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THE PRINCIPLE OF VIRTUAL WORK AND THE CONSTITUTIVE
EQUATIONS IN GENERALIZED THEORIES OF ELASTICITY

M.PLAVEIC and ). JARIC (BELGRADE)

1. INTRODUCTION

A. C. ERINGEN and E. S. Sunusi [1] have introduced the model of a continuum
with microstructure, giving its physical meaning and its mathematical formulation.
In order to include the microstructure in the deformation, they considered the
deformation of a macro-element of a body (as a limit volume element in which,
from the viewpoint of molecular theory, it is not possible to consider mass as
continuous) independent of the motion of its center of gravity. From the viewpoint
of continpum theory, when the macro-element is identified with a material point,
the deformation is determined not only by the field of dlsplacements of material
points but also by the ﬁeld of mlcro-dlsplacements i.e. by deformatlon ~gradients
and micro-deformation gradients

Postulating balance equations in the classical form (with a symmetric stress
tensor) for points of the macro-clement, FRINGEN and Sunusi have derived the
corresponding equations for the model considered. Finally, they obtained non-linear
constitutive equations for elastic materials. Constitutive equations were also
considered in the second part of their work [2]. In addition, they have shown in
the same paper that, remaining in the limits of the linear theory, one could obtain
a theory of couple-stresses as a special case, in which, differing from the so-called
polar theory considered by R. Tourw [3] and R. D. MinpLIN and H.'F. TIERSTEN
[4), the siress tensor and couple-stress tensor were completely determined. ERINGEN
has also considered this theory in particular papers (e.g. [5, 6, 7]), remaining in the
domain of linearity, and has given it the name of micropolar theary A similar
Iheory, based on mdependent rotations of material points, was given by E. L. AEro
and E V. Kuvsainski [8, 9]. In alt these works, complete determmatlon of the
stress tensor and couple-stress tensor is the consequence of the emstence of indepen-
dent rotations of material points in the continuum. Later, C.'B. KARADAR and A, C
ErinGeEN [10] gave the non-linear theory of mlcropolar elastic materials.

In the continuum theory of materials with microstructure, or . micromorphic
materials, every material point is phenomeiiologically: equivalent to a deformable
beody. In the continyum theory of micropolar materials, however, every material
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point is phenomenologically equivalent to a rigid body. In both cases there exists
an influence of microstructure on deformation. In the theory of multipolar materials,
given by A. E. GREEN and R. . Ryvrn [11], as in its special case —- dipolar theory,
this is not the case. In this theory, the deformation is completely determined by the
field of displacements of material points, i.e. by first and higher-order deformation
"~ gradients. The same holds in polar theory. For this reason, it seems that for dipolar
and.-poiari- materials the term ““special case of simple materials with microstructure”
is not fully correct. ' . '

In this paper, we shall consider micro-elastic materials as a generalized elastic
Cosserat continaum, without taking into account non-mechanical effects (thermal
effects etc.). Special ‘cases: micropolar, dipolar and ‘polar elastic materials will be
considered as special cases of generalized elastic Cosserat continua. We shall make
use of the terminology introduced by ERINGEN and Sunuss, and the usual expressions
from the theory of Cosserat continuum (see; for example, [12]). We shall also make
use of the usual notations from the theory of two-point tensor fields.

2. THE MODEL

Let body 93 of volume V, with a boundary given by the closed surface S, be at £,
in its initial (undeformed) configuration K,. In the deformed configuration K,
‘which corresponds to t>1f,, the body will have volume » enclosed by surface s.
"A macro-clement dV of body 08 in the undeformed configuration will become dv
after deformation. We suppose that sources of matter do not exist in the body,
so that the mass of the macro-clement considered in the body remains unchanged
during deformation, i.e. S '

,(2'.1) , : podV= pd%: dm=const,

‘where p, and p are average densities of macro-elements dV" and dv, reép"ectively, ie.
- o _dm dm T '
@ B e A

‘Equation (2.1) represents the equation of conservation of mass and can be writtemn
in the form. :

(2.3)

where o* is the velocity of the center of gfavity of the macro-element.
~ If we distinguish in the macro-element dV the point C(X™) Which is the center
of gravity, referred to a curvilinear system of material cdqrdi';latés, then the position

. ap .
dm*:_a;'l'(l""' ),Jgs.

of an arbitrary point 4 (X'F) of dV, relative to the center of gfé_iﬁty'? can be determined
by a vector DX, so that we have . SRR ' '
ea .. .. XX

referred. fo the same coordinate system, since we suppose that! the distance between
POJn'tS'C(XK) and -4 (X'K)ls lﬂﬁllltBSIma.l(Flg 1) Ceoornmnniihiig E
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Let p, be the mass density at a point 4 (X¥™%); then we have

@35 . L—fp(',dV"'xpodVﬂdm,' [ pgD*av=0,
av : av

since ' (X¥) is the center of gravity of the undeformed macro-element.

