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SOME METHODS OF SOLVING PROBLEMS
OF NON-LINEAR THERMO-VISCOELASTICITY

B.E. POBEDRIA (MOSCOW)

The formulation of the problems of non-linear thermo-viscoelasticity, including also coupled
problems is given. For that purpose application of thermedynamics of irreversible processes to
the visco-elastic media is analysed. Certain methods of subsequent approximations are presented
for the solution of problems of non-linear theory of thermo-viscoelasticity, among other “rapidly
convergent” method. The rate of convergence of these methods is analysed. Numerical methods
are also considered, mainly the method of nets and the method of finite elements.

1. THE STATEMENT OF THE PROBLEM

I'n connection with the introduction into the industry of new materials, principally
polymers, the theory of viscoelasticity has become of considerable importance for
strength computation. This is a relatively general theory of continuum mechanics,
in which the relationship between stress and strain is prescribed by means of certain
operators in function of time. It comprises, as particular cases, the theory of creep
and that of relexation [1]. '

As a consequence of two laws of continnum mechanics concerning the
variation of the momentum and the moment of momentum under absence of couple-
stresses, we have three differential equations for the symmetric stress tensor )

(1.1) Divg-+pF=pu'",
where F — prescribed mass forces and p — density of the material. The displace-
ment vector u is connected with the strain tensor ¢ by the geometrical relations:
(1.2) g=Defu.

To particularize the medium, let us prescribe the operator of the stress-strain

relationship g (the constitutive equations). If we consider non-isothermal processes,
the state of stress of the medium is influenced by the temperature T and the constitutive
equations take the form:

v

(13 g=F@ ).

If the Duhamel-Neumann theory is considered to be valid the relation (1.3) may be
written

(1.4) o=, l=a-uf,

where a is the tensor of thermal expansion of the medium, § — the decrease in tem-
perature — that is the difference between the transient temperature 7 and the tem-
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perature of the. natural state T,. On substituting (1.2) and (1.4) into (1.1), we obtain
a set of three equations for the components of the displacement vector:

1.5 Div F(Defu, T)+pF=pu’".

Let the following boundary conditions be prescribed on the surface 2, bounding
the volume ¥ of the medium condsiered.:

(1.6) £ (u, #(Defu, T), T)=S,

where S denotes the prescribed external actions on X, and L is an operator. Let
some initial conditions be prescribed in addition, such as, for instance:

(L.7) n=u’, w=y°

for t=1t,.

Then, with a prescribed temperature the problem of mechanics of a continuum
consists in integrating the Eqgs. (1.5) with the boundary conditions (1.6) and the
initial data (1.7).

A medium is geometrically linear or non-linear depending on whether the
operator (1.2) is linear or non-linear. A medium is physically linear or non-linear
depending on whether the operator (1.3) is linear or non-linear. For a geometrically
and physically linear body a problem is said to be linear or non-linear depending
on whether the boundary operator 2 (1.6) is linear or non-linear,

If the temperature is not prescribed, then, in order to complete the set of equations
(1.5), the principles of phenomenological thermodynamics must be considered.
Assuming the Fourier conduction law to be valid, the consequences of the laws of
thermodynamics may be written in the form of the relationships [2]

(1.8) , dy+ ST+ W* dt="F(") de,
as -
(1.9) T“a?=dlv(1}grad T)+pq+ W+,

where y is the free energy and S — entropy, which depend on certain thermodynamic
parameters of state jui, T; W* — function of dissipation pg (X, f) — mass source
of heat, 1-— the heat “conduction tensor.

Let the following conditions be prescribed at the boundarv X of the body

(1.10) (T, aTlom) =9
and the initial data
(L.1D) T=T° for t=ti,.

Then the coupled problem of mechanics of a continuum consists in integrating
the set of equations (1.5) and (1.9) with the boundary conditions (1.6) and (1.10)
and the initial data (1.7) and (1.11). To solve this problem we must know the func-
tion of state S(,ul,T) the dissipation function W*>=0 and the particular form
of the operatir % These quantities cannot be arbitrary, since they are interrelated by

the Eq. (1.8).
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2. THE CONSTITUTIVE EQUATIONS

A visco-elastic body is a body for which the postulate of macroscopic determina-
teness [3] is satisfied. This postulate states that in the absence of non-mechanical
actions (energy supply) and with constant temperature, the stress tensor ¢ (f) at
a time ¢ is completely and unambiguously determined by prescribing the strain
tensor & (7} at every instant of time before ¢; 0 T<t<1,,.

Thus, the stress-strain relationship of the theory of visco-elasticity has the form
of the operator tensor

Q1) | a=F(),

which should be invariant under the group of transformations characterizing the

class of amisotropy of the body considered. The operator ? will be considered to
be a mixed functional [4].

