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A DYNAMIC PROBLEM OF A CRACK IN A PLATE STRIP

G. KUHN (M[':INCHEN) and M. MATCZYNSKI (WARSZAWA) (%)

In this paper discussed is the quasi-siatic problem of displacement and stress distribution in
an infinite elastic sirip containing a semi-infinite crack located in its middle plane. The crack is
assumed fo propagate at a constant velocity along the straight line lying in the middle plane of
the strip. Using the integral Fourier fransforms, the problem is reduced to a corresponding Wiener-
Hopf equation.

The value of the stress intensity factor at the tip of the crack is accurately determined. Numerical
evaluation of the inverse Fourier transforms yields the distribution of stress and displacement
components at an arbitrary point of the strip. The results are illustrated by graphs.

1. FORMULATION OF THE PROBLEM

Let us consider an infinite elastic strip of width 24, containing in its middle
plane a rectilinear, semi-infinite crack (Fig. 1a). The surfaces of the crack are stress-
free, and the external edges of the plate strip satisfy the following boundary
conditions: horizontal (tangential) displacements vanish, and vertical (normal)
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" displacements are constant and assuyme & prescribed value o= v, (plus sign for
the upper, and minus — for the lower edge).

The static version of the same problem was solved by W. G. KNauss in {11
‘Here we shall tackle the more general problem: it will be assumed that the crack
moves at a constant velocity ¢ along the horizontal axis x' of a fixed, rectangular
coordinate system (x', ¥"). _

Pursuant to the results obtained by several authors [2 - 5] who considered the
critical value of crack propagation velocity in elastic media, the velocity will be
assumed to Be less than the Rayleigh surface wave propagation velocity. The plate
strip will be assumed to satisfy the conditions of plane strain.

Applying the superposition principle, the solution may be represented in the form
of a sum of the elementary solution of a strip without the crack (Fig. 1b), and the
solution of a strip with a crack (Fig. 1c). The state of displacements and stresses
in the case illustrated by Fig. 1b is given by the formulae

o o ‘n()y
w(x, »=0, o0,)="7",

o _ 2y v
(11) Jxx(x: y)"— 1—2y h 3
2u(l—v) vg

GG D=5, k.

| O (u =05 _
v denoting Poisson’s ratio, and u — the elastic Lamé constant.

In the case illustrated by Fig. lc, the edges of the strip are rigidly clamped, and
the crack surfaces are subject to the normal loads ay, (x, 0)= —po, With po equal to
2u(1—=v) 24

1-2v k'
This is the problem which will be dealt with in this paper; owing to its quasi-static
character, a convective reference frame (x, y) will be introduced according to the
transformation formula '
(L.3) | x'=x+tct, Y=y,
Here ¢ denotes the constant velocity of motion of the new system with respect to
the fixed one (x', ). _ o -

The conditions of symmetry following from the assumptions illustrated by Fig, 1c
reduce the problem considered to the determination of displacements and stresses
in an infinite plate strip of width & with the following boundary conditions written
in the convective coordinate system (x, y):

u(x, Wy=v{x, H)=0 for [x|<oo,
Oy (%, O}=0 for |x]<oo,

o(x, =0 for x>0,

(12) Po=Gyy (x,0)=

(1.4)

. Oy (X, O)=—po. for x<0.
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The equations of motion written for the plane state of strain are known to have
the form _
{1.5) V2 u+ A+ 0 =pit, uV?o+A+)80 . =po.
Here A, i ar¢ Lamé constants, p - material density, and the respective. operators
V'* and ¢’ denote the Laplacean and dilatation referred to the immobile coordinate
system, (x’ y”).
Expressing the displacemients u, ¢ in terms of the scalar and vector potentials
@, ¥, '
{1.6) U=, T 5, . V== W, xs
and using the Bq. (1.3), we obtain the equations of motion (1.5) transformed to the
convective coordinate system (x, y), namely:
(1‘7) ﬁfqp,xx'l'qj,yy:o: ﬁ;W,xx+w,y3':0'
Here,
| fimi-clt,  B=1-cld,
and ¢y, €, denote the respective velocities of longitudinal and transversal elastic
waves; ¢ =(A+2u)/p, ci=pulp. By means of the Hgs. (1.6), (1.7), we obtain then

the expressions for the siresses and displacements in the rectangular coordinate
system (x, ), '

