n=1

R4n

[

B4n

4n + 1
G∞

4n+1 (ζ)−B4nG
0
4n (ζ)−

B′

4n

4n+ 1
G0

4n+1 (ζ)

+R2

(

B2(2n+1)

4n+ 3
G∞

4n+3 (ζ)−B2(2n+1)G
0
2(2n+1) (ζ)−

B′

2(2n+1)

4n+ 3
G0

4n+3 (ζ)

)]}

,

(3.8) ψ (ζ) =
PcR

π

ζ2

ζ2 −m

{(

B′

0 +
2mR2B′

2

3

)

ζ +
R2B′

2

3
ζ3

−
(
8mB2

3
+B′

2

)
R2

ζ5
−
R2
(

41+3m2

3 B2 + 2mB′

2

)

+B′

0

ζ3

− 2

(
1 +m2

) (
b0 + 2mR2ℜB2

)
+mℜ

(
B′

0 +mR2B′

2

)

ζ

+

(
1

ζ
+mζ

) ∞∑

n=1

R4n

[

B4n
dG0

4n (ζ)

dζ
− B4n

4n + 1

dG∞

4n+1 (ζ)

dζ
+

B′

4n

4n + 1

dG0
4n+1 (ζ)

dζ

+R2

(

B2(2n+1)

dG0
2(2n+1) (ζ)

dζ
−
B2(2n+1)

4n+ 3

dG∞

4n+3 (ζ)

dζ
+
B′

2(2n+1)

4n+ 3

dG0
4n+3 (ζ)

dζ

)]

−
(

1− m

ζ2

) ∞∑

n=1

R4n

[
B4n

4n + 1
G0

4n+1 (ζ)−B4nG
∞

4n (ζ)−
B′

4n

4n+ 1
G∞

4n+1 (ζ)

+R2

(

B2(2n+1)

4n+ 3
G0

4n+3 (ζ)−B2(2n+1)G
∞

2(2n+1) (ζ)−
B′

2(2n+1)

4n+ 3
G∞

4n+3 (ζ)

)]}

.

In the above formulae ℜ denotes the real part. Furthermore, G∞

j (ζ) and
G0

j (ζ) are the principal parts of analytic functions involved at the point at
infinity and at ζ = 0, respectively. Their analytic expressions are given (in the
order they appear) for brevity in Appendix B. In the same Appendix B, the
way one should deal with Cauchy type integrals during the derivation of ϕ∗(ζ)
as well as the way one can obtain G∞

4n+1(ζ) are shown as an illustration.
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It is to be emphasized at this point that, although, for example

lim
RO→∞

(B4n) = 0

(recall that the RO → ∞ assumption has been adopted for the Muskhelishvili’s
formulae for infinite domains to be applied), B4n is assumed to maintain a finite
constant value keeping in mind that, due to the bounded character of the region
considered here, infinity is never reached. Similar conclusions are drawn for the
remaining constants Bj, B′

j.
Obviously, by letting RO → ∞, both ϕ∗ and ψ∗ tend to zero on LO and

the solution of the elliptically perforated disc turns to coincide with that of the
ring on the disc’s periphery. Clearly, in this particular case the distribution of
Pframe along the loaded arc comprises exclusively radial pressure described by
the second of Eqs. (2.1).

3.2. Some mathematical hints

It is observed from Eqs. (3.7) and (3.8) that the complex potentials ϕ and
ψ, standing for the solution of the elliptically perforated disc, are given in terms
of the ζ = ρeiθ variable (i.e. in the mathematical plane) instead of reverting
to the variable z = reiφ on the real disc. The inversion of the transformation
is then implemented according to an alternative approach, i.e. by using the
modulus ρ and the argument θ of variable ζ. This alternative is found to be very
convenient in the computational process when deriving certain numerical results
while the respective formulae are kept rather short. Indeed, taking advantage of
the ζ =

(

z +
√
z2 − 4mR2

)

/(2R) relation (obtained by solving Eq. (3.2) for ζ),
ρ and θ, are directly determined in terms of the corresponding modulus and
argument r and φ of z as follows:

(3.9)

ρ(r, φ) =
1

2R

[

r2 +
√

r4 + 16m2R4 − 8mr2R2 cos 2φ

+2r · 4
√

r4 + 16m2R4 − 8mr2R2 cos 2φ

· cos
(

φ− 1

2
arctan

r2 sin 2φ

r2 cos 2φ− 4mR2

)]1/2

θ(r, φ) = arctan
r sinφ+ 4

√

r4 + 16m2R4 − 8mr2R2 cos 2φ · a∗

r cosφ+ 4
√

r4 + 16m2R4 − 8mr2R2 cos 2φ · b∗
,
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where

a∗ = sin

(
1

2
arctan

r2 sin 2φ

r2 cos 2φ− 4mR2

)

,

b∗ = cos

(
1

2
arctan

r2 sin 2φ

r2 cos 2φ− 4mR2

)

.

In the above formulae it holds that 0 ≤ φ < 2π and rL,φ ≤ r ≤ RO, where

(3.10) rL,φ =

√
{

α cos
[

Arc tan
(α

b
tan φ

)]}2
+
{

b sin
[

Arc tan
(α

b
tan φ

)]}2

is the radius of the elliptical hole for the particular angle φ. In fact, it can be
proven that Eqs. (3.9) are the parametric equations of:
i. A class of curves called ‘hippopedes’.
ii. A class of curves which are orthogonal to the above ‘hippopedes’, in the

ζ-plane.
In this way, instead of adopting the usual representation of the transforma-

tion (which corresponds ellipses and hyperbolas of the z-plane (Fig. 6a) to circles
and radii in the ζ-plane (Fig. 6b)), an alternative and more representative in-
terpretation of the transformation is chosen here, which corresponds the circles
and radii (making up the real disc in the z-plane) (Fig. 6c) to ‘hippopedes’ and
orthogonal curves in the ζ-plane (Fig. 6d).
It is emphasized at this point that utmost attention should be paid when

dealing with the multi-valued arctan(∗) functions, appearing in the expressions
for ρ and θ (Eqs. (3.9)), in order for continuity to be maintained. In this direction,
a multi-coloured auxiliary sketch is shown in Fig. 6d indicating the various
intervals of r and φ at which proper values should be ascribed to the variation
of the above arctan(∗) functions to avoid possible uncertainties when applying
the respective formulae.

3.3. The stress field

The polar components of the stress field on the real disc in terms of the
variable ζ in the mathematical plane are given by the well-known formulae [18]:

(3.11)
σρ − iσρθ = 2ℜΦ(ζ)− ζ2

ρ2ω′(ζ)

[

ω(ζ)Φ′(ζ) + ω′(ζ)Ψ(ζ)
]

,

σρ + σθ = 4ℜΦ(ζ),
where

(3.12) Φ(ζ) =
ϕ′(ζ)

ω′(ζ)
, Ψ(ζ) =

ψ′(ζ)

ω′(ζ)
.
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a) b)

c) d)

Fig. 6. Details of the mathematical analysis: Ellipses and hyperbolas of the z-plane (a) mapped
to circles and radii in the ζ-plane (b). Circles and radii of the z-plane (c) mapped to “hippope-

des” and curves normal to the “hippopedes” in the ζ-plane (d).