The symmetric tensor 4 will be termed a mixed functional of a pair of quantities
iB,t}, where B (7) i3 a tensor function and ¢ —a number

ey A=FB@;1},

if the law attaching a certain tensor 4 (six numbers) to cach pair {B, ¢} in a certain
region D is known. If ¢ is fixed in (2 2), we shall obtain a tensor functional and if
B (7) is fixed — a tensor function. Thus, a mixed functional determines a functional
operator — that is, an unambiguous correspondence between the tensor B (r) which
is considered to be an independent variable and the tensor A (7). Conversely, if a func-
tional operator is prescribed, it can be made to correspond with a definite mixed
functional. The expression (2.2) for the relation ¢z will be replaced, for brevity,
by (2.1). By locating the tensors ¢ and ¢ in certain function spaces, we can obtain
(2.1), making use of theorems of representation of general functionals in various
spaces. For the stress-strain relations, these laws were obtained in Refs. [5 to 7).

If the operator ff is sufficiently smooth, differentiable a sufficient number of

times in the Fréchet’s sense, for instance, it can be represented in the following
form [1]

N t t
2.3) oy= 2 f ffg’;? i tndn (4, 74y ) 81 g (T0) e By g, (T g e dTy
. a=1 ¢ 0

The quantity N may be dlso infinity. The kernels I'™ represent a tensor of
order 2 (14#) and are referred to as relaxation kernels of order n. These tensors
are invariant under a certain group of transformations characterizing the type of
mechanical anisotropy. For any type of anisotropy there is a symmetry in the indices
i, jy iy ju(k=1, ..., n} and also in the pairs of indices Z, j; and & f; (k, I=1, ..., n)
If there is symmetry in the pairs of indices 7 and i, ji, it is said that the reciprocity
conditions are satisfied [7].

If the relaxation kernels of the first order have a singular additive component
in the form of a delta function 1], the Eq. (2.3) can be inverted — that is, the strains
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“can be expressed in terms of stresses and all the resolving kernels, which are termed
creep kernels, are found by quadratures from the prescribed relaxation kernels [7]

t t

N
@4y ey= 3 [ [AEI (g 1, T) 0, (7)) e Oy, G e d
=1 0 0

n

" The model based on the relations (2.3) for N—»oo requires, in general, an infinite
number of experiments for the determination of the relaxation kernels. Therefore,
for simplification of these relations, we may confine ourselves to the first N terms
of the expansion of (2.3) or (2.4). Such a theory is referred to as the N-fold theory
of viscoelasticity. Further simplification of the theory may be achieved by requiring
quasi-linearity for the general relations. In addition general theories of viscoelasticity
[1] may bé considered. In such theories, only two principal terms of the expansion
of the relaxation or creep kernels are preserved according to the degree of singularity.
Tests show that for transient, sufficiently small loads, most materials behave as
linearly elastic. This justifies the linear terms of physical relations, which are such
responsible for transient elasticity, being the only preserved. Theories based on
this simplification are fererred to as theories of transient linear elasticity.

Let us write the physical relations of the principal quasi-linear theory of visco-
elasticity:

sy=[ It Dey@de~ [ I, 7,0, 9)e, (D),
2.5 ”t “x
o=[r, D)@ d— [ a1, 6,00@ dr.

The linear and non-linear relaxation kernels contain a singular additive compo-
neng: ‘

I, 0=266¢—-0-(1),

I, D) =Ko ((—7) T (6 7)s
L, 1,6, )=00, 5 t—0—1.(, 1,6, ),
(76, =@ dét—0—Tu@, 16, ¢,

(2.6)

where G is the shear moduius and K — the bulk moduls of elasticity:
. i
GESH(T)JUE C‘U(T)EEU(T)'—'?B(T)(S”,

e(@=e’(1)e’ (D),

(2.7

1 ,
o= ?Uu(’*’)aha 83 (D=06,{1)— (1) by

s =5/ (@)s4,@.
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A particular case of the theory (2.5) is the following quasi-linear theory of visco-
elasticity [8]: ,

(2.8) sy— | Fe=tye(de— [ I, (t—)ple, O)ey @) de,

(2.9) o= [ D=0 0@ di— [ Tt—Dp (e, )8 dr

1t is assumed that linear and non-linear relaxation kernels can he separated into a
singular and regular component:

r=266(-r@, nHO=ksO-F.@,
L(O=F,80) T, I,O=03d0-T,0.

If [',=F;, =0, the relevant theory is referred to as a quasi-linear theory of transient
linear elasticity. If the volume of the body varies in an clastic manner, the relations
(2.9) take the form.:

(2.11) c=K0.

