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ON THE LATE STAGE OF THE POINT EXPLOSION
IN AN EXPONENTIAL MEDIUM AND SELF-SIMILAR RAIZER'S
AND HAYES'S SOLUTIONS

A A MARKOV (MOSCOW)

The influence of the effects of counter pressure, gravity force and initial conditions on the
asymptotic of the solution in upper region of the flow and under one is investigated.
It is shown that caleulation of gas-dynamics of the late stage of the explosion {stage of accelera-
“tion of upper part of a shock) require the estimation of the interaction of upper and lower regions
of the flow. The conjugation conditions of both regions are suggested and some examples of
" .caleulations for the plane shock are presented,

INTRODUCTION

We shall consider an adiabatic motion of an inviscid perfect gas caused by
a point explosion in an exponential medium.

For the early stage, when the heterogeneity of the atmosphere and counter-
pressure are unessential, the solution of the problem was obtained by L. L. SepDaov
(self-similar solution) [1], and computations were developed by G.I. TavyLor [2].

Original computations of the heterogeneity effects, based on the thin-layer
model have been carried out by E. 1. ANDRYANKIN, A, M. KOGAN, A. §. KOMPANEETS
and V. P. Kramov [5]. o _

Computations of the explosion in a non-uniform atmosphere assuming local-
radiality of the flow were performed by D. D. LAuMBACH and R. F. PROBSTEIN i6l.

Computations of the point explosion in exponential atmosphere with Sedov’s
solution as initial data have been performed by many authors. The influence of

the counter-pressure, gravity-force effects and non uniformity of medium is described
in monographs written by V. P. Koroprmigov, I 8. MELNIKOVA and E. V. RozaNov
[3] and H. 8. KestensoiM, G.S. Rostakov and L. A. Croopov [4].

The shock going upward accelerates after it has travelled Sufﬁcienﬂy far from
the center of the explosion, After a short period, the accelerating shock leaves the
atmosphere (the “break™ of the atmosphere takes place).

If the initial energy of the explosion is sufficiently large, the descending shock
temains strong for a period which is some scores of times longer than the ,,break”
time. _ _ ‘ 7

In the papers reffered to, the calculations were performed only up to the time
near the ,,break’ time, when the descending shock had traversed a distance equal to
approximately two. heterogeneity scales. .
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In connection with the problem of the accurate study of strong shocks during
a long petiod of time, including the stage of acceleration of an upper part of a shock,
the ,break” stage and the after-break stage, the limiting laws governing the propaga-
tion of strong shock waves in a medium with exponentially varying density and
pressure are of interest. Plane self-similar rising and descending shocks have been
studied by Rawzer [9, 10], curved self-similar shocks with exponentially varying
ray-tube area—by Hayes.

In the present paper, it is shown that the self-similar solutions reffered to above
are definite asymptotics of the exact solution of the problem in question. Self-similar
solutions 'are valid in certain tegions near the shock.

In the case of plane shocks, asymptotic expansions for gas dynamic functions
have been constructed, the first terms of which coincide with the self-similar Raizer
solutions. We have observed a non-uniform nature in the tendency of the solution
to self-similar limits, which is in agreement with the restlts of the numerical analysis
[7, 8]. It is shown that calculations of gas-dynamics.of the late stage of an explosion
requires estimation of the interaction between the upper and lower regions of the
flow. The motion of a gas in these regions follows different scales.

The conditions for conjugation of the two regions are suggested and some
examples of calculations presented.