Oxx (xa y)=# [(I 'i-zﬁf_ﬁ;) ‘p,xx+2w,x_v]a
{18) Jyy(xa y)=—,u{(l+ﬁ§) fp,xx+2w,x_v] ’
Oy (xs y)=,u [zfp,x]!~(1 +ﬁ§)w,rx] .

The considerations to follow, consisting in the determination of functions ¢ and w
satisfying the boundary conditions, (1.4), are based on the two-sided integral Fourier
transform defined by the formulae 6]
w+ttp
— o,y e“i“xdor_,
.!/ 2% {at, 1)

—w+irtg

1

a9 Fen= mf ey e=de,  fxy)=

with the integration parameter bein‘g a complex variable «=¢+ iz, and the path of
integration in the Eq. (1.9), lying, within the strip t_ <Im ee<<7, of regularity of the
function £ (x, y). In addition, observe that the function F (x, y) may be represented
in the form:

(1.10) Flo, y)=F~ (o, »)-+F* (o, y),
‘where the one-sided Fourier transforms

1 o . . 1 @ - :
3 f Flpesds, B ()= f Fx, vy dx

Aare funct_idns analytical within the respective halfplanes Im e <7, and Im a>7._.

Rozprawy Inzynierskle — 12
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' Applying the Fourier transform (1.9) to the fundamental set of Egs. (1.7) we
obtain the following two equations: ,

&b -0’ frd=0, ¥ ,,—o pE¥=0.
Solutions of these are then represented in the form:

& (o, ) =C; (eyshafy y+ Ca () chafy p,

¥ (o, y)=Cs(e)shafzy+Cs (w)chafyy,

which, by means of the transforms (1.9) applied to the Egs. (1.6), (1.8), yields the
F-transforms of displacements and stresses:

Ulw, )= — i {C; (o) sh aﬁ1y+C (¢)ch ocﬁiy+zﬁ2 [Cai(x)chaf,y+
7 +Ca(o) shafy yl},
V(x, )= {f; [Cy () chaf y-+C, ()shep; y1+i[Cs(x)shaf, y+
+Cy()chaf, 1},
Zolo, )= — pe2 {(1 4281 — ) [CL (@ sh afy y+ Ca (@) chafy y1+
+2if, [Cy (@)chafs y+ Ca(@)shafy ¥}
Zyy (s )= g {(1+ B2 C1 (@) sho fy y+Cy (4) chaufy yl+
+2if, [Cy (@) chaf, p+Cy (“) shaf, y]},
T (o, )= — ipe® {2, [Cy () chafy y+ Cy (@) shafy y]+
+i(1+ 3 {Cs (@) shafy p+ Cale)chafs y]} -

The unknown functions C; () must be determined from the boundary conditions
of the problem considered.

(1.12)

(1.13)

2. SOLUTION

Let us now apply the F-transform (1.9) to the boundary conditions (1.4) and use
the Eqgs. (1.10), We obtain -

Uz, Hy=V(a, 1)=2,, (o, 0)=0,
.10 Vx, 0)=V"{x, 0), ‘
Z, (e, 0)=27, (2, 0)+ 25 (o, 0),
Here,
V 0 . - (x, yet*d for 1
(o, Q)= ——= o(x, e dx, reg. for Ima<ty,
. (o 0) ]/2—15‘ “:£ g. Lor ATy
(2.2)
1 4]
23 (o 0)=l/—2_7;f o, (%, 0yt dx reg. for Im a> —17,,
0
i
0 - reg. for Ima <0,
- 1 T Po * -
5 0)= s f 05, ) 7= =

i
—?-F nd(g) for Ima=0;
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7; and 7, are certain small, positive numbers; the common region of regularity
the transforms (2.2) is initially assumed to be the strip —7,<Im a0
The transform Z,, may be cxpressed by means of the Dirac delta-function,