(2.10)

If we considér an incompressible body, the physical relations (2.8) and (2.9) take
the form:

(2.12) sy=[ I't—)ey@di— | T(t—7)p(e)ey@dr.

if, in the theories (2.8), (2.9) and (2.12), we assume that
(2.13) _ Fey=F@=F,(0=Ty®)=0,

we obtain from (2.12) the theory of small elastic-plastic strain for active Ilyushin
loading [9] and from (2.8) and (2.9) -— a generalization of that theory [10]. If ¢ (¢)
ig a linear function of e, the relation (2.12) describes the principal Ityushin-Ogibalov
cubic theory of viscoelasticity [11].

Another particular case of the theory (2.5) is the prmmpal theory of viscoelasti-
city guadratic in the deviators, which is considered in Ref. {12]:

sU:fF(tm'c)eU(r)dt+fQ(l‘—‘f, No(7)e;(r)dr,

(2.14)

t

a=frl(rmr)e(f)dwfgl(:% 0)6* @) dr+ [ @y (t—v, Oe(®)dr.

If the reciprocity conditions are satisfied, the non-linear relaxatlon kernels Q and
O, are interdependent;

(2.15) ' o, 0)=0 Q(g’ )=—2—-Q2(t, o).

. It is important to observe that the principal non-linear theoties of relaxation
and creep are not interrelated by inversion [1]. However, if the relaxation function
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I (¢) varies little, we can show two cases, in which they are inverse with reference to
each other, within a certain degree of accuracy [1]. In general, however, relations
of the principal non-linear theory of relaxation, (2.8) and (2.9), for instance, may be
inverted and represented in the form of the principal non-linear theory of creep:

T

e,-J,=f U (2—1)s;(7) df+fC}C§(t—’C)f(G', s)s; (@ dr,

0

(2.16) . .
azchl(twf)a(f) dr+ [ Ky (t=2)n(o,p) o (%) i,

the non-linear creep kernels being considered to be functionals of the stress tensor.
If a particular loading process is considered, we can find non-linear creep kernels
in terms of the known non-linear relaxation kernels by the method of iteration [1].

For the determination of linear and non-linear relaxation and creep kernels,
the simplest experiments are used [1, 8, 13]. The most general of the existing expres-
sions of the operator of the stress-strain relationship is (2.3). This, is of course,
a very narrow class of operators. (It may be compared with a function represented
at zero by Taylor’s series only). All the other existing theories, including the theory
of creep, are particular cases of the theory (2.3), (2.4).

3. THE COUPLED PROBLEM OF THERMO-VISCOELASTICITY

Rigorous statement of the coupled problem of thermo-viscoelasticity (outlined
in Section 1) requires additional thermodynamic assumptions. As a fundamental
assumption, we suppose that the parameters of state p; are operators of the tensor

&”, of the same nature as the operator f discussed in the foregoing section:

(3.0 p=pu(EN = —ad).

Then, we have the following relations for a deformable solid [2}:

dy Oy

oar oy K125

8'1” e Xz . kY
(3.2 ou ™ F(,
v
= — W* i=1,2, .., ¥
3&{ E{ W s 1 Is H H :‘
where

Oy = gy de™ + pi dt

is the complete variation of the parameter of state ;. The dissipation function has
the form: _

¢3) | wem gy —( e

i=1
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The equation of héat supply (1.9) reduces to the form:
(3.4) pCy 1" —div (3 grad T) = =T [ FENT +pa-+ W,

where Ty is the “mean” temperature [1]. It is clear that the expression (3.3) with
implicit parameters of state g, is not convenient for actual computation; there-
fore, an additional assumption is introduced concerning the structure of the para-
meters g; — for example, the assumption that the number of such parameters

is N=1. Then, for a quasi-linear operator (‘:j in an isotropic medium:
» 1 L1 |
(3.5 W%JESU e +olT — G (:;85) — < {e?).

In particular, it follows from (3.5) that W*=0 for an elastic body and
(36) w* =0n [enm (ei't)]‘ i
for an elastic-plastic body, where
ou=(sVs,)'/%, 3:.7_—(eij€ij)1f2,

and  (e,) is the Ilyushin plasticity function.
For a quasi-linear isotropic viscoelastic body «;;=wd;;, 4;;=A4d;;, and the equa-
tion of heat supply may be written in the form:

(3.7) pC, T — AAT= —3a Ty +pg-+ W*.