Fig. 1

Through the motion the material point C(X%) is carried into a spatial point
C (x*), the vector DX into d* (Fig. 1), so that

(2.6) : xF=xk+dF,
referred to a curvilincar system of spatial coordinates x*, where

@7 d*=d* (XX, DX; 1).

We assume that (2.7) is an analytic function, so that it can be expanded as a power
series,

ey d= ' DX+ g, DR D-+

Since |DX| is sufficiently small, we need only retain the linear terms in D¥ in the
above expansion. Hence, for simple materials we have

2.9 : ’ d*= y*, DX,
Now, (2.6} may be written as
(2.10) X% = x* A yf DX,

The micro-deformation gradients

' ad* ox'®
e deann=(on) ()
DX [ o \OX® |,

arc independent of the motion of the point X*. Hence, the motlon is determmecl
by the equations

212) X=X XS D, Xx=xxE5 D).
Letp’ be the mass densﬁ:y at a point A (x”‘), then we have

’(213) S fpdﬂwpdv drm,
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and, using (2.5),, .
@14) [pdrdo= [ p g Ddo' =y [p'DRd'= g [ pyD¥aV'=0, .
dv dv dv dy

where we assume that the mass of the micro-element is conserved, i.e. dm’=p, dV'=

 =p'dv’=const. From (2.14) we see that the point C (x*) is the center of gravity

of the macro-element do. Hence, through the motion (2.12), the center of gravity

of the undeformed macro-element is carried into the center of gravity of the deformed
element.

Let D"‘M, IDf‘(a)l 20, #=1,2, 3, be a triad of non-coplanar vectors at the point

C (X*), which is attached to macro-element d¥. Then, taking into account (2.9),

2.15) @@y =2 Dy
wherefrom
(2.16)  Xx=dig D%,

where DX, and D@y are mutually reciprocal triads, i.e.
2.17) DXy D¥,=5%, DYyDPe=5;.

The micro-deformation gradients x*y are then completely determined by de-
formation of the triad vectors D¥,,. Using (2.16), equation (2.9) can be written in
the form ' '

2.18) L dt=din DO DX
Vectors DX,y and d%, can be considered as directors, so that the motion is
determined by the equations '
2.19) =3 (X5, 1),  dm=die(Din(X),1).
Tt is clear that directors, introduced in that way, are maierial vectors attached to

the macro-clement. _
Let d*,, and d®, be mutually reciprocal triads, ie.

2:20) i dD =3, diydD=1.
‘Then, from (2.18), we get

@20 DR=Dy dDyd*, .

.or

{2.22) D¥ = 15, d¥,

where - _ : _

2.23) X x5=0,  Xx =0k

Making use of (2.18), (2.6) can be written'in the form
(2'24) x'-" = x" + df‘i(a) D(T)K _DK .
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From (2.24) by differentiation we obtain

225 - v =vf + ¥, D@, DX,
or, taking into account (2.21),

(2.26) : C ok=dbad, dOd
“This expression ¢an be written in the form

{2.27) | v =gf 4 ¥ d*,
where ‘

228 " boy=d¥ i d =1 5.

"The expression (2.27) represents the velocity of any point of the macroelement do,
where by, is defined at the center of gravity of the macro-element.
Making use of (2.25) and (2.14), the kinetic energy of a portion v of 2 body is

2T=f fp'f""f’;cdﬂfm fpwk'vkd'{)‘i“f“i’f(m);{k(ﬂ)D(T)KD({i)L fP'DKDLdf",
v dv # ¢ i

and can be writ_ten in the form

‘{2'29) - 2= f p @ 0+ IX d* ) dy () DO DPy) dv,
“‘where
. pavi™r=pavt™"= v'= | p 2
2.30 duv I*L = pdol ™ p' DEDLdv’ = | py DX D dv’
dv dv