@.3) 25 (w, 0)= —75?—[—“%4-7;5 (oc)]

and then the strip of regularity —7,<Im a<0 of the transforms (2.2) may be
" supplemented by the real axis Im «=0, except the origin a=0 of the coordinate
system. Owing to the regularity strip

thus defined, we avoid certain difficulties dime

in numerical evaluation of the inverse
F-transform, since the path of inte-

gration in the Eq. (1.9} may be assumed V / A //}_';e w
to be the real axis Im 2=0, ; g

By means of the formulae (1.13), €
(2.1), {2.3), the problem of determin- Fig. 2

ing the unknown functions C; (w) is _
reduced to the solution of a Wiener-Hopf type equation; with the notations

w=ch=i+is, V (0,0)=V (o) and Z} (s, 0)=Z(w),
the corresponding equation takes the form:

i
2.4) V(@)= = H@) 25 @)~ P@)]

Here,
(1 *"ﬁ‘zz)f-"h wfiy chwf, (thwp, — By fathopfy)
o [(y+f f)chofs chwfy —(1+yp f2)shwp, sheofl,—y(1+ 53] °

__4Bib
Ry

its region of existence being the strip D shown in Fig. 2. The equation is solved by
the factorization method [7]; to this end, the function (2.5), must be factorized first.

The corresponding procedure described in [8] requires the function H (w) to be
represented in the form

(2.6) H{w)=H (o} H, (@),

H{w)y=
(2.5) o i
P(w)=T/—2:;:[mg+ﬂ5(ca)],

satisfying the following three requirements:

(1) Functions H (w) and H (») must behave identically at infinity, |m|—oo,
and at zero, |wj—=0; ,

(2) Functions H(w) and H (w) should behave similarly within the region of
existence of the Wiener-Hopf equation; in the case considered this concerns the
neighbourhood of the real axis ITm a==0;

(3) Function H; (w) cannot have any zeros or singularity points in the strip
Im e <e,, with O<e, <g,.
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A finction satisfying the requlrements presented above may be assumed in the
form:

_o1-p 1 [ 2hg 8(02]
@n B@O= 20 YVpraz L o+ i
with :
S ]— 232
2.8) y( =52

Tag,—1) A

and the remaining two magnitudes Ao=2o (c) and 9=3 (c) are certain functions of
the crdck propagation velocity c.

In the case of the Poisson ratio v=0.25, the approximations for lo and & are
Ao (€)=2.54+5{cfes)*,
8{c)=0.2—0.0211 (¢/c,)? +0.5345 (cfe,)* —0.2279 (c/c,)“ +0.9494 (c/c,)®,

and the values of H (w) and of the relative errors AF=[(H— Y/ H] 100% are given
in Table 1.

Table 1
clepa=0.2 clea=04 cles=0.6 cfea=0.8

@ Hw AF | H(o) AF | H{o) AF | H) A7
0 1.29 0 1.16 0 0.96 0 0.70 0

1 1.27 1.23 1.16 1.32 0.98 1,74 0.74 2.34
2 1.14 —0.81 1.08 —0.21 0,97 0,99 0.82 4,35
3 0.93 —0.83 0.91 —0.24 0.88 —1.03 0.89 3,52
5 0.60 0.38 0.59 1.00 0.61 —0.52 0.79 —2.23
10 0.30 015 | 030 036 0.31 —0.10 0.42 —2.49
50 0.06 0.01 0.06 0.02 0.06 0.00 0.08 009
co 0 0 0 y 0 0 0 0

|

Prior to factorization of IT(w)/let us introduce the following notations:

gmd :

@

L{wy=L~ (@) L" (@)=0*+13,
R(@)=R" (@) R* (@)=Vo?+ 47,

M (0)=(0-—-o¥){(w—w}),
L™ (@) =(@—ob) @—0b),
R= (w)=]/co—l_-iA.