If the volume does not undergo relaxation, that is if the relation (2.11) holds, the
Eq. -(3.7) is equivalent to the equation:

(3.8) pC, T — 24T = =3 KTo 6 -+ pg-+- W*,
where
(3.9) | C,=C,—9aKT,,

where 4 is the Laplacian operator,

The theorem of existence is for a certain class of quasi-static coupled problems
of non-linear thermo-viscoelasticity, demonstrated in Ref, [2], and the uniqueness
theorem for dynamic and quasi-static problems of the linear theory of thermo-
-viscoelasticity — in Ref. [14].

4, ITHRATION METHODS

ILet us consider the non-coupled quasi-static problem of viscoelasticity. The
equations of equilibrium in a certain system of coordinates have the form:

(4.1) - G'ij,j']'PFi'T‘O-

The deformations will be considered to be small:

: 1
4.2) : &) = X (g, st 15,0
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Let the zero displacements be prescribed in a part 2, of the boundary Z of the body,
the volume of which is ¥, and let a load 57 be prescribed on the other part of the
boundary, Z,:

4.3) -ui!z‘1=0: Jijljlrz:S?'

. On substituting the relations (1.3) into (4.1) and making use of (4.2), we obtain
a system of three integro-differential equations for the displacement vector u
(4.4) : C;:,‘_j’j(u‘, T)"I‘pF;:D

with the boundary conditions (4.3}

The iteration methods for solving the problem (4.4), (4 3) consist in what follows.
The tensor operator' (2.3) is represented in the form of a sum of two operators —
a linear operator o7, of any form, and a non-linear operator o}

iy

{4.5) o, (B =05, @) + 61 (3:1) .
We assume that the linear problem |

(4.6) oy, ; (0, T)+pF; =0,

4.7 5, =0, op,(w T) =S}

has a unique solution, which is considered to bé a zero approximation g, to the
non-tinear problem,
~ Next we build up subsequent approximations by solving, at each iteration step,
the linear problem:

(4-8) &?j, J (“(n+ 1)» T) :&?j, J (u(n) ] T) _ﬁ(n) [&ij. .fu(H] 3 T)+pFl] H

Uit 1)y lzl:O,
v . v o
Gi; (“(n+ 1)» )l I.S.'1 *'“"O'?j (“(n) » T |5, — By lo:; (ll(,,) » T le,— 801,

where f,, is a sequence of positive numbers (iteration parameters), by selection
of which we can improve the convergence. The separation (4.5) may be effected
at each iteration step so that the operators a? . and ¢;; depend, in general, on the
order of the iteration step.

In the theory of plasticity, the method just described is for f,,=1, known
under the name of the method of elastic'solutions, put forward by ILyusHIN [9].
Its convergence was demonstrated in Ref. [15]. For the particular case of the quasi-
-linear theory of viscoelasticity with transient linear elasticity (2.12) the convergence
of the method was demonstrated in Ref. [16]. Problems of existence were considered
in Ref, [17], in which the convergence of the iteration method was also shown for
general quasi-linear systems. In Ref. [8] these methods were generalized to quasi-
linear operator systems. 1t was assumed that if the tensor cperator oy, (1.3) is suffi-
ciently regular (it is differentiable in the sense of Fréchet, for example, in a certain
functional space H), the operator o], may be assumed in the form of the first diffe-
rential of the operator ¢,;. In such a case the weak differential is identical with the

(4.9)
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strong (Fréchet) differential. The first differential Do,; and the functional derivatives
d0,;/0e; can therefore be found from the formulae:

. doy; d .
(4.10) ' DO’,J‘ {81‘[, hk[}z mé;;]?k[ =?égij {Skl-l_fhkl} lf=0 .

Similarly, for the second differential D o;; and the second functional derivatives
we have:

iJ

2
@11 Da, fow, hu)= AR I {6+ Ehaa} |
: S A P IR R

where I, denotes the tensor of the strain increment. The operator Doy, is linear in
Jyg. Let ws introduce the notations :

ff(x,r)dsz:fdf ff(x, DdV,
4.12) * ° v

ff(X,T)dE=‘fdf ff(x, )dX.

By the term weak solution [18] of the problem of the theory of viscoelasticity
{4.4) and (4.3), we shall understand the function vector u satisfying, for any continuous
differentiable function vector v, the integral identity:

(4.13) [, () d= [ pFodv+ [ Stvds.
2] 2 Ea

Let us consider the following functional spaces H, (Q), H,(Q), HT (V), H; (V),
into which scalar products have been introduced according to the equations:

“.149) D Ye= [ ey esMde,
4.15) @V, = [ Féijk;ek1<u>]eij(v>dsz,
(4.16) (n, v)H; [ esye mav,
(4.17) @, Vg = [ Vcw e (W) ey (N AV,

where the tensor C,,; and the operator tensor C;;, are positively definite and symme-
tric in the indices 7, /; %, [ and the pairs of indices i}, k{. Then, the following theorems
are valid [8].