1. LIMITING AND SELF-SIMILAR SOLUTIONS
\

1. First, let us consider a motion in an inviscid perfect gas caused by a plane
explosion with energy E, per square unit. We assume that the atmosphere density
and pressure depend on the space coordinate according to the exponential law:

— L -
po=poe™,  p=pye !,

where py, po — density and pressure at the point of blast, 4 — scale of heterogeneity.
Self.similar Raizer solutions [9, 10] describe the disturbed gas flow at late stages,
when the shocks x=gp* (z) (rising shock) and x=¢~ () {descending shock) have
propagated sufficiently far, and the initial energy E, has dropped out of the
characteristic parameters of the problem.
A priori, the velocity of the shock is assumed to follow the law

do™ (O)di=a* Ajt,

where oF are the similarity parameters determined by the regularity conditions
for the solution at the singular (saddle) peint of the differential equation for the
£as pressure, :

1t appears that the self-similar Raizer solutions [9, 10] are certain limits of the
present solution satisfying the initial conditions.

Let us consider, for instance, a region near the rising shock x=g¢*. In the gas
dynamic equations we shall proceed from the dimensionless variables (w, p, p, m, 1)
[7, 13] to the new variables ¥ (g%, t%), R(y*, %), P(y*,7*), n*, 7" and assame
the numerical solution [7] for a sufficiently late stage as the initial condition -of the
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problem (in detail see [13]). The initial condition is so taken, that Vthe shock is initially
of a self-propagaq'ng type; see also [il],
The formmlae of transformation are as follows;

(L) u=¢*F*, p=e=®'R*, p=e~"($*)2P*, gt=me®’, 7' =In(p+)

The variable #* changes in the interval 1<»* <e®*~*", where n* =1 is the, coordinate
of a shock x=¢p7,

Auxiliary time t* changes in. the interval t,<t* <oo. In this case, we have
7¥—>0co while ¢*—co (acceleration of the shock). _

The equations of motion in terms of variables (1.1) are presented as Follows.
findex (+) is omitted in the intcrests of simplicity]:

oz VAN 7A) a8
2&)(1:)“*4—71"-—-!—*——(-2 0, 2(9(1')?—1-1;3”—4“5‘(2@—[-})—'1):0,
(1.2)
2 + o _or +oV+4,
co(r) PR én oy oVt+dge

P=Z""S, Z=R"', wo=g[¢p*.

‘Here 4, is a numerical parameter, indicating the influence of the gravity force.
In the system (1.2) a new unknow function of the variable = has appeared — namely
o (7). This function determines the law of the shock propagation and will be found
in accordance with the initial conditions and boundary conditions for the shock
wave ¢t 31multaneously with the functions Z (y, 7), ¥ (y, 7), S (4, 7). Note that for
the variables (n, r) the wave ¢* has been stopped (7+=1) and the function w (7) is
determined by the characteristic condition along the characteristic of the second
family (dy*/dct=5* —]/a+, a*t=yP*[Z*), which reaches the shock wave #+=1.

A self-similar solution [10] appears to be the following limit of the solution in
question: * is fixed, 7+ — 4+ o0

Vs VD (ﬂ)) P_)PO (") E R_)RO (77) 3 W= t (”:7?+) )

where constant value « is a similarity parameter.

By an analogous procedure, the self-similar solution [9] (for descending shock ey
may be found., For this purpose, it is sufficient to introduce the new  variables
V.R,P,n~, 7" replacing the index (+) by index (—) in the formulae (1.1). Variable #~
changes in the interval e=*"+¢~ <y~ <1, where y~ =1 is a coordinate of the shock.
wave ¢, If 4,=4,~0 (here 4, — the numerical parameter showing the influence
of the counter-pressure effect, see [7]), then the auxiliary time 7~ =In (¢~)? changes.
in the interval —oco <77 <75 . The self-similar solution [9] appears to be the following,
limit: -~ is fixed, 77> —o00, d,=A,=0, V=V; (), P>P; (47), R—Ry (7).

Note, that w (z™)—a~ 1, where & is the similarity parameter of solution [9].