By combining Eqs. (3.2), (3.7), (3.8), (3.11), (3.12) the stresses are obtained
everywhere on the disc.
In particular, the explicit formulae along x-axis (aligned along the major

axis α of the elliptical hole), which is a locus of particular importance, are
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given in Appendix C. It is emphasized that in these formulae, the variable
quantity is the arbitrary point on ξ-axis in the mathematical ζ-plane which
corresponds to the arbitrary point along x-axis on the real disc in the z-plane
through the relation ξ = (x+

√
x2 − 4mR2)/(2R). For instance, for ξ in the

[

1,
(

RO +
√

R2
O − 4mR2

)

/(2R)
]

interval one obtains the stresses along the pos-

itive x-axis in the [α, RO] interval. Symbol ℑ in Eq. (C.2) of Appendix C denotes
the imaginary part of a complex quantity.
As a characteristic example, the stress-field components (reduced over the

amplitude of the parabolic pressure Pc) within the α ≤ x ≤ RO interval are
plotted in Fig. 7, according to the formulae of Appendix C. For the plots to
be implemented, a disc with RO = 0.05 m, w = 0.01 m, α = 0.5RO, b = 0.2α
is considered. The disc is made of PMMA (elastic modulus E = 3.19 GPa and
Poisson’s ratio ν = 0.36). The perforated disc is squeezed between the ISRM’s
curved jaws [1] (radius of curvature RJ = 1.5RO), which are made of steel
(elastic modulus EJ = 210 GPa and Poisson’s ratio νJ = 0.3). An overall load
Pframe = 20 kN is exerted on the upper jaw at an angle φo = 60◦ with respect
to the major axis of the elliptical hole (Fig. 7). Plane strain conditions were
assumed. For the specific case the solution of the respective contact problem for
the intact disc (first of Eqs. (2.1)) provides a contact angle 2ωo = 23.75◦.

Fig. 7. The stress field components along the positive x-axis for the elliptically perforated
disc (continuous line) and the circular ring (discontinuous line) plotted in juxtaposition for

φo = 60◦.
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For comparison reasons, the respective stress-field components for a ring [19],
of the same dimensions and of the same material, with an inner hole LI of radius
RI = 0.3RO are also shown in the same Fig. 7. For both solutions, a number of
n = 20 additional terms in the respective infinite series solutions was considered.
The quantitative similarity between the graphs of the respective components

for the two configurations is clear revealing that, though based on the infinite
plate assumption, the solution of the elliptically perforated disc introduced pro-
vides very satisfactory results even in case the dimensions of the elliptical hole
are well comparable to the disc’s diameter. It is interesting to observe, however,
that some differences are detected on the outer periphery LO of the elliptically
perforated disc, ascribed to the asymmetry of the specific configuration against
the perfectly symmetric configuration of the problem of the circular ring. This
point indicates that the boundary conditions of the elliptically perforated disc
diversify from those of the ring (as it had to be expected) as a result of its inher-
ent asymmetry and the rotation tendency inevitably induced on the disc by this
asymmetry. Due to its crucial importance, the specific issue will be discussed
thoroughly in Sec. 4.

3.4. The displacement field

Introducing Eqs. (3.2), (3.7), (3.8) into Muskhelishvili’s well-known formu-
la [18]

(3.13) 2µ(u+ iv) = κϕ(ζ)− ω(ζ)

ω′(ζ)
ϕ′(ζ)− ψ(ζ)

the Cartesian components of the displacement-field components are obtained at
any point of the disc. Due to their length, the explicit formulae are given in
Appendix D. In these formulae both the horizontal and vertical components of
the displacement field have been divided into two terms: These that are equal
and these that are opposite at complex conjugate points on the disc so that
u = ueq + uop and v = veq + vop. Such a partition is very convenient especially
when dealing with the displacements of the elliptical hole L.
Next, some examples are given for some characteristic cases revealing vividly

the nature of deformation. In these examples, for comparison reasons, three
different configurations are considered in juxtaposition to each other:
i. An intact circular disc [21],
ii. A circular ring [19] and
iii. An elliptically perforated disc.
In all three cases discs with RO = 0.05 m, w = 0.01 m and α = 0.5RO are

considered made of PMMA (E = 3.19 GPa, ν = 0.36) and pressed against the
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ISRM’s steel (EJ = 210 GPa, νJ = 0.3) jaws. In particular, in Fig. 8a it is
assumed that b → 0, i.e. the elliptically perforated disc tends to the cracked
disc. Moreover, for the ring configuration it is assumed that RI = 0.1RO. In
addition, for the displacements to be clearly distinguished in the plots, a rel-
atively high external force Pframe = 140 kN was exerted on the discs at a di-
rection parallel to the major axis of the elliptic hole (i.e. it is assumed that
φo = 0◦). Such a value for the external load seems perhaps unrealistic from a
practical point of view, however it is well accepted from the theoretical point
of view, since all three solutions compared are based on the linear elastic-
ity assumption. Plain strain conditions were assumed for all three configura-
tions.

Fig. 8. Initial and deformed configurations of the intact disc, the circular ring and the ellipti-
cally perforated disc for φo = 0◦ (a). The displacement-field components for φ = 30◦ (b) and
φ = 0◦ (c). Enlarged view of the central region of the ring and the elliptically perforated disc

for φo = 0◦ (d).

For the as above set of numerical values, a contact angle 2ωo = 65.98◦ is
obtained from the solution of the intact disc’s contact problem. A number of
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n = 4 additional terms in the ring’s and elliptically perforated disc’s solutions
was considered.
The undeformed state is indicated by dotted lines. The deformed outer pe-

riphery is marked by black continuous line for the solid disc, green continuous
line for the ring and multi-coloured (in accordance with Fig. 6d) line for the
elliptically perforated disc. It is seen that it is difficult even to distinguish the
deformed outer periphery of the three different configurations studied, a re-
sult supporting further the validity of the solution introduced. In Figs. 8(b,c)
the variation of the Cartesian components of the displacement along the radius
with φ = 30◦ and along x-axis (φ = 0◦) respectively, are shown, again for all
three geometries studied. Discontinuous lines correspond to the solid disc, thin
continuous lines to the ring whereas thick continuous lines correspond to the
elliptically perforated disc. Finally, in Fig. 8d, an enlarged view of the central

Fig. 9. Initial and deformed configurations of the intact disc, the circular ring and the ellipti-
cally perforated disc for φo = 60◦ (a). The displacement-field components for φ = 30◦ (b) and
φ = 0◦ (c). Enlarged view of the central region of the ring and the elliptically perforated disc

for φo = 60◦ (d).
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region of all three configurations is presented: The expected symmetric open-
ing of the crack (red colour indicates the upper lip) as well as the symmetric
distortion (transformation to an elliptical hole) of the ring’s inner circular hole
(green colour) are clearly seen. In addition, it is observed that the crack tip, α,
is displaced inwards (towards the centre of the disc) at a new point α′ of x-axis.
In order now to demonstrate the crucial role of the load axis direction, the

geometry with φo = 60◦ is studied for the same as previously set of numerical
data. The only difference is that now the minor axis of the elliptical hole b instead
of tending to zero is assumed equal to 0.1α. The results are presented in Fig. 9,
along the same line of thought as they were plotted in Fig. 8. It is seen that from
a qualitative point of view the results are more or less similar to those of Fig. 8.
The crucial (and critical) difference is that now an unnatural overlapping of the
lips of the elliptical hole is detected (Fig. 9d). Such an unnatural phenomenon
was long ago observed by Pazis et al. [9] for an infinite plate under biaxial
loading conditions. What is worthy to be mentioned, however, is that contrary