THeOREM 1. Let u(o)'e H, () exist such that the linear problem (4.6), (5.7) has
a unique solution and the inequalities

(4.18) o7 () g < m [Copabiad by
ij

do : « '
“4.19) m {éma Tl By < [?M hm] <M [Cosr Pl i
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are satigfied for any symmetric tensor h;;, where O<m< M < oo, Let

4 3
(4.20) PEEL, (), p>5, Siel(8), p>,.
Then, there exisis in some heigkbourkood —wl<ra weak solution u* of the problem
(4.4), (4.3), which is unique in that neighbourhood. To this solution converges, for any
Be(©,2/(m+ M)\, an iteration process beginning from wg, (4.8), (4.9), and

(4.21) !i“(n) —u¥l, < g ““(0) ~ ],
where

(4.22) q=1—pm.

From this theorem it follows that if we have found the first approximation g,
and if the solution is to be found with an accuracy & -— that is jju,, —u*|, <& —the
number n of iterations necessary for the achievement of such an accuracy is found
from the inequality:

(4.23) ! 3U=9)

n > n .
Ing “uu)"—“m)”z

The best convergence will be achieved for f=2/(m+ M). The value of § may be
changed at each iteration step, so that f§,, € (0, 2/(m-+M)]. Let us observed also
that if there exists a “linearity region” of the operator ;; (8), and if the zero appro-
ximation belongs to that region, the condition (4.18) is satisfied automatically. -

We define as a generalized solution of the theory of viscoelasticity (4.4}, (4.3)
the function vectoi u satisfying for any continuously differentiable function vector
v the integral identity:
(4.24) [ Gyeydv= [ pFrodv+ [ Sv,dx.

14 v L4

Then, a generalized solution of the problem (4.4}, (4.3} can be found by the method
of elastic solutions. ‘

TororREM 2. Let Wy € Hy (V) exist such that the elastic problem corresponding
to the linear problem of wiscoelasticity (4.6), (4.7) has a unigue solution. In addition
let the conditions (4.18), (4.19) be satisfied and

6 4
PReL,(V), p>—, S)el(2), p>-.

Then, there exists in a certain neighbourhood
(4.25) Eiu—u(o)”i é_ 2

a generalized solution w** of the problem (4.4), (4.3), unique in that neigkbourhlmd
and such that the iteration process (4.8), (4.9) converges to it for any fe (0, 2{(m- M)]
beginning from wy,, and

(4.26) E!“(u) —~utEr < g" ”“(0)_“**”5 s

where q is determined by the Eq. (4.22).

I'd
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The following conclusion is drawn from the above theorem. If Green’s tensor
is known for a linear clastic problem in a given region under prescribed boundary
conditions, the solution of the corresponding problem of the non-linear theory
of viscoelasticity is found by quadratures in the form of recurrence relations.

The iteration processes considered converge at a rate of geometrical progression.
If the factor ¢ of that progession is near unity the convergence is relatively slow.

If for a linear problem of the anisotropic theory of viscoelasticity a  solution
can be found by any means, thus expressing the relaxation kernels in function of
the coordinates, the rapidly converging iteration method expiained in Ref, [19]
can be used for the solution of the non-linear problem.

With this method, o, can be sclected in the form of a Fréchet differential of the
operator tensor: oy; (g,;) based on an approximation obtained by requiring that
the following conditions may be satisfied for each tensor A;

95, v

{4.27) my fyih < [ Dy hu-l By < Myhyhy,
32 0,;

{4-28) _381:75—— Tt P bl <L (hij h”)s,rz >

where m,, M, L are positive constants with a dimension of stress,

TurorReM 3. Let a Woy€ H exist such that the linear problem (4.6), (4. 7Y has a
unique solution and the conditions, (4.20), (4 27) and (4.28) are satisfied. In addition
let be a positive number such that

(4.29) f o-ij (ﬂ(o)) &1y (u(o)) dQ < nya f Eij (U(O)) & (u(o)) de N

where &° (o) is found from the Eq. (4.5). Then number o, 0 <a<1, can be found
such that the problem (4.4), (4.3) has a unique weak solution in the neighbourhood
L~ =

3
ooy — 0¥y < vg, if the inequality g< a=*C is satisfied, where q=-7 — £ 2
@ 14 : 2 my ?