2. Now let us consider the axi-symmetrical adiabatic flow of an inviscid gas,.
. caused by the point explosion with initial energy E,, and take as an initial condition
the numerical solution of this problem [4] for the late stage, when the acceleration:
of the upper part of a shock has taken place.
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Let us consider an area near the upper. part of a shock and introduce the new
variables V, U, R, P, £, r, 7 in a manner similar to that mentioned above. We have
{1.3) sze__"’(” D y=UN,, o9=VN,, p=N*e"?P,{=x—p,t=In N2,

where N — the velocity of a shock, N,, N, are the vertical and radial components
of vector-velocity N, x=g (r, t) — the boundary of the upper part of the shock.

The equations of motion in vatiables (1.3) are presented as follows:

R d(W-1R
(7) v(r, ) - Jrl UR-—-R=0,
o dg F
au oP @Uu Rt aP V'
20 (7)) (W 1) 5 +R~ E%v{]g— P b U=,
us v v ap eV | o
| 2a0(r, 1)~ - T(W— - *‘LR* Q“FVU?"F—:' V4+4,e" =0,
P o W P v (V)
Zm*—i-(W D— 5 1U~—a—+yﬁ ﬁf-i-(Zco I)P =(.

Here W=(V+¢? U)/(1+¢2); the paramctric functions « (r, ), v (r, 7), &’ (r, T),
V' (r, 7), @ (r, 7) determine the law of the motion for the part of the shock in guestion.
The following relations hold:

a=(1+¢) L, v=—ag,, o= el tvolp, V=ov—a oo, o'=Vg-to,

where ¢, =0@/dt, p,.=06> @/dr dt ete.
Let us consider the limit: r, & are fixed, t—o0, v/r—k(r),

(1'5) W0y (f’); v'-—)V’; ('") » (Rs U: V’s P)—)(ROs U07 VOa PD) '

This limit contains as a speciﬁc‘ case the self-similar Hayes solution [11] for
curved shocks with exponentially varying ray-tube area according to the law:
A=Ay e > Namely, the solution {11} is found from (1.5) if in addition we assume
that @o=const, k=k,—const, Rg, Us, Vo, Po are the functions of the only one
variable, and further — Uy (&)=V, (£).

For ky,=0, Raizer’s solution [9] is obtained.

2. THE STUDY OF THE DISTURBANCES IN THE VICINITY OF SOME SELP-SIMILAR
SOLUTIONS OF THE SECOND KIND

The results obtained in this and the following paragraphs are concerned with
the plane shock problem (see [2]).

1. Now we shall consider a small perturbation near the self-similar solution {10]
{rising shock) and linearize these equations with respect to steady (z* — - 00) limit.

At the same time, we shall linearize the equations near the self-similar solution
[9] (descending shock). We shall complement the linear equations by 1n1t1a1 COndlthI’lS
and boundary conditmns at the line #*
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Each of the linear problems (for rising shock and descending one) has been
strictly studied and theorems of unique solvability has been proved (in detail see
[12 - 14]). Note that the parametric function w, (t), which determines the disturbance
of the function w () near the constant Hmit w, is determined in a unique way by
the characteristic relation along the second family (d?]/d?:zq-—]/a; a=yPy/7.)
according to the initial conditions at the interval of 1<y* <y for the rising shock
and at the interval of 5, <n~ <1 for descending shock. Here #* represent the

rotationt points of gs—characterisﬁcs, o' are the roots of the equation 7 — ¥/ g* =0,

2. To evaluate more precisely the disturbances when |7t|—oco, we shall employ
in the case of linear problems the Laplace transform for the variables t* and we
shall obtain a system of ordinary differential equations with the spectral parameter A,
Apart from the required functions Z* (g%, 1), P* &% Pt of the variables 7 A,
the spectral problems contain the unknown parametric functions Q* (4) which are
the Laplace images of the functions wf (vt) (note: the index (-+} stands for
a rising and index (—) stands for a descending shock).

The system of differential equations for Z, ¥, §, P is reduced to one equation
of the second order for Z. The coefficient before the second derivative 2 Zidy*
vanishes at the point 7=#,. The parametric function Q (7) is determined in a unique
manner by the regularity conditions of the solution Z (n, 1) at the singular point #,.
Here we bave the analogy with self-similar solutions of the second kind.