The quantities I¥L are the coefficients of inertia of the macro-element with respect
to its center of mass. : o '
If we introduce the “director coefficients of inertia” 1™ as

(2.31) ) - P = phx_ fRL D(”_')K D“_’)L,
‘then the kinetic energy can be written in the form
{2.32) 2T= f p @+ 1% d¥ g i o

The rate of the kinetic energy is
2.33) | T'= [ p@o+1 &' dvuy) dvo,

o

and, using {2.28), can be written in the form
(2.34) T'= [ p@ o+ b dv,
where : T :
.39 s M=t g dig =T .

is the inertial spin.
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In continoum theory, we assume that a body 93 is composed of material points
which are distributed continuously. We atiribute to these points the features of
macro-elements. In other words, we identify now every macro-element with a material
point. Hence, every material point is phenomenologically equivalent to a deformable
body. The micro-deformation gradients are now defined at every point of the body,
so that they represent a continuous field. The motion is then determined by equations.
(2 12) which are mutually independent. Instead of the micro-deformation gradients.
x“x we may define at every point.a triad of directors DK(u), which are carried by
the deformation into d¥,,, so that the motion is determined by the equations (2. 19)
In undeformed configuration, we choose arbitrarily triads of directors and their
deformations characterize the deformations of previously considered macro-elements.

Taking into account the fact that the deformation of the directors is independent
of displacements of the points, it is clear that, after deformation, the dlrectors
d* sy are not material vectors. By introduction of deformable directors in the pomts
of the body, and by describing its motion by the equations (2.19), we interprete
a continnum with microstructure as an oriented continuous medium with three
deformable directors; in other words, as a gemeralized Cosserat continuum.

It is clear that elements d¥ or do have a new meaning with respect to the previously
considered macro-element. However, taking into account the fact that quantitics,
previously defined in the center of mass of ‘the macro-clement, are now contintous
Sunctions of the position, the expression (2.32) for kinetic energy, and the expressions.
(2.33) or (2.34) for the derivative of kinetic energy, remain unchanged, with a dv
which is now interpreted as an element of the body.

3. THE PRINCIPLE OF VIRTUAL WORK

Let us assume that the surface forces T* and H', as well as the body forces £
and I¥, act on the body B3, so that their time rate of working is

3.1 A= f@ o+ HIb)ds+ [ p(fPoctl by do.
According to (2.28), (53.1) can be written il‘: the form
(32) A= {(Tio+ B &) ds+ [ p(flotl'® di)do,
where ’ ’ ‘
33 H@=giige = @_pige,

The virtual work of the surface and body forces is
(3.4) sA= § (T 6x,+ H'® 5dy ) ds+ [ p(f' x4+ Sdy0) o,

and, by an identical transformation, can be written in the form
(3.5  dd= f LT ds— 1% dis) &%, + (R ds— B ¥ disy) Ody ]+ .
+ f P(f 8, + 1 6y ) do+ f (¢ ds, o % iy ad,m)-
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By applying the: Green-Gauss theorem to the last surface integral, we get -
{3.6) dd= f (T ds— " ds) ox,+(H He) ds— hHO® ds) 8y ] +
+ fﬂ(fi Ox+1'® 8 () dot f (2% 5, 32,17 0y o+
LIA v .

+hi?) k, k 5d{ (x) +hi (@) 66111- @), k) dv.

The time rate of the kinetic energy (2.34) we can write in the form

'(37) - j": f p (7.)‘ v; +I"i(ﬂ) c'i;(a,,).dza , (Fl @) . it d(ﬂ.!)j) ,
s0 that the Vll'tllal work of the inertial forces is

’(3.8) o7 = fp('?) 5x1+1-"(“’ Jdi ((z)) d‘U

We assume the principle ‘of virtual work in the form
(3.9) S OT+W =04,

where ¢W is a variation of strain energy, i.ec.

GOy . W= [ powde,

and where w is the specific strain energy, 7 _
According to (3.6) and (3.8), we write (3.9) in the form

G11) [ p@tdx+ I 8d, ) dot- [ powdo= f (T ds— % ds,) ox, +
F(H® ds;ht(a)k dsy) 8dy ]+ fﬁ'(f! Sx, 4+ 1H@ 54@) do+
+ f (f”ﬁ’ % 5x; -+ A 5Xg,k+hi(¢)k, & §d! (=) +hi _(m) k Csdi(ﬂ)’.k) do.