C= o'(l+oc)_ % and ro, 1, are the smaller and the greater root of the equation
grir®—r4a=0, respectively.
For =21, the iteration process {4.8), (4.9) tends to the above solution, and
(ij:u)" 1
(4.30) y—u*li<g  * fu—u¥{F

The latter inequality can be expressed in the form:
“.310) [ —weoplls < €y gurat,
where the qu&ntity C, can be made arbitrarily small by selecting an appropriate zero
approximation. Then, making use of the Stirling formula, we obtain, for large n,
{4.32) gy — ¥l < (D)~

Similarly to the Theorem 2, which results from the Theorem 1 - that is, similarly

to the reduction to an elastic solution — we can formulate a theorem resulting
from Theorem 3, making use of the space Hy (V) with the scalar product (4.16) [8].

s
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The coupled problem of thermo-viscoelasticity can be solved by the method

of a small parameter. Let us suppose that the operator 7 (¢¥) can be expanded
in some manner in a series of the parameter x=uly:

33 FaN=To(@+xF EHP T E) +

where ‘Fa () is an operator independent of a. Then, the solution of the problem
. stated is sought for in the form of power series:

(4.34) u= Z 1o IC",‘ T= 2 T k" .

To obtain a zero approximation we solve the non-coupled problem:

(4.35) Div %, (Defu) + pF=pu”,
(4.36) _ pC, T —div (L grad T)=pg+ W7,
with the boundary conditions
@.37) £(u, F(Defw)=8,
(4.38) 4 (T E) =3,

on

and the initial data (1.7), (L.11).

We first solve the Eqs. (4.35) with the boundary and initial conditions (4.37) and
(1.7), thus finding the zero approximation u.,. We substitute this into the expression
of W, and solve the equation of heat conduction (4.36) with a heat source pg+
W* (u). For the subsequent approzimations, nz1, we have

(4.39) DiVNC:Z(n) (Defl!(,,) - 95.19(,1_. 1)) '—_'-pllE’:) »
(4.40) pC, T —div (4 grad Ty =To [ F (8oue 1y — 28grn )] + 5 (0e),

with the boundary conditions

(4.41) £ (u, F(Defu,))=0,
4.42 | ( E) 0
(4.42) 8\T 5 1=0

and the homogeneous initial conditions. We solve the Eqgs. (4.39) with the boundary
conditions (4.41). Then, by substituting the solution u,,, into W,, we solve the
equation of heat conduction with a heat source T ﬁ'+ wr.
The convergence of the series (4.34) must be verified in each particular case.
If there exists Green’s function D (x, ¢) for the equations of heat conduction in
the region considered. The assumption which was used for the proof of the existence
theorem [2] may be used as a method for solving the coupled problem.
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Let the operator tensor g, j:‘fvﬁ 5 (5,1) be potential — that is, let an operator
W exist such that

aw
(443 ey, 01 )
Let us denote
(4.49) ¢ = va/dQ, A f{u}= priuidQ+ fS?uidE.
2 @ 73

Then, the relations (4.13) may be expressed in the form:
(4.45) - D {e;; (), &; ()} = Do {u, vi=4{v},

where D¢ is determined by the formula (4.10).
Then, the following theorem of minimum of a functional is valid.

TaeoreM 4. Let the conditions (4.19) be satisfied in the region:
(4.46) Hu““u(e)“ -<._ F.

Then, if a weak solution of the problem w* constitutes an internal point of that region,
the fimetional

(4.47) o= ¢ {u}—4 {u}

has a minimum at that point, unique in the region (4.46).

5. NUMERICAL METHODS IN THE NON-LINEAR THEORY OF THERMO-VISCOELASTICITY

We have considered, above all, analytic methods for solving boundary-value
problems of the non-linear theory of viscoelasticity. However, in most cases impor-
tant to practict it is extremely difficult, and usually impossible to find an analytic
solution of a linear elastic problem. Therefore approximate methods have found

“application in modern theoretical physics, among which a special role is played,
owing to the possibility of electronic computers being used, by difference methods
[20 to 26], which are also successfully used for solving problems of elasticity [27, 28]
and those of the theory of viscoelasticity |29, 30]. The difference methods are closely
connected with what is referred to as ““direct” methods-that is, variational methods,
Bubnov-Galerkin methods those of least squares etc. {31]. To variational methods
i§ also related the method of finite elements, which has recently found wide applica-
tion in, works [32, 33]. ’

Lei us consider the Ritz method for solving guasi-static boundary-value problems
of the non-linear theory of viscoelasticity (4.4), (4.3). This method consists in obtaining,
in a class B of functions, an approximate value of the function vector u* for which
the functional ¢ (4.47) reaches its minimum in B, On the other hand, the functional
¢ reaches in the space H, its minimum for the wealk solution of the boundary-value
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problem (4.4), (4.3). As a class B, let us consider the function vectors g, which
can be expressed in the form: .