The solution of spectral problems is an analytic function of 1 in the half-plane
Re Azo* for the rising shock and Re Ao~ for the descending shock. These
solutions admit of analytical continuation over the boundaries Re =g (in detail
see [12, 13]) but they have known poles, which are the roots of some spectral
equation 4* (A)=0. The estimation of these poles ascertained enabled us to construct
the asymptotics for the time-dependent solution when |r%|—0.

3. THE ASYMPTOTICS OF ACCELERATING AND DECELERATING PLANE SHOCK IN AN
EXPONENTIAL MEDIUM

Using the inversion for the Laplace transform of the selution in the spectral
problem for descending shock, we arrive at the asymptotic law for ¢~ (£):

BDo=9", pl¢>=m0+w_1 ™2+, ($* () ¢2O))" +, (P*O 72O+ ...

Here, wo=a"1, « — a similarity parameter of the solution [9], so that the first term
at the right side of (3.1} corresponds to the self-similar law of the shock propagation;
¢ (0) is the shock velocity at the initial stage with evident inequality ¢ () 2 (0)<1;
A1y A, ... are the roots of the spectral equation A- ()=0, which depends on the
parameter y (y=c,/c,); for y=2 we found 1, =0.375, A3=0.5; A3=0.71; .... The
term @..4 ¢~ 2 (¢} shows the influence of the counter-pressure and the gravity force.

The value @ _; may be written in the form w_;=k, Ayt+k, A, with constant
-coefficients &y, k . (For the case y=2, the coefficients k,, k, were found in an exphicit
form). In the ca se of 4,=4,=0, the formula (3.1) shows the rate of the tendency of

Rozprawy InZynierslie — 10
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. “ftie’ descending shock to the self-similar limit. The ferms in (3.1) with coefficients
RN T S show the influence of the initial conditions. = : :
It A§+A;>O, then the formula (3.1) is valid only while the descending shock is
strong —ie., 4, 972 (1)<, 4, ¢ ()<L :
: Analogous formulae for the velocity, density and pressure of a gas were found.
The expansions have the same terms (§° () ¢~2 ()™, i=1,2,.. [see (3.1}], but
the coefficients are functions of the variable . These functions show the non-
uniformity in the tendency of the solution to the self-similar Hmit.

The analogous formulae were found for the rising shock. We obtain the power
rate of increase of the disturbances in the vicinity of the self-similar solution {19}
in terms of #*, while the velocity of tending to self-similar limit with fixed #* is
determined by the value (¢ (1) P2 (0))"'*, p=gpt; A*>0; A* being the root of the
spectral equation A% (H)=0.

4. APPLICATION TO NUMERICAL CALCULATIONS

Following W. D. Haves, we shall distinguish two problems.

1. A sufficiently weak explosion at a sufficiently low altitude.

2. A sufficiently strong explosion at a sufficiently high altitode.

Let us consider the second problem. The counter-pressure effects can be
disregarded for a sufficiently long period, but the heterogeneity of the medium is
essential. ‘

~ The numerical computations of the problem, using the finite-difference method
- and comparative analysis of the other approximate methods, have been developed
by KestEnBoM, ROSLAKOV and CHOODOV [4]. The calculations were carried out up
to the moment when the descending part of the shock traversed the distance of
about 24 (4 is a heterogeneity scale); the rising part of the shock started to accelerate
because of the decreasing of the upward density. The acceleration of the shock and
the subsequent “break” of atmosphere constitute essential difficulties for numerical
studies of the explosion. The results were obtained only till the moment preceding
the “break” time, but the descending shock remains strong for a period which is
some scores of times greater than the “break’™ time.

To perform the calculations after the “break”, it is necessary to bound the domain
of gas flow by the auxiliary boundary and to use certain boundary conditions.

