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ON THE EXACT ANALYSIS OF THE STEADY CREEP OF A THIN TUBE
' - ' "UNDER COMBINED LOADING ' :

JBOYLE and J. SPENCE (GLASGOW)

An exact analysis is presented for the creep deformation of a long, thin, constant thickness
circular cross-section cylindrical shell under various loadings. Results are presented in the form
of a design chart which can be used for several load combinations, and as flexibility factors.
Previous approximate analyses are discussed.

NoTATION

M applied bending moment loading,

£ applied internal pressure loading,

S =(Pri2h) (€o]o0)

& =Pr3fM,

T applied torsion loading,

W =TiaM,
Wi =(Tj4hzr®) (;30/0'0),

B =(c52+ W2)1/2’

$ end rotation rate of tube under combined loading,
¥o end rotation rate of tnbe under bending alone;
suffices

& circumferential direction,
! longitudinal direction,
%, shear direction,

All other relevant symbols are either defined in the text and fig, 1 or in reference [2].

1. INTRODUCTION

The exact analysis of the steady creep behaviour of a thin walled tube was
considered by EDSTAM and Huwt [1] using an isothermal steady creep law of the form

w e

&p Ty

The object of their work was to obtain equivalent stress levels under combined
pressure and bending loading for comparison with the linear elastic case, the results
being presented as a useful design chart. However, their solution was restricted to
the case n=2. It is the purpose of this investigation to derive a corrected design chart
based on a more -general analysis. Further it is shown how various loadings, with
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bending taken as the primary loading, can be incorporated into the same chart.
Finally, results are presented in terms of flexibility factors with reference to the case
of bending alone.

2. STRESS RATIO ANALYSIS

Clonsider a thin tube of circular crbss—s_ection under internal 'pressure P and
subjected to a bending moment M and a torque T, as defined in Fig. 1. The radial
stress component is negligibly small if 2hfr<1. The circumferential stress o, and
the shear stress gy, are isostatic and may be determined directly from equilibrium
alone ‘

. Pr
(21) T~ EIK »
(2.2) G = Ti(drhr?),

both stresses being iaken as constant through the thickness.
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Fig. 1

1t is found convenient to write the longitudinal stress

Pr
(2.3) 0“1=ZI;+P(@),

in a manner similar to [1]
This stress ficld must satisfy equilibrium with the appliecd moment

27

M=2hi? f 0,50 P dP,
Q

which yields

2%
24 f R(®)sin®dd=1,

0

on substitution of ¢, from (2.3), where R (®)=B; p (P) and B, =2hr*/M.
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If a pure bending moments alone were acting, the longitudinal strain rate would be
(2.5) &=rysin (P)/L,

where § is the end rotation rate, related to the curvature rate #
(2.6) R=

If on the other hand, if pressure and torque alone were acting, the longitudinal
strain rate would be zero everywhere. Thus, under combined loadmg, the longitadinal
strain rate would be as given by (2.5).

Further, the constitutive relation (1.1) yields an expression for ¢ in terms of the

stresses (2.1), (2.2) and (2.3) [see Appendix I, Eq. (b)], and comparison with 2.5
produces the equation '

3 n-t 11t (00 By )"
2.7 — R R =l |sin? @,
4 £y
where f=(3*+ W2)1/2,
Epstam and HuLt [1] have proposed the use of the non-dimensional design
parameter
5(")

6=.§5-,

known as the “stress ratio”, where ™ is the maximum effective siress occurring
in the tube, creeping according to the constitutive relation (1.1). Assuming that this
occurs when @=gx/2 it follows that

_ AR (r[2)[B*

@8 3j44-1)(np)y> °

and hence that @ depends on f and » alone.

The suggested design chart plots lines of constant @ on a diagram with 1/n along
a horizontal axis, and the quantities f, 1/ along a vertical axis. Consideration of
the moment equilibrium equation (2.4) with the equation (2.7) for R (®) and the
relation (2.8) reduces the construction of the chart to the following problem:

Let © be given, then for each n solve the algebraic equation
2r
FB)= [ R(®)sin@dd—F=0,
0
for B=1/p, where R (®) satisﬁes:

n-1

n—-1
(%H‘ez (qs)) R2 ()= (%']‘RZ (ﬂ/z)) R?(n/2)sin® &,
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R (=f2)=0* (3/4+ B*[n*) - 3[4,

‘and R(di) ,BR(@)
The solution of this problem is outlmed n Appeudlx 1. The results of such a cal-

"Cﬁiétxon are given as a design chart in Fig. 2.

3. COMPARISON WITH A PREVIOUS RESULT

‘For the case of combined pressure and bending, with no applied torque, W=0
and f=d. The design chart (Fig. 2) differs significantly from that given in [1] for
the same problem. This difference is due to two factors: firstly, the previous analysis
[1] was only legitimate for the special case n=2, secondly, the authors confined their
attention to the calculation of values of @ for given < and n (instead of < being
found for given @ and ») and hence their design chart involved considerable inter-
polation.