We now take the volume = in (3.11) to be a tetrahedral element bounded by
a plane with an arbitrary unit normal n, and by planes through the point of the
body parallel to the coordinate planes. (By coordinate planes. we understand planes
which are tangential to coordinate surfaces at a point of the body). If ds is the area
of the plane of the tetrahedron normatl to nk, and ds, are other oriented faces of the
tetrahedron, then

(3.12) ds,=ds n,.

If we apply (3.11) to the tetrabedron and et the tetrahedron shrink to zero while
preserving the orientation of its faces, we obtain the equation

3.13) (T ds— 1% ds,) 5, + (H'® ds— D% ds) 8y =0.
(=)
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This equation is valid for all variations 8x; and Jd; ), 5o that we'obtain the boundary
conditions

(.19 T'=1"%ny,

and : ' S .
(3.15) H®O=—pt@ky o HY=hy,,
where Y

(3.16). | o Bt hi(a)k dJ

The vector T" is the stress vector, [ is the body fo‘rt:e, and £ is the non-symmetric
stress tensor. Vectors H'® are director stresses, I'® are body director forces, and
tensors h*®™* gre director siress tensors. The tensor H' is the first surface moment®
149 is the first body moment, and ¥ is' the first surface stress moment.

Upon substituting (3.13) into (3.11), we obtain : >

@17 [ p@ ox+ D 5dy ) dot [ pow dv= [ p(f1 830+ 1'® 8dk ) do+
v o v
+ f (t"‘ 2Ox+ rfk Jx;, ,¢+h"“"‘,,¢ Odly oy + B O 8l 4y) .

This equation is valid for all vanat:ons Jx,, in . dd, (s and Mm) x» Furthermore,
we suppose that 6W=0 for any ‘virtual rigid displacement, i.e. the virtual work of”
the surface and body forces is equal to the virtual work of the inertial forces for-
any rigid displacement, '

(3.18) f}o(‘l’i 5x:+1"i(°') 5di(a))dﬂ- fﬁ’(fi §x!+l'(” 5da(m))dv+

-+ f (% 5, + 1% Ox, k+h‘("’“ kédi(¢)+h‘(“)"6dm) v .
To derive the equations of motion, we shall apply the theorem of PIOLA in the:
form presented by TrupspELL and TOUPIN [13): the equation (3.18) for virtual
translations is equivalent to Cauchy’s first law of motion, and for rigid displacements,.
to Cauchy’s second law. - ‘
For virtual translations we have

(3.19) Sxy=const, . 8x; =0, diy=0,  Oditw,x=0,
and equation (3.18) becomes

(3.20) o [ pitaxgde= [ (% c+af de,
wherefrom

(3.21) A pot=t"%  +pft.

This is Cauchy’s first law of motion, i.e. a necessary and sufficient condition for-
the balance of momentum, which represents three classu:al d:ﬁ‘erentral equations:

of motion.
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Now,_ if .we assume that' Cauchy’s first law is valid, equation (3.17):becomes:

(.22) [ pI'®odydo+ [ powdo=

v

= f [£% 07 g+ (BH @ :c+'Pl'-m) O oy + B % 8dy 0 (1 0.

and (3.18) ‘ -
(3.23) f pri@® ad, do= f [t** &x;, k+(h‘(“”‘ e+ plte) Odk; (uy+ B D Sy, N dv.

For virtoal rigid dxsplacements we have
Xy 1n=0, Sx, -const
(3;,24) ‘ @ T T o
| Sy =Oxi ey, Oy, k=% Lo .

and the equation (3.23) becomes .

(3.25) Co MR e p (=T Oy, o =0
©
It we wnte . _ ‘ I
(3.26) Y AR (REY A L

then the equatlon (3. 25) can be written m the form |

@ f’r doxgi,  do=0.

Since (3.27) is valid for any. Jx[i » we obtam
(3.28) 020, o AMLLKE 4 p(RN_ TR0,

This is Cauchy’s second law of motion, i.e. a necessary and sufficient condition for
the balance of the moment of momentum.

From’ (3.28) it follows that 7/ is a symmetric tensor. Then; (3.26) represents.
the system of nine differential equations of motion. They include the three differential
equations in (3.28). In (3.26), the first body moment [V is prescribed; while t” ¥
and AY* have to be determined from the constitutive equatzons

Equation (3.26) can be written in the form

(3.29) T =t ROk L g, £ R iy, wHp(F@ T g

from which follows:

(3'30) A (u)k’ k+p1ira)='fu d'(f')j— iy d(a_‘)_,- + plik d(f)J’ . +p['!(¢) .