Fig. 10. Initial and deformed configurations of the intact disc, the circular ring and the ellip-
tically perforated disc with a narrow hole for φo = 50◦ (a). Enlarged view of the central region
of the ring and the elliptically perforated disc for φo = 50◦. Partial contact is realized around

the tips of the elliptical hole (b).
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to the case of the infinite plate, for which the deformed elliptical hole (either
with open or overlapped lips) is still an ellipse, in the present case the deformed
elliptical hole is transformed to a sigmoid shape showing vividly the crucial
influence of the boundaries’ finiteness on the deformation of the elliptical hole.
The width of the elliptical hole (i.e. the magnitude of b) in conjunction with

the magnitude of the externally imposed load are crucial also for the nature of
the deformation of the elliptical hole. For the same as previously set of numerical
data a narrow ellipse is now considered with b = 0.042α. In addition, an arbitrary
value for the inner ring’s hole RI = 0.3RO is considered. Moreover, a lower value
of the external load Pframe = 50 kN is imposed resulting to a contact angle 2ωo =
37.98◦. The inclination of the loading axis with respect to the axis of the ellipse is
now φo = 50◦. The deformed geometries of all three configurations under study
are plotted in Fig. 10. In the enlarged image of their central region (Fig. 10b) it

Fig. 11. Initial and deformed configurations of the intact disc, the circular ring and the ellip-
tically perforated disc with a wide hole for φo = 50◦ (a). Enlarged view of the central region
of the ring and the elliptically perforated disc for φo = 50◦. Partial contact is realized around

the central portion of the elliptical hole (b).
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is seen now that a partial contact is realized near the tips of the hole. Obviously,
the contact length increases gradually towards the centre of the ellipse as the load
increases further. It is very interesting to note that the above order is reversed in
case the minor semi-axis of the elliptical hole increases: Contact appears initially
at the central portion of the ellipse (expanding gradually towards the tips of the
ellipse as the load increases). This is clearly seen in Fig. 11 where the same
configurations with those of Fig. 10 are considered, but now the minor axis b
of the elliptical hole attains a higher value equal to 0.18α while the load Pframe
imposed is equal to 220 kN.

4. Discussion

Among the most controversial topics related to the practical applications of
the configurations considered in the present work (cracked disc, circular ring,
intact disc, and elliptically perforated disc) is to definitely (and accurately)
describe the boundary conditions along the contact arcs.
While in existing contributions, both early [22] and relatively recent [20], the

load has been assumed as uniformly distributed along a “small” contact arc of
arbitrary length, indications existed (dated back to Timoshenko around 1910
[23]) that the load is distributed according to a much more complicated law.
Particularly, in case of perfect symmetry (intact circular disc or ring with a rel-
atively small inner hole), and in the absence of friction, the exact law describing
the radial pressure at any arbitrary point τ of the contact arc is [15, 18, 23]:

P (τ) =
1

3ROK

√

ℓ2 − τ2,

where RO is the radius of the disc, K is given by Eq. (2.2)1 and 2ℓ ≈ 2ROωo is
the length of the contact arc.
It is evident that in case the configuration ceases being symmetric (cracked

disc, disc with elliptical hole) while the domains considered are still of finite
dimensions, the as above distribution will be somehow distorted. The analytic
character of the present solution offers in that case the means for quantifying this
quite reasonable distortion (this has already been done, implicitly, in Subsec. 3.3
and 3.4, when comparing the boundary values of stresses and displacements on
LO due to the solution of the elliptically perforated disc in conjunction to the
respective ones due to the ring’s and the intact disc’s configurations).
In this context one should begin from the general solution ϕ = ϕo + ϕ∗,

ψ = ψo+ψ∗ of the elliptically perforated disc (recall, that this solution has been
obtained by assuming that if LO were lying infinity, ϕ∗, ψ∗ would vanish there).
Let now this region be transformed into the finite circular ring (Fig. 12a). It can
be easily shown that the solution of the elliptically perforated disc, though based
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a) b)

c)

Fig. 12. Quantifying the inevitable distortion of the stress field due to the inherent geomet-
ric asymmetry of the configuration considered: Transformation of the elliptically perforated
disc (a) to the ring (b) and the case of the elliptically perforated disc with a relatively big

elliptical hole (c).

on the infinite plate formulae, provides with a unique accuracy the solution (for
both stresses and displacements) of the finite ring under parabolic pressure [19]
(Fig. 12b). It is thus seen that in this symmetric case the solution of the ellipti-
cally perforated disc provides sound boundary conditions along the loaded arc,
indicating that indeed a single parabolic pressure does ensure global equilibrium
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of the region considered. This fact, apart from being an additional evidence for
the validity of the solution introduced here, implies also a conceivable connec-
tion between the solution of an infinite region and a finite one, at least in the
case of configurations symmetric regarding both geometry and loading.
As a second step, the general asymmetric case is considered, i.e. that of the

finite, elliptically perforated disc under an external loading forming an arbitrary
angle φo with its major axis. Notice that in this case the present solution an-
ticipates, by assumption, that when LO lies at infinity or, what is equivalent,
when the hole is very small, the influence of the latter on the former vanishes
so that again a single parabolic pressure along the contact arc ensures global
equilibrium describing, again, adequately the boundary conditions.
As a last step, let the dimensions of the elliptical hole be well comparable to

the disc’s radius so that ϕ∗, ψ∗ will appear also in the solution of the problem
near the outer periphery LO (Fig. 12c). For such a configuration, the polar
stresses along LO of the elliptically perforated disc are plotted in Fig. 13a, for
RO = 0.05 m, w = 0.01 m, α = 0.5RO, b = 0.1α, Pframe = 50 kN at φo = 30◦

and plane strain conditions, resulting to a contact angle 2ωo = 37.98◦. The
number n of additional terms taken into account was equal to 50. Notice that
these boundary stresses (the radial and the shear ones) are plotted out of a scale
in Fig. 13b together with the undeformed (discontinuous line) and the deformed
(continuous line) configurations of the elliptically perforated disc. As it is seen
from these figures, a parabolic pressure alone acting along the loaded rims is
not sufficient to maintain the global equilibrium of the disc contrary to the case
when LO lies at infinity, or equivalently when the elliptical hole is very small
compared to the disc’s radius. As LO “comes” from infinity, or in other words as
α becomes bigger and bigger, the influence of the crack on the outer periphery
(and vice versa) is getting more and more intensive. As it is clearly seen, even
the radial pressure along the contact arc is not exactly parabolic anymore; there
is a slight but clear asymmetry in its variation: Notice for instance the difference
between the altitudes of σr at the end points tj of the loaded arcs in Fig. 13a.
What is more (and apart from some convergence issues involved in solutions

given in infinite series form), it is seen that additional normal and shear stresses
are required all along LO to suffice the global equilibrium of the disc. Although
their magnitude is small, compared to the radial pressure, they can by no means
be ignored. This observation is in excellent agreement with the results of a recent
study on the centrally cracked circular disc [10, 11]. In that study it was shown,
that in the most general case (i.e. the external load is inclined with respect to
the crack axis by an angle φo different from 0◦ or 90◦) then, due to the rotation
of the crack, the disc tends to rotate as a rigid body unless additional tangential
frictional stresses are imposed along the loaded arcs (apart from the distribution
of radial pressure).
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a)

b)

Fig. 13. The polar distribution of stresses along the periphery LO of the elliptically perfo-
rated disc (a) and the boundary stresses (radial and shear), plotted out of a scale, together
with the undeformed (discontinuous line) and deformed (continuous line) configurations of the

elliptically perforated disc (b).