The results for a plane explosion obtained above show that the disturbances
which have appeared in the area O<n~ < cannot reach the shock ¢~, and the
disturbances from the region 3 <#* cannot overtake the shock ¢*. For this reason,
we can divide the flow into two zones such that the disturbances from the higher
zone cannot reach the lower one. The boundary will be the limiting characteristics
#~=#55. We can also separate the rising self-propagating shock by means of the
boundary 5+ =n} which is also a limiting characteristic.

Some computations at the late stage of the plane explosion (the stages preceding
and following the “break”) were performed. The shocks ¥, p~ were supposed
to be strong (4,=0). '
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The numerical calculations were performed by the finite-difference method [4]
and use was made of the resuits refered to above concerning asymptotics (see
also [13, 14]). We placed the auxiliary boundary x=g¢* (f) above the limiting
characteristics 77~ =#5. The evolution of the shocks @*, p~ and boundary ¢*
before the “break” time T for y=2 and after the “break” time is shown in Fig. 1.

_ T , I
u | (\0//// ¥=12
O Vox T=897
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v
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i |
a o0 <1 &0 x/A

The law of motion of the boundary was computed during the calculations. At the
auxiliary boundary, use was made of the asymptotic conditions, using the similarity
of the flow in the higher zone — that is, the partial derivatives of the functions Z*
and P* [see (1.1), (1.2)] with respect to = were taken as zeros. In terms of Bulerian
variables, these conditions can be written as follows:

= p* (1)

(W 1)+3" 0
P\ox ax D=0,

4.1)
av dap
r [(260—1)4—?3]-!--5;0/—1):0.
Here,
4.2) Vx, )=ulx, ){¢p* (1), w=p*/(*).

The velocity of gas u (x, ¢) was calculated by the finite-difference approximation
of the equation of gas motion. The function ¥ (x, t) [sec (4.1), (4.2)] was determmed
according to (4.2) with the se1f~31m1lar law for ¢* (¢) {10] — namely:

ot = { (T—Dja, it 1<T,

“43) 0 if =T,

where 7'is the ,,break” time, T=7+ o/ " (¢,), 1, is the initial stage, for which the
rising shock had to traverse a distance of about ten heterogeneity scales. The value
o [see (4.2)] was assumed to be constant (w=1/x, « — similarity parameter of the
solution [10]). The values of « for various y were found by Haves [11].
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Let us consider some results of calculations of the plane expiosion model,
Numerical results are shown for a period of time which is about four times that of
the “break” time, '

The velocity profiles of gas at various moments of time are shown in Fig, 2.
The distributions of the velocity, density and pressure at the stage r~6.1, for which
the upper part of a shock had started to dccelerate, were taken as initial data, and

" we started to employ auxiliary boundary conditions 4.1 - 4.3

At a later stage (=6.95), the calculated velocity (line) was compared with the
numerical solution [7]. Good agreement is seen in the whole area, p~<x< PF,
for which the computations were made. The curves for t="1.78 almost correspond
to the “break” time (7=7.77). The distributions of density (Fig. 3) and pressure
(Fig. 4) are shown for the initial stage and for the after ,,break” stage. Tt is possible
to observe the evolution of the rarefaction wave and decrease of the pressure. The
distributions of gas-dynamic functions in the lower zone to the self-similar solution
[9] with increasing accuracy.
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STRESZCZENIE

O POYNYM STADIUM EKSPLOZN PUNKTOWEI W OSROPKU WYKEADNICZYM
1 O SAMOPODOBNYCH ROZWIAZANIACH RAIZERA T HAYESA

Rozwazono problem gazodynamiki poéZnego stadium eksplozji punktowej w ofrodku wyklad-
niczym. Oméwione przeplywy dotycza plaskiego i osiowo-symetrycznego uderzenia ¢ pionowej
osi symeirii, Wspommiane wyze] Tozwigzania samopodobne Raizera i Hayesa opisuja przeplyw
w poblizu osi symetril w pewnym obszarze blisko uderzenia, Mozna te rozwigzania otrzymaé jako
pewien szezegdlny przypadek graniczny rozwiazatia omawianego w niniejszej pracy, gdy pomaocni-
cza zrmienna czasowa v (1=In N2, N — predkos¢ propagacii uderzenia) zmierza do nieskoriczonosci.