M (@)=M~ (@) M* (@) =0*+22 $0? + 1,

M+ @)= 03 (=),
L' (@) =(@—ab) (w—ab),
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In the-case 0<8<1, the zeros w} , of M (w) are found from the formulae

o .,
= (V1 9+iV1+9), my:—ﬁ(-m-w/um,

]/_
—M—T(Vl 9-iV1+9), -"( Vi-8-iV1+9),

(2.10)

and the zeros @} , of L () follow directly from the Egs. (2.10) by assuming in them
8=0.

Using the same notations, the function (2.7) may be represented finally in the
form

a11) A (w)= y_ﬁz K- (@) K* (),
Here,

M*{w)
(2.12) : K* ()=

RE@) L)’

Tunctions K (w) determined in this manner are analytical in the respective halfplancs

Im o> g, and Im o<0. o
Assumption of the function () in the form (2.7) satisfies the requirement

concerning H ; () and owing to the fact that H, (w) tends to unity within the strip

[Im o] <e, for |w|—co, the function may be written in the form [7]:

. | _H ()
Here, . . o .
w17y o1y
1 In /() i In H, (z)
+ - i P
In HY (&) - . dz, InH{ {w)= i T w d?,

—oot+iys o a2
and —e <y, <y <E.

Such functions H f (@) have no zeros and singularities in the respective halfplanes
Imw>y, and Imw=<y, and, in view of H (0)=H, (co)=1, they satisfy the
additional condition HY (0)=H{: (c0)=1.

Consequently, making use of the relations (2.11), (2 13), the functlon B (w)
may be written; by means of the Hgs. (2.6), in the form:

' | =5 K- (@)K* (@) H] (@)
y—1 H (w)

After substltutmg the relation (2.14) into the Eq. (2.4), we ﬁnd

upr (=) V- (@) H (@)
HA-F) K@

w1th the notatlon

@2.14) ‘ | Hiw)=

@19 = K* () HY (0) 21 (@) —E(w),

B@)=K* (@) B @)P@).
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Factorization of the function E (w) — ie., its representation in the form
E* (0)=E* (w}—E~ ()
in which
E* (@) =[K" (@) H} (@)~ K* O H{ O1P(@),

~(2.16)
E~ (w)=—K* () H (0)P(w),

enables us to write the Eq. (2.15) in the form:

_App0=1) V™ (@) Hy @)
(-FD) K @)

—E-(w)=K*{w) B (@) 2} (0)—E* (w).

Applying now the generalized Liouville theorem we obtain the solution of the Eq.
(2.4): :
h(1—43) E (@)K ()
Vo ()= — —
Auf, (y—1) Hi{w)
E* (w)
SR A
O™ ) HY (@)

reg. for Imw<0,

reg for Im a> —s&; .

These formulac enable us to determine analytically the exact value of the stress
intensity factor, as also to calculate the approximate distribution of the displacement
o along the crack edges, and of the stress o,, along the crack extension.

The formulae (2.17) also yield the functions C; (w),

Co@)=hCH @) V- @), Cal@)=hCi(@) V™ (@),

(2.18) . ;
Cs(w)=—ihCi@) V™ (@), Cilw)=—hCi(@}V™ (),
Here
N . Ko ov_ 1
Cy(w)= [)’l(lmﬁﬁ) o’ C4((D)_1*“ﬂ_% P
* -—_d____z_ﬁzﬁ,__u[ 2 _ 2(1_ﬁ§)5hwﬁzl
@.19 C; (@)= 1= eD @) (14 cheof, —2ch ‘”ﬁZJr“ywH = ,
N S ) (1—ﬁ§)shmﬁ1]
O Ty (o 2o

D(w)=(1+3)shwp,—2p; fashwf;.