All this evidence supports the conclusion that for the solution for the ellip-
tically perforated disc (as well as that for the cracked disc) to be meaningful
a mere radial pressure is not enough and additional stresses are required along
the contact arc.
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Fortunately, for the particular case of full symmetry, i.e. for φo = 0◦, which
is the most interesting one for the engineering community (recall that it pro-
vides experimentally the value of fracture toughness, KIC), the infinite plate
assumption is accurate (in the strict mathematical sense) for the finite ellipti-
cally perforated disc: A parabolic distribution of radial pressure alone ensures
global equilibrium of the disc (Fig. 14a). This is evident also from Fig. 14b,
in which the stresses along x-axis in the elliptically perforated disc and in the

a)

b)

Fig. 14. The case of complete geometric symmetry (φo = 0◦) (a). The stress field components
along the positive x-axis for the elliptically perforated disc (continuous line) and the circular

ring (discontinuous line) plotted in juxtaposition for φo = 0◦.
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circular ring are plotted in juxtaposition to each other (for the same data used
in Subsec. 3.3 for φo = 0◦). Therefore, it is reasonable to conclude that the
values of the Stress Intensity Factor which can be determined using the present
solution (by moving along the x-axis towards the elliptical crack’s tip) are very
close to the exact ones and can be safely used in praxis for the determination
of Fracture Toughness.

5. Conclusions

An analytic procedure was proposed providing full-field, closed expressions
for the stress- and displacement-fields in an elliptically perforated disc under
distributed loads along two finite arcs of its periphery. The main advantage of
the procedure introduced is that by proper choice of the α/b ratio (i.e. the ratio
of the major-over-minor semi-axes of the ellipse) one obtains the solution for
a series of configurations widely used in engineering praxis. More specifically
considering that α, b → 0 one obtains the respective stress- and displacement
fields for an intact disc, i.e. for the familiar Brazilian-disc test. By considering
b → α 6= 0, the solution for the circular ring is obtained, i.e. for the familiar
ring test. Finally, by assuming that α 6= 0 and b→ 0 one arrives at the solution
for the cracked circular disc which corresponds to the widely used test for the
determination of Fracture Toughness of brittle materials.
The solution introduced is based on the adoption of more realistic description

of the boundary conditions prevailing along the disc-jaw interface. These con-
ditions approach closer the actual ones in case the disc is compressed between
the jaws of the ISRM device for the standardized Brazilian-disc test. Therefore,
there is no need for one to resort to arbitrary assumptions about the contact
length and the kind of the distribution of the external load. Moreover, the formu-
lae introduced are full-field, providing stresses and displacements everywhere on
the disc and not only along some specific loci. Finally, the expressions obtained
are of closed form and they are relatively easily programmable eliminating the
need to resort to tabulated values.
The study revealed a potential connection between infinite and finite regions

which has to be further investigated. Moreover, it was shown that the general
asymmetric configuration of the problem leads to asymmetric deformation. It
was thus definitely indicated that additional stresses are required along the
loaded arcs, apart from a radial pressure distribution, for global equilibrium
to be maintained. The latter is in complete agreement with the conclusions
of an on-going research project concerning the rotation tendency of a cracked
disc. It would be very interesting as a next step, to correlate the as above
mentioned additional stresses with the frictional ones required to maintain global
equilibrium and complete the problem of the circular disc with the elliptical hole
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or the crack by accurately describing the complete set of boundary conditions
as well as their influence on its periphery.

Appendix A. The coefficients of the series expansions
of Eqs. (2.4), (2.5).
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B′

−4(n+1) =

[
sin 2 (2n + 1)ωo

2 (2n+ 1) sin2 ωo

+
sin 2ωo cos 2 (2n+1)ωo−(2n+1) cos 2ωo sin 2 (2n+1)ωo

8n (n+1) sin2 ωo
− sin 2 (2n+ 1)ωo

2n+ 1

]

·
{

(4n+ 3)R2
I

[

(4n+ 1)
(
R2

I −R2
O

)
R

4(n+1)
O +

[

R
2(4n+3)
I −R

2(4n+3)
O

]

R−4n
O

]

− R
2(4n+3)
I

[

(4n+ 3)
(
R2

I −R2
O

)
R−4n

O −
[

R
−2(4n+1)
I −R

−2(4n+1)
O

]

R
4(n+1)
O

]}

/{[

1− 4 (2n+ 1)2
] (
R2

O −R2
I

)2 −
[

R
2(4n+3)
O −R

2(4n+3)
I

]

·
[

R
−2(4n+1)
O −R

−2(4n+1)
I

]}

· [cos 2 (2n+ 1)φo + i sin 2 (2n + 1)φo],

B′

−2(2n+1) =

[
sin 4nωo

4n sin2 ωo
+

sin 2ωo cos 4nωo − 2n cos 2ωo sin 4nωo

2 (4n2 − 1) sin2 ωo
− sin 4nωo

2n

]

·
{

(1 + 4n)R2
I

[

(1− 4n)
(
R2

O −R2
I

)
R

2(2n+1)
O −

[

R
2(4n+1)
O −R

2(4n+1)
I

]

R
−2(2n−1)
O

]

+R
2(4n+1)
I

[

(1+4n)
(
R2

O−R2
I

)
R

−2(2n−1)
O −

[

R
−2(4n−1)
O −R−2(4n−1)

I

]

R
2(2n+1)
O

]}

/{(
1−16n2

) (
R2

O−R2
I

)2 −
[

R
2(4n+1)
O −R2(4n+1)

I

] [

R
−2(4n−1)
O −R−2(4n−1)

I

]}

· (cos 4nφo + i sin 4nφo),

Appendix B. a) The principal parts, i.e. parts of the following
functions in brackets that spawn poles at the point
at infinity and at ζ = 0, entering in Eqs. (3.7), (3.8)

G∞

4n+1 (ζ) := P.P.
ζ=∞

(

ζ +
m

ζ

)4n+1

=

2n∑

k=0

(4n+ 1)!

k! (4n+ 1− k)!
mkζ2(2n−k)+1,

G∞

4n+3 (ζ) := P.P.
ζ=∞

(

ζ +
m

ζ

)4n+3

=

2n+1∑

k=0

(4n+ 3)!

k! (4n + 3− k)!
mkζ2(2n−k)+3,
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G0
4n (ζ) := P.P.

ζ=0

(
1

ζ
+mζ

)4n

=
2n−1∑

k=0

(4n)!

k! (4n− k)!
mkζ2(k−2n)+1

+

2n∑

k=0

(4n)!

k! (4n− k)!
mk+1ζ2(k−2n)−1,

G0
2(2n+1) (ζ) := P.P.