4, USE OF THE DESIGN CHART FOR VARIGUS LOADINGS

It is important to note that the same design chart can be used for the three loading
cases _

{a)} combined pressure and bending,

(b) combined torsion and bending,

{¢) combined pressure, torsion and bending, :
if B is simply replaced by S=Pr*/M, or W=T/aM or (S* + W*)'2, respectively.

5. FLEXIBILITY FACTOR ANALYSIS

A further usefnl design parameter, vsed extensively in [2 and 3], is the “fexibility
factor”

end rotation rate of pipe in combined loading ¥

end rotation rafe of pipe in bending slone 1'1.;,'
it is easily shown that, with reference to (2.6) and (2.7),
K=Dj-re(aoB,)'féo, N

=2
where Do=4 | (sin@)d+1m dep
0

1t is of interest to determine the value of K for a given f and »; since the moment
equilibrium equation (2.4) has to be satisfied the problem reduces to the followmg
Given f§ and n, find K such that the algebraic equation
N 2z
G(K)= [ R(@)sin®dd—1=0,

0
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is satisfied, with R (@) the solution of the equation

3 Sy Ksind\?
(- ﬂ2+R2(§25)) R* (45).=( )

o

The method of solutlon of this problem is similar to that of the previous stress.
ratio problem. Flexibility factor results are presented in Fig. 3.
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6. COMPARISON WITH PREVIOUS RESULTS

- For the case of combined pressure and bending a comparison can be made
with the results of [2]. At high < values the threc analyses - “type 17, “type 2"
and “exact” — tend to become the same. The assumiptions of a “type 27 analysis
‘are not unlike those of the “exact” analysis and consequently the ‘results are fairly
close for all ¢ values. The “type 17 analysis shows a marked disagreement with the

“exact” analysis; this shall be discussed further in the next section. For the case of
combined loadings a comparison with the results of [3] is possible. The “exact”
analysis confirms the simple § replacement scheme outlined in 3] for a “type 2"
analysis such that the flexibility graphs can be used for varicus loadings.
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7. DEFORMATION RESULTS

Ttis '_Wor'tﬁ:"éoﬁ.menting further here on the results of a “type 1" energy analysis
in'[2'and 3]. When the stress field is ‘of the form (2:1), (2.2) and (2.3), the
't_ra;ﬁ_.:’s@tté"sé_'rélations [Appengﬁx I, Egs. (2) and (c)] can be written as

) . 3 2. . ééfﬂ 2 n— 142 3 él .
| s S @) | s

gD

3 : -(1),’»'1 2|m—1)2 3
ém:[z—{S2+4Wf)+( o p((l)))} S W
where ‘
Pr gy T g

s

T oo W1=4hm~2 o

However, the assumed strain rate field of a “type 17 energy analysis [3] is

3 =023 4 3
(1.2) b= [T Sz] 4 S_j s Eu=[3 Wf]("_l)',z? Wiy,
which clearly neglects the effect of the torque T and p (&) on the circumferential
strainrate, and the effect of the pressure P and p(P) on the shear strain rate. This
would account for the discrepancies at low values of f§ between a “type 1” analysis
and the “‘exact” analysis. Nevertheless, for large § values it would seem that
assumptions (7.2) as opposed to (7.1) are reasonable approximations.

8. AN ALTERNATIVE APPROACH

The deformation results would suggest the following alternative approach to
the problem based on assumed strain rates. Suppose that the strain rate field is of
the form '

L .' I
8.1) G=(rpsin @)L, &=y (P)—7, e =12 (D),

where g, is clearly “exact” and w, (®), w, (P) are functions which depend on the
loading parameters.

The applied pressuré and torque loadings are known to be isostatic and can be
obtained directly from equilibriuvm as before

Pr T
T2n T ke
However, it is possible to express the stresses in terms of the assumed strain

rate field (8.1) (Appendix II egs (d), (f)); if a comparison is made with (8.2) there
results

|(82) Ty

3 (},.)= 3 (W} )=w(¢),

Arhr?
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say, and - -
83 T yfz( 3 Wz -2 ( KBin@ )2.)1,"11.—1
; : : — — D=1
(8.3) i ,
where

. (Byog)
B, W(D)=——"—w(P).
&p
‘Similarly the momert equilibrium equation can be written as

2n

. 3 1/2
84) _ f (?’“2("‘1)'—~4—ﬁz) sinddd=1,
0

In view of Eqgs. (8.3} and (8.4) the problem of determining K for a given § and n
can thus be written:
Given f§ and n, find K such that the equation

Zn
' 3
H(K)=f (!{H("-U—T }5‘2) sin @ dd —1=0,
0

is satisfied, with ¥ (@) the solution of the equation

W2(3 o 2+(Ksi11@)2)“"‘1 1
g ¥°F Dy T

In fact this problem has exactly the same solution as the previous one for the
evaluation of K. This is easily seen if a function ¥ (&) is defined such that

3 n—1
v @)= {2 prave (@)) ,

in which case V(®)=R (P) and H(K)=G (K).