By introducing these relations into the Egs. (1.13), petrforming the numerical
evaluation of the inverse F-transform (1.9), along the real axis Im w=0, we obtain
the complete solution of the problem under consideration.
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3. STRESS INTENSITY FACTCOR

According to the well-known Abel theorem [9], once the asymptotic behaviour
of the F-transforms at |x|—oco is known, we can determine the behaviour of the
corresponding inverse transforms for |x|—»0. By means of the Eqs. (2.12), (2.16),
(2.17), and making use of the fact that Hi¥ (c0)=1 it may be demonstrated that
with |a|-so0

iy (1-53) ipo)/h 1
Appo (v Dy 2mid ay/u’ Vnid yu

The Abel theorem cited above yields now the conclusion that for |&|=|x/k]—-0
the displacement ¢ and stress o,, assume the form

V= ()= - ()=

(1IN —
v (¢, 0)*m]/—rf for &5 -0,
(3.1
| & 0= N(i) for é>+0
L (< | ]/f )
‘with the notation
¢ 210, 1—
(.2) N(y=—2 o (1)

Vrd  R(—-20)yzd

the value-of A being given by the Eq. (2.8).

From the Eq. (3.2) it follows that increasing crack propagation velocities and
increasing width of the strip makes the stress intensity factor decrease, and for ¢
equal to the velocity of propagation of the surface Rayleigh waves, the stress intensity
factor N {c} becomes equal to zero.

10
C/Cz - —ee i

Fig. 3
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In the case of c—0 we obtain the solution of the static problem, the stress intensity
factor assuming the value: '
2w
_ RV 2r(1-29)
The graph showing the dependence of N (¢) on the crack propagation velocity
as given by the Eq. (3.2) is shown in Fig. 3; Poisson’s ratio v is assumed to be equal
to 0.25.

§ =

4. DISPLACEMENTS AND STRESSES IN THE PLANE y=0.

Performing the inverse F-transforms on the Bgs. (2.17), and assuming HE (w)=1,
we may find the approximate distribution of displacements v on the surface of
the crack, and the stresses g, along its extension;

wu—iEl

o(€, )= “M J E-(w) K~ (w)e ™ dw for <G,
’ A (y—1)y/2m |
4.1
. 0 1 e E*“(o;) ~i0f f 0
Gy, (&, 0)= hpzn - K@ " or £>0,
here £=x/h.
With the notations
, o—ig) ]/a)—_:;;; . . w— g I/EIZ
= —_—— s — — " et
0= [ e, 0@O= [ T merttdo,
oo — ey _ . . .
Kz 8) A Vito—1 o
Z,6)= ———dw, &=¥1+d-1, K= =,
(0) z)l/ wr—iAd ! S VA

and by substitutmg by the Eqs. (2.12), (2.16) into (4.1), use being made of certain
properties of the complex variable functions and the delta-function, the displace-
ment @ (£, 0) and stresses o, (£, 0) assume the form .

ipoyh(1— )

GO 8 0~ Dyid

{K(O £)— i [K @k, &)~ Kok, O} for £<0,
(4.2)

0y (5, 0)= —2—"/7 {Qo (O —ix, [Q (ch;‘, 8- Q@3 O} for £>0.

The values of o} and o are given by the Egs. (2 10). Integrations in the Egs..

(4.2) performed, we may find the displacements 1} (&,0) and stresses cry,, (£, 0) on
the surfaces of the crack and along its extension according to the original formulation
of the problem (Fig. la), -

{0(5,0) foré%O, 1

for £<0,
fOf ¢'>0 0.\’)’ (f) 0)

43)  w(E0)= ={Po+0yy (¢,00 for >0,
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Here _ )
o(&, 0)= wo{erfl/_é+ mll/A [ ]/:li erf ¥ —Z (A +iwb) +
| roks B
s Vi ——erf) —E(A+ fwg)]} .

gy (&, 0) = ]/A {E/ r e~ 4 —rzl/ZErfcl/:‘iE—l-imczx

x[]/Af—icE’{_’e_ ¥ erf V& (Ad—id)—V A—iwt e i erf]/é(A—zmz )]}

. 1
The graph of boundary values of the displacement »{&, 0) for various crack propag-

ation velocities and y=0.25 is shown in Fig. 4. The boundary values of stresses aw, (&, 0}
for cfe;=0.8 and v=0.25 is demonstrated in Fig. 5,

- - T
o ~05 -10 5

Xax/h

Fig. 4

5. DISPLACEMENT AND STRESS DISTRIBUTION INSIDE THE STRIP

Inserting the relations (2.18) into the Bq. (1.13), performing the inverse
F-transform (1.9),, we obtain the distribution of displacements and stresses at an
arbitrary point of the strip.