ζ=0

(
1

ζ
+mζ

)2(2n+1)

=

2n∑

k=0

[2 (2n+ 1)]!

k! [2 (2n+ 1)− k]!
mkζ2(k−2n)−1

+

2n+1∑

k=0

[2 (2n+ 1)]!

k! [2 (2n + 1)− k]!
mk+1ζ2(k−2n)−3,

G0
4n+1 (ζ) := P.P.

ζ=0

(
1

ζ
+mζ

)4n+1

=
2n∑

k=0

(4n + 1)!

k! (4n+ 1− k)!
mkζ2(k−2n)−1,

G0
4n+3 (ζ) := P.P.

ζ= 0

(
1

ζ
+mζ

)4n+3

=

2n+1∑

k=0

(4n+ 3)!

k! (4n+ 3− k)!
mkζ2(k−2n)−3,

G∞

4n (ζ) := P.P.
ζ=∞

(

ζ +
m

ζ

)4n

=

2n−1∑

k=0

(4n)!

k! (4n− k)!
mkζ2(2n−k)−1

+

2n∑

k=0

(4n)!

k! (4n− k)!
mk+1ζ2(2n−k)+1,

G∞

2(2n+1) (ζ) := P.P.
ζ=∞

(

ζ +
m

ζ

)2(2n+1)

=

2n∑

k=0

[2 (2n+ 1)]!

k! [2 (2n+ 1)− k]!
mkζ2(2n−k)+1

+
2n+1∑

k=0

[2 (2n + 1)]!

k! [2 (2n+ 1)− k]!
mk+1 ζ2(2n−k)+3,
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b) Dealing with Cauchy type integrals while obtaining ϕ∗(ζ), ψ∗(ζ)

To obtain
1

2πi

∫

γ

f∗(s)ds

s− ζ
(first of Eqs. (3.6)) one has to deal with the integral

1

2πi

∫

γ

∞∑

n=1

B4n

4n+ 1
R4n+1

(

s+
m

s

)4n+1 ds

s− ζ
.

The quantity
(

s+
m

s

)4n+1
appearing in this integral is the boundary value of

the function
(

ζ +
m

ζ

)4n+1

on γ. This function is holomorphic outside γ and

has a pole at infinity denoted by G∞

4n+1(ζ). Then, based on properties of Cauchy
type integrals, we find

1

2πi

∫

γ

∞∑

n=1

B4n

4n+ 1
R4n+1

(

s+
m

s

)4n+1 ds

s− ζ

=

∞∑

n=1

B4n

4n + 1
R4n+1

[

−
(

ζ +
m

ζ

)4n+1

+G∞

4n+1 (ζ)

]

.

c) The derivation of the expression for G∞

4n+1(ζ)

To derive the analytic expression for

G∞

4n+1(ζ) := P.P.
ζ=∞

(

ζ +
m

ζ

)4n+1

(the first formula of Appendix B(a)) use is made of the formula (a + b)ℓ =
ℓ∑

k=0

ℓ!

k! (ℓ− k)!
aℓ−kbk (obtained by the factorial function

ℓ!

k!(ℓ− k)!
or by Pascal’s

Triangle). Thus, substituting a = ζ, b = m/ζ and ℓ = 4n + 1, and by keeping
only that part of the expansion which provides poles at infinity, one obtains

G∞

4n+1(ζ) := P.P.
ζ=∞

(

ζ +
m

ζ

)4n+1

=
2n∑

k=0

(4n + 1)!

k! (4n+ 1− k)!
mkζ2(2n−k)+1

that is the first formula of Appendix B(a) which had to be derived.
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Appendix C. The Cartesian components of the stress field along
x-axis aligned to the major axis α of the elliptical hole

(C.1)
σx
σy

}

=
2Pc

π

ξ2

ξ2 −m

{

ℜ
(

mB2+
B′

2

3

)
3R2

ξ4

+
mb0+ℜB′

0+R
2ℜ
[
(1+2m2)B2+mB

′

2

]

ξ2
+R2ℜB2(m+ ξ2) + b0

+

∞∑

n=1

R4n

[

ℜB4n

(
1

4n+ 1

dG∞

4n+1

dζ
(ξ)− dG0

4n

dζ
(ξ)

)

− ℜB′

4n

4n+ 1

dG0
4n+1

dζ
(ξ)

+R2

(

ℜB2(2n+1)

(

1

4n+3

dG∞

4n+3

dζ
(ξ)−

dG0
2(2n+1)

dζ
(ξ)

)

−
ℜB′

2(2n+1)

4n+3

dG0
4n+3

dζ
(ξ)

)]}

∓Pc

π

ξ2

(ξ2 −m)3

{

3ℜB′

0+R
2ℜB2

[

m

(
6m2−8m

ξ4
− 6m−13.33

ξ2
−12

)

+4(1 + 3m2)

]

+R2ℜB′

2

(
2m2−3m

ξ4
− 2m−5

ξ2
+6m−4

)

−m
ξ2

ℜ
[
4(1+3m2)R2B2

3
+B′

0+2mR2B′

2

]

+R2ℜB′

2

(

ξ6− 5mξ4

3

)

+ℜ
(

B′

0+
2mR2B′

2

3

)

(ξ4−3mξ2)+2R2ℜB2(ξ
6−mξ4−3m2ξ2−m3)

+ 2(ξ2+m)
[
(1−m)2b0+R

2(2m+2m3−2m2−1)ℜB2+(m−1)
(
ℜB′

0+mR
2ℜB′

2

)]

+
[
m (1− 2m)−mξ4 +

(
1− 2m+ 3m2

)
ξ2
]

·
∞∑

n=1

R4n

[

ℜB4n

(
1

4n+ 1

dG∞

4n+1

dζ
(ξ)− dG0

4n

dζ
(ξ)

)

− ℜB′

4n

4n+ 1

dG0
4n+1

dζ
(ξ)

+R2

(

ℜB2(2n+1)

(

1

4n+3

dG∞

4n+3

dζ
(ξ)−

dG0
2(2n+1)

dζ
(ξ)

)

−
ℜB′

2(2n+1)

4n+ 3

dG0
4n+3

dζ
(ξ)

)]

+
[
m(1−m)ξ − (1−m2)ξ3 + (1−m)ξ5

]

·
∞∑

n=1

R4n

[

ℜB4n

(
1

4n+ 1

d2G∞

4n+1

dζ2
(ξ)− d2G0

4n

dζ2
(ξ)

)

− ℜB′

4n

4n+ 1

d2G0
4n+1

dζ2
(ξ)

+R2

(

ℜB2(2n+1)

(

1

4n+3

d2G∞

4n+3

dζ2
(ξ)−

d2G0
2(2n+1)

dζ2
(ξ)

)

−
ℜB′

2(2n+1)

4n+3

d2G0
4n+3

dζ2
(ξ)

)]

+ (m− ξ2)2
∞∑

n=1

R4n

[

ℜB4n

(
dG∞

4n

dζ
(ξ)− 1

4n+ 1

dG0
4n+1

dζ
(ξ)

)

+
ℜB′

4n

4n+ 1

dG∞

4n+1

dζ
(ξ)

+R2

(

ℜB2(2n+1)

(
dG∞

2(2n+1)

dζ
(ξ)− 1

4n+3

dG0
4n+3

dζ
(ξ)

)

+
ℜB′

2(2n+1)