Upon substituting this into (3.22), we get ‘

(3.31) f pow dv = f [t 8y, o+ (7 A9y — 1 Dy 4 hI* D, ) 3y o+ B D% Sdy . (] o,

v

Whercfrom' ‘ :
(3.32) dw= t"‘Jx (@ a9, th d9, +hukd®1,k)adm)+k'<ﬂ‘a ik
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“This is the expression for the variation of the specific strain energy, which is form-
jnvariant with respect to the superposed rigid motion,

According to (3.32) and using (2.25), we obtain
5(333) C . . pv[?: f”’ 'vi,j-+ ('fij —‘tu) bi’j +hUk bij, P

"*This is the expression of local conservation of energy, which is in accordance with’
the expressmn obtained by ERINGEN and SUHUBI {1], where the tensor 7/ was named
by them “micro-stress average”. -

4. CONSTiTUTIVE BQUATIONS

Equation (3.32) can be written in the form |
@) pow=1 X%, 8x, x+ (0 d9;- 1 A9y 4 B XK dﬂf{, &) 0diy+
+hE d®, x fk Od; oy & -
We assume that the specific strain energy is a function \6f the form
) s (e, 4 i) |

Then, we have

ow ow ow
’(4.3) 5W =gll a l ch,, K+ g E)d’ - 5d;_ {0} +g adl 5di (@3 K

With regard to (4.1) and (4.3), we obtain =

rij_ il ow x.f
DA =pg- axl-K K2

@4 o Th=pgt o x! +pg o +pg aw“d
) 3 l K ad! (a} adl (‘l),K’

‘ R =

W’ . x
1 _d:’(a)x.;{.
% K

These are the constitutive equations for micto: elastu: matenals However, the rlght
side of (4.4), must satisfy the condition” ;

“5) (" o gt o ~dt o F ) =0
. g g’t " g s c =0,
9%k *i 3 COTE adk P

to the end that the Cauchy’s second Iaw of motion be'sétisﬁéd This‘represénfs'
the objectivity condition of the specific strain energy (4.2) and of the constltutlve
equations (4.4).

Making use of
d;l(gz,) =¥k D{((a)';' ; .d_l(,a); =X KDI_'(&);,
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we can take the specific strain energy as.a-function ‘of the form - i -

(4.6) w= W(x KsXK:XL,K)

Now, the constitutive equations (4 4) can be written in the form

M = potl W
'_pg ? x;K’ -
ox, x

@7 gl i 2 i
ox.x ° dxe ™ g T
~dw o o !
B9 — gt o xLx"x, |
and the objectivity condmon (4 5) in the form ,
(4.8) (g“ 3]:) xip+gt 5 3}:’ Hetg" i xn; ) =0.
Ixix dx ' 7

The spec1ﬁc strain energy (4.6) is a function of 45 mdependent vanables Xt
x*x and x*;; x. Conditions, (4.8) represent a set of three: linear partial differential
equations and w is an arbitrary function of the integrals of (4.8). The system admits

45—3=42 independent integrals. There are many possibilitics for the choise of the
basic Integrals of (4.8). We shall take the: following (1)

|§."l. P

i !FKL gktXKXL,
@ U T Tum s,
. _ Dgra= Xrx XTCL;M,
so that the system (4.8) has general solution |
(4.10} B . w"':w(WKLSZKLé-DKLM)' )
Substituting (4.10) .into (4.7), and using (4.9), we obtain

tu:I:P- w XIéix‘jL:
0Xky ’

I I e i aw
411y T con :-f."—2p v, XKX L

ow

H=p: Dxrar x5 xLxM

These are the non—hnear constltutlve equations of non-isotropic mlcro—elastlc

materials, which are form-mvarrant with respect to the superposed rigid motion.
If, instead - of Py and EKL, wve mtroduce the followmﬂ matenal measure of

deformations o o e TR ST S T N

(4.12) ZFKL—WKL"GKL, 8KL=EKL“GKL3

el

('} The reason for choosmg this mmlmal mtegr:ty basns 1s d:scusseél in the appendix