Analytical evaluation of the corresponding integrals in the case considered here
is not possible and hence the inverse F-transform is calculated numerically along
the real axis w=21 (Fig. 2). To this end we put #=y/h, @=21 and HF (1)=1, substitute
the relations (2.18) into the Eqgs. (1.13), and perform the inverse integral transform
prescribed; we obtain: , :

wen= = [ AT @eia,
G.1) 1 ‘Z'
WEN= [ B @ea,
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‘LL oD
ral& =g [ Zalh Ve,

(5.1 R ~ ) e
> ey | By e

in ~ .
&N [ 2oy v evsan,

with the following notations:
Z, (s my= —A{C{ (W sh AR n+ C3 (D) ch A, n+
+ B, [C3 W ch A8, 71+ Co (MshABa 1},
Z,(, my=A{; [C] (W) ch 4B n+ C3 () shAf, 71+
ACy Wshafyn+Cr(Dchifsn},
Zn (b )= =22 {(1+257 ﬁi) [C} (W) sh 4B -+ C5 (A ch A, ]+
+28, [C3 (Wych Ay 1+ CL (D shipynl},
Zy (A =22 {(1+ B [CT (D sh Ay 7+ C5 (W) ch A, 7]+
+28, [C.f (Dchapn+ CI (Aship, nl},
Zoy (O 1y == 22 {28, [CT (A ch By 1+ C3 () sh 4B, 7]+
+(1+ D IC; (W sh A8+ CL (W ch Ay 71}

the values of ¥~ (1) and C; (1) being determined by the respective formulae (2.17),
and (2.19).

Prior to the numerical evaluatlon of integrals in the Egs. (5.1) the integrands
should be decomposed into the real and imaginary parts. Let us observe that Z (4, )
arc real functions of A and #, and thus it suffices to decompose the function
V- () exp (—ii&), which may be written in the form:

G.2)

(5.3) V- (He =

hvy .
3/ P BID LX) =T (A,

with the notations
2 ]/A M~ (D)

L= T O
X(A)zh(ﬂ,)cosﬂé+g(ﬁ,)sml:f, Y(D)=h(A)sin A& —~g(Acos A,

h(y=— (A'f+,14) V43 =Vp=1 A)T(a)+u/p+z+1/"7)san,.

g)=—— Ve [V p AV p—D T W~V p+ A=V o= S,

VA
pUA+3Y
T(A)=7 (- 23 +2V 1+ 825771,

SW=2V2 (2~ 12 (/1+5-1),
p=VIH A2,
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1nserting the Eas. (5.3) into (5.1), making use of the properties of delta-functions
and of the fact that X (—A)=X (1), ¥ (—4)= —Y (1), and adding together the Eqgs.
(1.1) and (5.3), we determine the stresses and displacements at an arbitrary point
of the strip shown in Fig. la:

wEm=5r [ Zn YD,

3 k2 ~
oGn= o [r+0+ [z x@a,
[\
27y K

0

1 oo [ 27 (1—v)
(&, )= E‘C—% [

1—2y

+ [ Z, G x(yar,

1
ow(& 1=

mo G, m Y (D)
2nh0f sy 1l ’

the functions Z (A, 1), X (1) and ¥(1) being defined by the Egs. (5.2) and (5.4).
The improper integrals occurring in the Egs. (5.5) converge fairly well in the region

0<n<1. Certain difficulties may be encountered in calculating the values of ;xx
for #=0, convergence of the integral (5.5); being insufficiently rapid. In order to
avoid these difficultics let us observe that the function Z., (4, 0) appearing in the
integrand of (5.5); may be represented (according to the Eq. (5.2) in the form:

Zou (o O)= —Z,, (4, =22 (B3 — B C2 (1) .