Sformulowano problem statecznosci rozwigzafi samopodobnych. Przedstawiono liniowe
przyblizenie analfizy fej statecznosci postugujac sie metoda, transformacji Laplace’a. Dokonano
oceny widma w problemch ustalonych (7= oo},

Rozpatrzono wphyw przeciwciénienia, sit ciezkosci 1 warunkow poczatkowych na asymptoty-
cznoéé rozwiazania w obszarze przeplywu. Pokazano, 3¢ analiza gazodynamiczna w poznej fazie
eksplozji (stadium przy$pieszenia gornej czesei uderzenia) wymaga oceny wzajemnego oddziatywania
gormego 1 dolnego obszaru przeplywu. Zaproponowano warunki sprzezenia obu obszardw
i preedstawiono kilka przyldadow obliczeil dia uderzenia plaskiego.

PesoMe

O TIO3MHOM CTAJ{M TOYEYHOTO B3PHIBA B OKCIOHEHIUAJNLHOW CPE/R
11 Ob ABTOMOIEJIGHRIX PEIEHHUSAX [O. I1. PAVI3EPA U V. J{, XEM3A

PaccMmoTpena npobieMa ra3oiuHaMuKd TO3THONH CTafu TOYCYHOFO B3PEIBA B SKCIOHCHIAA D=
noli cpene. OOCYMUIEHEBIC TEYCHE KACAIOTCA INIOCKOrO H OCCCHMMETDIMIOTD yrapa ¢ BepTH-
KATLHOH OCbIO CHMMETDHH, YIROMSAHYTBEIC BBIDIE ABTOMOIENBHEIE penieEmAa Palizepa B Xeisa
OTHCEBAIOT TEICHUS BOMMSH OCH CHMMETDHE, B Hexoropol obiacti HIH3KO yraapd. JTH DeICHAR
MOKHO HOEYIHTh XaK HEKOTOPHH 9acTHE npeaenbHEI cy9ail permens obcyEaAeMOT0 B HACTO-
simedi paboTe, KOTAA BCIOMATATENHLHAA BPeMENHAL HEPEMEHHAT T (t=In N?*, N — cxopocrs pac-
HPOCIPAHCHAS YAAPa) CTPOMHTCH X OeCKOHEYHOCTH.

;C(bopmymaponana npobrema YCTOHYMBOCTE ABTOMOJEIBHBIX pemenui, TIpencrapneso md-
meipoe DpROTIKCHWE aHAIHIA STOH  YCTOHYHBOCTH, HONERYACH TexEHEKOl npeoGpasopanAit
Jlammaca. I1pom3pesieHa ODEHKA CHOCKTDA YCTAHOBHBIEBIXCSH npobnem (v=o0c),

PaccMOTpeHO BNWAHEE TPOTHBOLABICHHA, CHIL THXCCTH W HAYATIEHBEX YCIOBAR Ha ACEMUITO-
THKY pemmerus B o6GnacTy TedeHms. IToxazaHo, %TO TR3ONAHAMIYECKHA AHANAS B TO3HHON dasze
B3pHBa (CTAINA YCKODEHHA BEpXHEH YacTH yaapa) TpeOyeT OLCHKH B3aWMOMNCHCTBES BEPXHETO
¥ HEKASro O6Macreil Teuenug.

TIpEAIOMENH] YOIORRS CONpsKeHns 000MX obiacTell W mpeACTaBieHe HECKOJBKO TPAMETOR
PacHeTOR XMA IUIOCKOXO YAapa.
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