4n+3

dG∞

4n+3

dζ
(ξ)

)]}

,
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(C.2) σxy =
Pc

π

ξ2

(ξ2 −m)3

{

−3ℑB′

0

−R2ℑB2

[

m

(
6m2 − 8m

ξ4
− 6m− 13.33

ξ2
− 12

)

+ 4(1 + 3m2)

]

−R2ℑB′

2

(
2m2 − 3m

ξ4
− 2m− 5

ξ2
+ 6m− 4

)

+
m

ξ2
ℑ
[
4(1 + 3m2)R2B2

3
+B′

0 + 2mR2B′

2

]

+R2ℑB′

2

(

ξ6 − 5mξ4

3

)

+ℑ
(

B′

0 +
2mR2B′

2

3

)

(ξ4 − 3mξ2)

+ 2R2ℑB2

(
ξ6 −mξ4 − 3m2ξ2 −m3

)

+ 2(ξ2 +m)ℑ
[
R2(1 + 2m2)B2 +B′

0 +mR2B′

2

]

+
[
m(1− 2m)−mξ4 + (1− 2m+ 3m2)ξ2

]

·
∞∑

n=1

R4n

[

ℑB4n

(
1

4n + 1

dG∞

4n+1

dζ
(ξ) +

dG0
4n

dζ
(ξ)

)

+
ℑB′

4n

4n+ 1

dG0
4n+1

dζ
(ξ)

+R2

(

ℑB2(2n+1)

(
dG0

2(2n+1)

dζ
(ξ)+

1

4n+ 3

dG∞

4n+3

dζ
(ξ)

)

+
ℑB′

2(2n+1)

4n+ 3

dG0
4n+3

dζ
(ξ)

)]

+
[
m(1−m)ξ − (1−m2)ξ3 + (1−m)ξ5

]

·
∞∑

n=1

R4n

[

ℑB4n

(
1

4n+ 1

d2G∞

4n+1

dζ2
(ξ) +

d2G0
4n

dζ2
(ξ)

)

+
ℑB′

4n

4n + 1

d2G0
4n+1

dζ2
(ξ)

+R2

(

ℑB2(2n+1)

(
d2G0

2(2n+1)

dζ2
(ξ)+

1

4n+ 3

d2G∞

4n+3

dζ2
(ξ)

)

+
ℑB′

2(2n+1)

4n+ 3

d2G0
4n+3

dζ2
(ξ)

)]

+ (m− ξ2)2
∞∑

n=1

R4n

[

ℑB4n

(
dG∞

4n

dζ
(ξ) +

1

4n + 1

dG0
4n+1

dζ
(ξ)

)

+
ℑB′

4n

4n+ 1

dG∞

4n+1

dζ
(ξ) +R2

(

ℑB2(2n+1)

(
dG∞

2(2n+1)

dζ
(ξ) +

1

4n + 3

dG0
4n+3

dζ
(ξ)

)

+
ℑB′

2(2n+1)

4n+ 3

dG∞

4n+3

dζ
(ξ)

)]}

.
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Appendix D. The explicit formulae of the displacement field

(D.1) ueq(ρ, θ) =
PcR

2πµ

{

κ

[

ℜ
[
(b0+mR

2B2)ρ

−
[
mb0+B

′

0 +R2
[
(1 + 2m2)B2 +mB′

2

]]/
ρ
]
cos θ

+R2ℜ
[(
ρ3
/
3−m

/
ρ3
)
B2−B′

2

/
(3ρ3)

]
cos 3θ

+
∞∑

n=1

R4n

[

ℜB4n

(ℜG∞

4n+1

4n+1
−ℜG0

4n

)

−ℜB′

4nℜG0
4n+1

4n+ 1

+R2

(

ℜB2(2n+1)

(ℜG∞

4n+3

4n+3
−ℜG0

2(2n+1)

)

−
ℜB′

2(2n+1)ℜG0
4n+3

4n+3

)]]

−ρ
(
ρ4 cos θ−m2 cos 3θ

)

ρ4+m2−2mρ2 cos 2θ

· ℜ
[
b0 +mR2B2 +

[
R2B2ρ

2 +
[
mb0 +B′

0 +R2
[
(1 + 2m2)B2 +mB′

2

]]/
ρ2
]
cos 2θ

+R2(3mB2 +B′

2) cos 4θ
/
ρ4
]
− ρ2(ρ2 −m cos 2θ)

ρ4 +m2 − 2mρ2 cos 2θ
ℜ
[[(
B′

0 + 2mR2B′

2

/
3
)
ρ

− 2
[
(1+m2)(b0+2mR2B2)+m(B′

0+mR
2B′

2)
]/
ρ
]
cos θ−R2

(
8mB2/3+B

′

2

)
cos 5θ

/
ρ5

+
[
R2B′

2ρ
3
/
3−
[
R2
[
4B2(1+3m2)

/
3+2mB′

2

]
+B′

0

]/
ρ3
]
cos 3θ

]
+ρ
[[
ρ4(1−m)−ρ2+m

]
cos θ

−m2(1−ρ2) cos 3θ
]/
(ρ4+m2−2mρ2 cos 2θ)·

∞∑

n=1

R4n

[

ℜB4n

(

ℜdG
0
4n

dζ
− 1

4n+1
ℜdG

∞

4n+1

dζ

)

+
ℜB′

4n

4n+1
ℜdG

0
4n+1

dζ
+R2

(

ℜB2(2n+1)

(

ℜ
dG0

2(2n+1)

dζ
− 1

4n+3
ℜdG

∞

4n+3

dζ

)

+
ℜB′

2(2n+1)

4n+3
ℜdG

0
4n+3

dζ

)]

+

∞∑

n=1

R4n

[

ℜB4n

(ℜG0
4n+1

4n+ 1
−ℜG∞

4n

)

− ℜB′

4nℜG∞

4n+1

4n+ 1

+R2

(

ℜB2(2n+1)

(ℜG0
4n+3

4n+ 3
−ℜG∞

2(2n+1)

)

−
ℜB′

2(2n+1)ℜG∞

4n+3

4n+ 3

)]

+
ρ(ρ4 sin θ +m2 sin 3θ)

ρ4 +m2 − 2mρ2 cos 2θ
ℜ
[[
mb0 +B′

0 +R2
[
(1 + 2m2)B2 +mB′

2

]]
sin 2θ

/
ρ2−R2B2ρ

2

+R2(3mB2 +B′

2) sin 4θ
/
ρ4
]
− mρ2 sin 2θ

ρ4 +m2 − 2mρ2 cos 2θ
ℜ
[[(
B′

0 + 2mR2B′

2

/
3
)
ρ

+2
[
(1 +m2)(b0 + 2mR2B2) +m(B′

0 +mR2B′

2)
]/
ρ
]
sin θ+R2 (8mB2/3 +B′

2) sin 5θ
/
ρ5

+
[
R2B′

2ρ
3
/
3 +

[
R2
[
4B2(1 + 3m2)

/
3 + 2mB′

2

]
+B′

0

]/
ρ3
]
sin 3θ

]

+ ρ
[[
ρ4(1 +m)− ρ2 −m

]
sin θ + m2(1− ρ2) sin 3θ

]/(
ρ4 +m2 − 2mρ2 cos 2θ

)