6.1 Uy = Z Ciay (%, 1},

-where 4, (x, t) are fanctions of the coordinates satisfying the kinematic boundary
conditions (4.2) [31]. The coefficients Cy, (k=1, 2, ..., N) are found from the conditions
of minimum of the function

(52) B(C)= B(Cy, ., C)= & {“(N)}=f ¢ {uam} dQ—4 {uem}

2

. — that is, from the set of equations

' @
53 o =m(€)= f 613 W) 15 Py} 42— f PE: Wiy 42— f Sy 43,
m=1,.,N.

Let us introduce the following positively definite matrix of order N
5.9 Agp = f [Cvumem {‘l‘(a)}] 311(‘[’(;&)) de .
£2

To solve the non-linear set of algebraic equations (5.3), use can be made of the itera-
tion methods described above. For this it is necessary that the finite dimensional
analogue of the inequalities (4.19) should be satisfied. It is easy to observe that
the first Fréchet differential of the left-hand part of the operator equation (5.3} is
a Jacobian matrix 8y,/0C, (m, n=1, .., N).

We have

THEOREM 1. The Jacobian matrix of the set of equations (5.3) is uniformly positively
definite -— that is, the following inequality holds for any N-dimensional vector {a, ...
vy Gy}t '

2
(5.5 R

ac, ajal/mﬁwa a, Li=1,1.,N,

Where Ay is the least ezgenwalue of the matrix A (5.4). In this case, the problem of
soloability of (5.3) must additionally be studied. ) :
Let us consider now the problem of a finite-difference solution of the problem
(4.4), (4.3). Le us replace the region 2 by a lattice region 2% the boundary of which
is &* and let us replace the sought for function vector u und the prescribed functions
pF, S by the lattice functions ”, pF*, S" We assume that certain lattice analogues
of the operators s, (u), o;; (W) have been introduced in such a manner, that the
inequalitics (4.19) are satisfied. We shall not consider problems of apprommatlon
of these lattice operators and we shall consider only one of the possible methods for
constructing a variational scheme for the problem (4.4), (4.3) and a method for solving
the difference problem thus stated. The symbol #{™ means that three vector compo-
nents are prescribed for each of the (W, N, N3) nodes selected from the rectangular
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lattice, with the number (k;, k,, k3). Let us write the expression for the difference
analogue of the functional ¢ (4.47):

(5.6) B M= ¥ 4P {u(N)}+A" U™}

The condition of minimum of that functional leads to a non-linear set of algebraic
equations-

i == 20 AP 2 3N B 2 CPpER - X D,
k “k

where AWM, ¢, D, Bg?k are coefficients of the quadrature equations, where

' 3£h (N))
(5.8) Bg\.’)k W
THEOREM 2. The Jacobian mamx of the set of equations (5.7) is umformly posi-
tively definite — that is, for any N-dimensional vector we have

3X(N)
(5»9) : a (N') aI tl;c /’Latal

It is essential to observe that if we require the existence of a second Fréchet

derivative of the operator :}, use can be made of the rapidly convergent iteration
method. If the difference analogue to the condition (4.20) is satisfied, it will be equi-
valent to the Newton-Kantorovich method for difference equations.huthat is, the
number « in (4.31) will be equal to 1.

We have solved numerically a few quasi-static problems of the non-linear
theory of thermo-viscoelasticity by means of the BESM-6 computer {8]. It should
be observed that numierical solution of problems of the theory of viscoelasticity,
in which a linearly elastic problem is solved at each iteration step, encounter con-
siderable difficulties of storing data in the memory of the computer. Therefore in
many cases a synthesis of theoretical and numerical methods is usefol. In particular,
by reducing the non-linear problem of viscoelasticity — see above — to a sequence
of linear problems, use'can, at each step of the method, be made of the numerical
elastic solution [34], based on a known dependence of the elastic solution on the
Poisson ratio.

Let us denote by f any of the prescribed quantities pF;, S7 and by ¢ any of the
prescribed quantities u}, «9;. It is assumed that

f 0= Y F(OX®;
(5.10) L
(6 0= Y ;)Y (%)
J

and that we have f=0 for all fand ¢, (#)=0 for all ¢, except ¢, (£)=1. With sﬁch
conditions we solve, by means of any method, the elastic problem (4. 6), 4.7). Let
us consider one of the components of the displacement vector u. .