Obviously a “type 17 energy analysis could be performed based on assumptions
(8.1) and would constitute a better approximation than previously to the above
“exact” analysis. Finally it should be noted that the use of the strain rate field (8.1)
instead of (7.2) would remove the inconsistencies mentioned in ]3] between an «
substitution and a f substitution for combined loading cases: that is, the parameter
o= (I W2)H2n arises out of a “type 1” analysis for the strain rate field (7.2),
yet the B substitution given above comes naturally from (8.1) giving agreement for
all analyses.

9, CONCLUSIONS

An exact analysis has been presented for a thin cylindrical shell in stationary
creep under combined loading in terms of two useful design parameters. Results
are expected to be more reliable than previously published analyses (i.e., [1 and 2]).
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: It"i's's.h:own that the same charts can be used for alternate parameters J=Pr3/M,
L We=TiaM or (S2+ W22, independently of the method of analysis, which in
* itself represents a considerable simplification for design purposes as recommended
in [3]

ArpEnDIX 1

It is found necessary to solve an algebraic equation of the form .
b
() F)= [ fi(x, 0dt+/,()=0,

such that the integrand satisfies the algebraic equation

®) ¢ (/i (5 1) =0.

It is possible in some cases to solve (b) analytically. However, in general, this
does not seem possible and hence a numerical technique is employed. With an initiak
approximation x=x, a first approximation x=x; is formed

F(xo)
F'(xo)’

X1 =Xg—

following a Newton/Raphson procedure. -
b
Now F (xo) requires the evaluation of the integral [ f) (x,, f)df; any numerical

a
integration technique (in this case Simpson was used) uses values of the integrand
at a number of intermediate points #; in the closed interval [a, b]; such values can
be achieved by sclving the algebraic equation

i\

g(f1 (%o, fj))=0 -
for fi (x, t;) (using, say, a Newton/Raphson téchnique). Similarly from (a), F' (xo¥
b
requires the evaluation of the integral f ™ fi(x, 1)l dt, where for intermediate

points #; in [a, ]

dg
Sx fl(x fj)irn Ix g(f].(x t.i'))i.xu‘ df

*a, tj

In the same manner a second approximation x=yx; can be found The p10c¢ss
continues until' it has sufficiently converged.
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ArpeNpix 11

The material obeys a Norton type isothermal power law given by (1.1), where
. o .

*=0}—0,0,+05t30%,.
If it is assumied that it is also incompressible then the effective strain rate is given by
V 4 2 5 2 12 ) =2
=5 (€] +& 8, H85+65,).
Then for 2 von Mises flow rule the strain-stress relations are

0
o )

éd’l 3 ( 6 )H_I U(bl

© 2

and the stress-strain relations are

i \1/m—1
® i) 3,

sl )
«© w3 \4
) Cor =i(—'§¥)1/” " B
. g 3 \4 2
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STRESZCZENIE

O SCISLEY ANALIZIE PROBLEMTJ USTALONEGO PELZANIA RURY C}ENKOECIENNEJ
W ZEOZONYM STANIE OBCIAZENIA

Przeprowadzono &cisly analize procesu pelzania dlugiej, cienkosciennej rury w ksztalcle walca
kolowego poddanej roznym obcigzeniom. Wyniki przedstawiono w postaci specjalnego wykresu,
Z ktorego mozna Korzystaé przy réinych kombinacjach obcigzen, jak rowniez w postaci tabeli
wspdlczynnikow podatnosci. Przedyskutowano poprzediie rozwigzania przyblizone tego samego
problemu,
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PeszmomMe

O TOYHOM AHAIM3E ITPOBJIEMBI YCTAHOBHMBIIEHMCA TIOJ3YYECTH
TOHKOCTEHHOI TPYERI B CIOXKHOM HATPYXKEHHOM COCTOSHWWA

TIpoBeyicH TOYHEI AHANA3 IPOLGECCA NONBYYECTH MUMHEOH, TOHROCTeHHOHE TPYGHL, B thopume
KPYTOBOTO WTHAN/PA, TOUBEPrHYTON PA3HEM Harpyaxam. PesyIsTaTsr DPCCTARICAE! TAK B BUTE
CHCIAANERON MEArPAMMET, KOTOPOil MOXKHO HOME30BATECH IPH PAsHETX KOMOWHAIHAX HATPY3OK,
xak ¥ B Buae TabGimmmi xostdunmerTor nomatmmBocTH. OOCYKIEHB IpenymEe OpoOIKerHEe
pelHeHns 3ToM We camMol npobemML.
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