·
∞∑

n=1

R4n

[

ℜB4n

(

ℑdG
0
4n

dζ
− 1

4n+ 1
ℑdG

∞

4n+1

dζ

)

+
ℜB′

4n

4n+ 1
ℑdG

0
4n+1

dζ

+R2

(

ℜB2(2n+1)

(

ℑ
dG0

2(2n+1)

dζ
− 1

4n+ 3
ℑdG

∞

4n+3

dζ

)

+
ℜB′

2(2n+1)

4n+ 3
ℑdG

0
4n+3

dζ

)]}

,
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(D.2) uop (ρ, θ) =
PcR

2πµ

{

κ

[

ℑ
[[
B′

0 +R2
[(
1 + 2m2

)
B2 +mB′

2

]]/
ρ−mR2B2ρ

]
sin θ

−R2ℑ
[(
ρ3
/
3−m

/
ρ3
)
B2 −B′

2

/(
3ρ3
)]

sin 3θ −
∞∑

n=1

R4n

[

ℑB4n

(ℑG∞

4n+1

4n+ 1
+ ℑG0

4n

)

+
ℑB′

4nℑG0
4n+1

4n+ 1
+R2

(

ℑB2(2n+1)

(ℑG∞

4n+3

4n+ 3
+ ℑG0

2(2n+1)

)

+
ℑB′

2(2n+1)ℑG0
4n+3

4n+ 3

)]]

−ρ
(
ρ4 sin θ+m2 sin 3θ

)

ρ4+m2−2mρ2 cos 2θ
ℑ
[
mR2B2+

[
R2B2ρ

2−
[
B′

0+R
2
[(
1+2m2

)
B2+mB

′

2

]]/
ρ2
]
cos 2θ

−R2 (3mB2+B
′

2) cos 4θ
/
ρ4
]
+

ρ2
(
ρ2 −m cos 2θ

)

ρ4 +m2 − 2mρ2 cos 2θ
ℑ
[(
B′

0 + 2mR2B′

2

/
3
)
ρ sin θ

−R2(8mB2/3+B
′

2)sin 5θ
/
ρ5+
[
R2B′

2ρ
3
/
3−
[
R2
[
4B2

(
1+3m2

)/
3+2mB′

2

]
+B′

0

]/
ρ3
]
sin 3θ

]

+ ρ
[[
ρ4 (1−m)− ρ2 +m

]
cos θ − m2

(
1− ρ2

)
cos 3θ

]/(
ρ4 +m2 − 2mρ2 cos 2θ

)

·
∞∑

n=1

R4n

[

ℑB4n

(

ℑdG
0
4n

dζ
+

1

4n+ 1
ℑdG

∞

4n+1

dζ

)

+
ℑB′

4n

4n+ 1
ℑdG

0
4n+1

dζ

+R2

(

ℑB2(2n+1)

(

ℑ
dG0

2(2n+1)

dζ
+

1

4n+ 3
ℑdG

∞

4n+3

dζ

)

+
ℑB′

2(2n+1)

4n+ 3
ℑdG

0
4n+3

dζ

)]

+

∞∑

n=1

R4n

[

ℑB4n

(ℑG0
4n+1

4n+ 1
+ ℑG∞

4n

)

+
ℑB′

4nℑG∞

4n+1

4n+ 1

+R2

(

ℑB2(2n+1)

(ℑG0
4n+3

4n+ 3
+ ℑG∞

2(2n+1)

)

+
ℑB′

2(2n+1)ℑG∞

4n+3

4n+ 3

)]

+
ρ
(
ρ4 cos θ −m2 cos 3θ

)

ρ4 +m2 − 2mρ2 cos 2θ
ℑ
[[
R2B2ρ

2

+
[
B′

0+R
2
[(
1+2m2

)
B2+mB

′

2

]]/
ρ2
]
sin 2θ+R2 (3mB2+B

′

2) sin 4θ
/
ρ4
]

− mρ2 sin 2θ

ρ4 +m2 − 2mρ2 cos 2θ
ℑ
[[(
B′

0 + 2mR2B′

2

/
3
)
ρ cos θ +

[
R2B′

2ρ
3
/
3

+
[
R2
[
4B2

(
1+3m2

)/
3+2mB′

2

]
+B′

0

]/
ρ3
]
cos 3θ

]
+R2 (8mB2/3+B

′

2) cos 5θ
/
ρ5
]

− ρ
[[
ρ4 (1 +m)− ρ2 −m

]
sin θ + m2

(
1− ρ2

)
sin 3θ

]/(
ρ4 +m2 − 2mρ2 cos 2θ

)

·
∞∑

n=1

R4n

[

ℑB4n

(

ℜdG
0
4n

dζ
+

1

4n+ 1
ℜdG

∞

4n+1

dζ

)

+
ℑB′

4n

4n+ 1
ℜdG

0
4n+1

dζ

+R2

(

ℑB2(2n+1)

(

ℜ
dG0

2(2n+1)

dζ
+

1

4n+ 3
ℜdG

∞

4n+3

dζ

)

+
ℑB′

2(2n+1)

4n+ 3
ℜdG

0
4n+3

dζ

)]}

,



166 CH.F. MARKIDES, S.K. KOURKOULIS

(D.3) veq (ρ, θ) =
PcR

2πµ

{

κ

[

ℑ
[
mR2B2ρ−

[
B′

0 +R2
[(
1 + 2m2

)
B2 +mB′

2

]]/
ρ
]
cos θ

+R2ℑ
[(
ρ3
/
3 +m

/
ρ3
)
B2 +B′

2

/(
3ρ3
)]

cos 3θ +

∞∑

n=1

R4n

[

ℑB4n

(ℜG∞

4n+1

4n+ 1
+ ℜG0

4n

)

+
ℑB′

4nℜG0
4n+1

4n+ 1
+R2

(

ℑB2(2n+1)

(ℜG∞

4n+3

4n+ 3
+ ℜG0

2(2n+1)

)

+
ℑB′

2(2n+1)ℜG0
4n+3

4n+ 3

)]]

+
ρ
(
ρ4 cos θ−m2 cos 3θ

)

ρ4+m2−2mρ2 cos 2θ
ℑ
[
mR2B2+

[
R2B2ρ

2−
[
B′

0+R
2
[(
1+2m2

)
B2+mB

′

2

]]/
ρ2
]
cos 2θ

−R2 (3mB2+B
′

2) cos 4θ
/
ρ4
]
+

ρ2
(
ρ2 −m cos 2θ

)

ρ4 +m2 − 2mρ2 cos 2θ
ℑ
[[(
B′

0 + 2mR2B′

2

/
3
)
ρ cos θ

+R2(8mB2/3+B
′

2)cos 5θ
/
ρ5+

[
R2B′

2ρ
3
/
3+
[
R2
[
4B2

(
1+3m2

)/
3+2mB′

2

]
+B′

0

]/
ρ3
]
cos 3θ

]

+ ρ
[[
ρ4 (1−m)− ρ2 +m

]
cos θ − m2

(
1− ρ2

)
cos 3θ

]/(
ρ4 +m2 − 2mρ2 cos 2θ

)

·
∞∑

n=1

R4n

[

ℑB4n

(

ℜdG
0
4n

dζ
+

1

4n+ 1
ℜdG

∞

4n+1

dζ

)