- Rozprawy Inzynierskie — 2
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We have [34]
(5.11) u=(4; '!‘Azgi,'z;E‘Aagz'+A4gﬁ+A5/@+A6m)¢1,

where 4, (i=1, ..., 6) are certain functions of the coordinates. Taking now definite
_values @ —'D, ..., oD, we obtain, at every point of the body, a st of seven algebraic
equations
A, As
Aty 1/2 0P T 11200 *

A As 0 .
+T+_ﬁ_w—(5+wu)+’isw , i=lh LT

(5.12) uP=

By solving the equations (5.12) we shall find the values of 4;, § at each point of the
body x. If the expression (5.11) has been written correctly, the quantity f§ will be the
same at every point. Next let us set g, (£)=1 and the remaining ¢, (z) and f equal
to zero etc. Then, we write the solution of the problem of viscoelasticity. From the
Eg. (5.11) we have

(5.13)  u(t, D=4, ) Dy 1)+ A5 () [ g1/ (t—7) dP1 (4
A3 () [ g2 (=) d0, )+ A ®) [ g5 (t=7) dPL (D +

+A5(x)fH(t—t‘)d(Di(r)+A5(X)fco(t—r)d@l(r).

Several problems have been solved by this method [8, 35].

The solution of coupled problems is much more complicated. Only an insigni*
ficant number of quasi-static problems of the linear theory of thermo-viscoelasticity
have as yet been solved [36]. In the domain of coupled dynamic problems of the
linear theory of thermo-viscoelasticity the one-dimensional case [37, 38] is the only
that has been solved. '

Tt should be observed that the solution of problems of the theory of viscoelasti-
city has some particular features connected with multiple repetition of the compu-
tation according to a definite algorithm, the previous computation being disregar-
ded. For the programming for such a problem the question of economy of computer
merzory and time is essential, There is much waste work in the preparation of the
problem, for the programming and the programming itself. The application of ge-
neral routine languages (Algol, Fortran etc.) simplifies the problem but very little.
A program for the entire solution process of a problem. of thermo-viscoelasticity,
beginning with the derivation of the basic equations for prescribed constitutive
equations and prescribed geometry of the body, and ending with the choice of a
numerical method for solving the problem, requires many non-arithmetical ope-
rations. ‘
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The development of a specialized language for the automatization of the pro-
gramming process for problems of the theory of thermo-viscoelasticity would essen-
tially facilitate their solution. The elaboration of such a system for the solution of
problems of the theory of elasticity and plasticity is in progress [39, 40].

The algorithmic system of thermo-viscoelasticity would include as a subset a
system for solving problems of the theory of elasticity and certain theories of plasticity.

The most perfect would be a situation in which the research worker writes for-
mulae describing a mechanical model of the continuum and the particular problem—
that is, the region occupied by the body, the boundary and initial conditions etc.
The computer performs, owing to a certain algorithmic system, the derivation of
formulae convenient for numerical computation, selects the computation method
by a certain optimum. procedure, performs the computation, appraises the accuracy
of the solution obtained, and plots graphs.
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STRESZCZENIE

PEWNE METODY ROZWIAZANIA ZAGADNIEN NIELINIOWEJ
TERMO-LEPKOSPREZYSTOSCL

Podano sformutowanie zagadnieh nieliniowej teorii termo-lepkosprezystoéci z problemami
sprzezonymi whacznie. W tym celu zanalizowano zastosowanie termodynamiki procesdw nieodwra-
calnych do ofrodkéw lepkospreZystych. Do rozwigzania zagadnieh nielinfowej teorii termolepko-
sprezystoéei zaproponowano niektore metody kolejnych przyblized, w tym metode “szybkozbieing”,
i zbadano szybkoéé ich zbieznodei. Rozwazono rdwniez metody numeryezne, glownie metode siatek
i elementow skosficzonych.

PesmomMme

HEKOTOPEIE METOJTET PEMEHIA 3ATAY HENMHENHON
TEPMO-BS3KO-VIIPYT'OCTH

Haéres mocraseoBRa 3anmad HeTHHCHAON TEODYH TepMO-BASKO-YHPYTOCTH, B TOM WHCIC W CBA-
sauppix 3aaa9, st H1or0e aHauHIApYeTcs IPAMEHEHIe TepMOIMAAMIAKA Heo0paTHMEIX IPONECCOB
K BHZKO-YEPYIUM cpemam. IIPemuomeHsl HEKOTOPHE METONE IOCTeNOBATENSHEX OPHGIIKSHAR
AIH PeMeHys 3afaY HelMHCHHON TCOPHH TCPMO-BA3KO-YIPYTOCTH, B TOM 4HCIS ,0BCTPOCXOna-
InEicH” METOE H AHANHMSHPYSTCA CKOPOCTE HX CXOOAEMOCTH. PaccMOTPEHH TAXKC YHCICHHBS
MeTOIEI, B OCHOBHOM METO/ CETOR W METOM KOHSUHBIX HICMEHTOB.,