By inserting this expression into the Eg. (5.5)s, we obtain:

1 ) T
0us (& 0)= — 0,0 (&, )+ 5

2n ~
— 2_ p W akd
: [1—2v 225 [ 2CIDXW dz],
L¢]
L

Here the analytically determined stress &,, (&, 0) is described by the Eq. (4.3),, and
the corresponding integral is suitable for numerical calculations.

The graphs of stresses (5.5) in various cross-sections of the strip at a constant
velocity of crack propagation (with v=0.25) are shown in Figs. 5,7, 9. The variation

“._ of stresses (5.5) in the case of a fixed cross-section and for various crack velocities

“(y=0.25) is demonstrated in Figs. 6, 8, 10.

\T‘Pe autors have to confess that, in the process of writing and preparing the

[16f°r print, they were not aware of existence of a paper by V. D. KULEW

stressing with a similar problem, though confined to the evaluation of the
“\;i\ty factor.
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STRESZCZENIE

DYNAMICZNY PROBLEM SZCZELINY W PASMIE SPREZYSTYM

W pracy eméwiono quasi-statyczne zagadmienie rozkiadu skdadowych stanu przemicszezenia:
i naprezenia w nieskoriczonym pasmie spregystym, ostabionym w jego érodkowej plaszezysnie:
poéinieskoficzona szezelina. Zatozono, Ze szczelina propaguje si¢ ze stalg predkoscia wzdluz prosted,.
lezacej w drodkowej plaszezyznie rozwazanego pasma, Stosujge catlcowa transformacje Fouriera,.
‘rozwigzanie tego zagadnienia sprowadzone zostalo do rozwiazania odpowiedniego rownania typu
Wienera-Hopfa. :

Znaleziono Scisty wartos¢ wspolezynnika intensywnosc paprezenia w koficu szezeliny. Wyko--
nujac numeryeznie odwrotng transformacie calkowa Fouriera znaleziono rozktad skladowych
stanu przemieszczenia i naprgzenia w dowelnym punkcie pasma. Otrzymane wyniki zilustrowano-
wykresami,

Pezwme

JAUHAMUIYECKAS 3ATAYA IEIM B VIIPYFOM TIOJIOCE

B paGote 06cyAziena KBa3MCTATHICCRAS opobieMa pacpeseIcHa COCTABILTIOLIER COCTOANE:
hepeMeliCHES H HaupsmxeHEST B GeckOHEYHON ympyroit nonoce, ocmabienHof B ee cpemEEHOMN
HHOCKOCTH RONyGeckoReuHOH IMebro. TIpeamonoxeno, ¥To meis PacOpoCTPaHAETCA ¢ WOCTOIHHON:

* CXOPOCTER) BAOJIE HPAMOH, HAXOMAWEHCA B CPOOWHHON TOCKOCTH PACCMATPHBACMOM HOITOCET,.
IIpumerss HETErpaNbHOEe ApeobpazoBame Dypse, Pemenne FT0H NPOOHEMEL CBEIEHO K PCImeHEID-
COOTBETCTBYIOILETO YPABHCHAA TAoa Buuepa-Xomda.

Haiizeno T04HOC SEAYERHE XOM)PHIMEHTA HRYSHCHRHOCTE BATIDSKCHES | KoHTe meny. TTpons~
BOLS WACTEHHO GOPATHOS HHTEIPATEHOE IpeoGpasonanme P$ypre HaliieHO pacHpeeneHEe COCTARIA-
FOIMX COCTOAHWR NCPCMEINCHHEA W HATPSUKEHWS B HPOH3BONGHON TOYKE TONOCEHL Iomydenticie:
Pe3YIETATH HIIFOCTPHPBOSHS! rpaduxamy, ’ i
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