+
ℑB′

4n

4n+ 1
ℜdG

0
4n+1

dζ

+R2

(

ℑB2(2n+1)

(

ℜ
dG0

2(2n+1)

dζ
+

1

4n+ 3
ℜdG

∞

4n+3

dζ

)

+
ℑB′

2(2n+1)

4n+ 3
ℜdG

0
4n+3

dζ

)]

+

∞∑

n=1

R4n

[

ℑB4n

(ℜG0
4n+1

4n+ 1
+ ℜG∞

4n

)

+
ℑB′

4nℜG∞

4n+1

4n+ 1

+R2

(

ℑB2(2n+1)

(ℜG0
4n+3

4n+ 3
+ ℜG∞

2(2n+1)

)

+
ℑB′

2(2n+1)ℜG∞

4n+3

4n+ 3

)]

+
ρ
(
ρ4 sin θ +m2 sin 3θ

)

ρ4 +m2 − 2mρ2 cos 2θ
ℑ
[[
B′

0 +R2
[(
1 + 2m2

)
B2 +mB′

2

]]
sin 2θ

/
ρ2 +R2B2ρ

2

+R2 (3mB2 +B′

2) sin 4θ
/
ρ4
]
+

mρ2 sin 2θ

ρ4 +m2 − 2mρ2 cos 2θ
ℑ
[[(
B′

0 + 2mR2B′

2

/
3
)
ρ sin θ

−R2(8mB2/3+B
′

2) sin 5θ
/
ρ5+
[
R2B′

2ρ
3
/
3−
[
R2
[
4B2

(
1+3m2

)/
3+2mB′

2

]
+B′

0

]/
ρ3
]
sin 3θ

]

+ ρ
[[
ρ4 (1 +m)− ρ2 −m

]
sin θ + m2

(
1− ρ2

)
sin 3θ

]/(
ρ4 +m2 − 2mρ2 cos 2θ

)

·
∞∑

n=1

R4n

[

ℑB4n

(

ℑdG
0
4n

dζ
+

1

4n+ 1
ℑdG

∞

4n+1

dζ

)

+
ℑB′

4n

4n+ 1
ℑdG

0
4n+1

dζ

+R2

(

ℑB2(2n+1)

(

ℑ
dG0

2(2n+1)

dζ
+

1

4n+ 3
ℑdG

∞

4n+3

dζ

)

+
ℑB′

2(2n+1)

4n+ 3
ℑdG

0
4n+3

dζ

)]}

,
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(D.4) vop (ρ, θ) =
PcR

2πµ

{

κ

[

ℜ
[[
mbo +B′

0 +R2
[(
1 + 2m2

)
B2 +mB′

2

]]/
ρ

+
(
bo +mR2B2

)
ρ
]
sin θ +R2ℜ

[(
ρ3
/
3 +m

/
ρ3
)
B2 +B′

2

/(
3ρ3
)]

sin 3θ

+

∞∑

n=1

R4n

[

ℜB4n

(ℑG∞

4n+1

4n+ 1
−ℑG0

4n

)

− ℜB′

4nℑG0
4n+1

4n+ 1

+R2

(

ℜB2(2n+1)

(ℑG∞

4n+3

4n+ 3
−ℑG0

2(2n+1)

)

−
ℜB′

2(2n+1)ℑG0
4n+3

4n+ 3

)]]

+
ρ
(
ρ4 cos θ−m2 cos 3θ

)

ρ4+m2−2mρ2 cos 2θ
ℜ
[
R2B2ρ

2−
[
mbo+B

′

0+R
2
[(
1+2m2

)
B2+mB

′

2

]]/
ρ2
]
sin 2θ

−R2 (3mB2 +B′

2) sin 4θ
/
ρ4
]
+

ρ2
(
ρ2 −m cos 2θ

)

ρ4 +m2 − 2mρ2 cos 2θ
ℜ

·
[[
R2B′

2ρ
3
/
3 +

[
R2
[
4B2

(
1 + 3m2

)/
3 + 2mB′

2

]
+B′

0

]/
ρ3
]
sin 3θ

+
[(
B′

0 + 2mR2B′

2

/
3
)
ρ+ 2

[(
1 +m2

) (
bo + 2mR2B2

)
+m

(
B′

0 +mR2B′

2

)]/
ρ
]
sin θ

+R2 (8mB2/3 + B′

2) sin 5θ
/
ρ5
]
− ρ

[[
ρ4 (1−m)− ρ2 +m

]
cos θ − m2

(
1− ρ2

)
cos 3θ

]

/(
ρ4+m2−2mρ2 cos 2θ

)
·

∞∑

n=1

R4n

[

ℜB4n

(

ℑdG
0
4n

dζ
− 1

4n+1
ℑdG

∞

4n+1

dζ

)

+
ℜB′

4n

4n+1
ℑdG

0
4n+1

dζ

+R2

(

ℜB2(2n+1)

(

ℑ
dG0

2(2n+1)

dζ
− 1

4n+ 3
ℑdG

∞

4n+3

dζ

)

+
ℜB′

2(2n+1)

4n+ 3
ℑdG

0
4n+3

dζ

)]

+

∞∑

n=1

R4n

[

ℜB4n

(ℑG0
4n+1

4n+ 1
−ℑG∞

4n

)

− ℜB′

4nℑG∞

4n+1

4n+ 1

+R2

(

ℜB2(2n+1)

(ℑG0
4n+3

4n+ 3
−ℑG∞

2(2n+1)

)

−
ℜB′

2(2n+1)ℑG∞

4n+3

4n+ 3

)]

− ρ
(
ρ4 sin θ +m2 sin 3θ

)

ρ4 +m2 − 2mρ2 cos 2θ
ℜ
[
bo +mR2B2

+
[
R2B2ρ

2+
[
mbo+B

′

0+R
2
[(
1+2m2

)
B2+mB

′

2

]]/
ρ2
]
cos 2θ+R2 (3mB2+B

′

2) cos 4θ
/
ρ4
]

− mρ2 sin 2θ

ρ4+m2−2mρ2 cos 2θ
ℜ
[[
R2B′

2ρ
3
/
3−
[
R2
[
4B2

(
1+3m2

)/
3+2mB′

2

]
+B′

0

]/
ρ3
]
cos 3θ

+
[(
B′

0 + 2mR2B′

2

/
3
)
ρ− 2

[(
1 +m2

) (
bo + 2mR2B2

)
+m

(
B′

0 +mR2B′

2

)]/
ρ
]
cos θ

− R2 (8mB2/3 + B′

2) cos 5θ
/
ρ5
]

− ρ
[[
ρ4 (1 +m)− ρ2 −m

]
sin θ + m2

(
1− ρ2

)
sin 3θ

]/(
ρ4 +m2 − 2mρ2 cos 2θ

)

·
∞∑

n=1

R4n

[

ℜB4n

(
1

4n+ 1
ℜdG

∞

4n+1

dζ
−ℜdG

0
4n

dζ

)

− ℜB′

4n

4n+ 1
ℜdG

0
4n+1

dζ

+R2

(

ℜB2(2n+1)

(
1

4n+ 3
ℜdG

∞

4n+3

dζ
− ℜ

dG0
2(2n+1)

dζ

)

−
ℜB′

2(2n+1)

4n+ 3
ℜdG

0
4n+3

dζ

)]}

.
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