Rozprawy Ingynierskie — 4
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the constitutive-equations (4.11) have the form R

ow

= dex1 2w,

. E¥ g aw (] J
4.13) =p o Kk AL

KL~

_ h=p 3DKLM'X&‘X{LJCJ;M" :

~ If we introduce the director displacement yectors Pay 1.0

(4.14) &y =D+ = £ D o t Phiys
then, multiplying this by D%y, we obtain ' R
4.15) | =gt o'

From (4.14) it follows ;. |
@) . Dig=diw~ V=g @m= 0w
and f‘rdlm. this, multiplying by d®,

@17 Ke=8k — 9 k-

 From (4.15) and (4.17) we sec that the micro-deformation gradients g and
¥%, are related to the micro-displacement gradients ¢*x and ¢ in the same way
that the deformation gradients are related to the gradients of displacement vectors, ie.

(4.18) Ke=ghtute,  Xhe=gi—vhe
With regard to ) ' o
(4.19) d’f(a) d@.‘)lﬁ X'k PR =df, Df((a.) D(?)L'""—_ X K= o5

the micro-displacement gradients ¢*r and ¢%, ie. ¥, and g% ate mutually related
(4.20) (D{CL= 607(1 gi,"‘ 'PF! @l.L= q?fcl gL"‘ (Pf(M ‘Pn_‘! gL= @'_‘Lgf= ?f(l *es
(4.21) = g g — o 0= 0 g — P LB = P B o @l
The deformation tensors Fgr, €xr and Dgrar by- the use of (4.9), (4.12), (4.15),
(4.17), (4.18) and (4.20), can be expressed in the form
2F = Pgrt Prr 1 Purx "L,

(4-22) exr=ux, L~ Pxr— (U, L~ Pur) P8y
' DKLM=¢’KL,M”§°SL,M?xk£Sk1 _ " _

~ Foran infinitesimal deformation, when the displacement and micro-displacement
gradients are very small, the above deformation tensors are in the linear theory
of the form

(4.23) o EKLz (@xx_.‘l‘ gr)s  ExrT Uk LT PRL> Dypm= e, m-

|-
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Constitutive equations (4.11) and (4:13)- satisfy the. principle -of . objectivity.
However, they can be further reduced but that depends on the material symmetries.
For the isotropic materials we can mtroduce the following spatial deformation

tensors
V=0 X. & X_.;;

4.249) T = Jux X ?l »
i et = Xiksm JC,KI = = Xix XFl;m s
50 that Lo : S v
(4.25) W=W (W1, Ot dtm) -

Substituting (4.25) into (4 7), and using (4.24), we obtain non-lifiear constztutlve
equations for the isotropic materials _ S

. dw -1 w v o Lo T
P e, O P e, W -
" ‘2 ow ) 3w'j"' ow N aw W
= — -0l —p—0;} i
4.26) P o I G0 Ty T g
_ ow . ) ow .- .
“p o ad dk mn Padm d;;z s
W= p i .
ady p;

These equations, *however, do not “satisfy the principle of objectivity. In order
that the principle of objectmty be satlsﬁed i.e. that Cauchy’s second law of motion
(3.28) be ‘satisfied, it ‘must be :
ow , ow oy ow ”
U'k ) 30’,,1 Gk adum - o

dw ; aw .

- d, m——-“wd"‘) =0

3dkjm ko adﬂj ._kl {fj]
If, instead of w,, and Oy, We introduce the following spatial measure of
deformations

4.27) ( 2 i £
(* 3':”1;:‘!/"‘

doy,

‘ _zﬁct:gm—*//kt:gu—GxLJ{:KU({‘:;
'Skl:gkl_ak!zgkl—XkKXI;(b
the constitutive equations (4.26) take the form
g (3w aw . ow i)
S R T R L O £
3w,3wj3w.-i3w_>
el Fery o + ad, t?f:m“ - ‘
- ow ow ‘)

(4.28)

w
ij: —_ 2 i +
(4.29) N P,(aﬁj L dew

— N R
Oty S

P Ay




P '(—2'3‘” PR ALY
(4.30).- -} afjkfk .o B der; B i S
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and the condition -of quec_tivity 4.27),; . =

lew o Ow

L :.adkjm ke 3dkli k . .

The deformation tensors fy, & and Fitms _making_usc of (4.15), (4.17), (4.18),
(4.21), (4.24) and (4.28), may ‘be expressed in the form o

=0+ G Pmr %,

-(4.'31) : . . -Ski:'—uk,1“'."(%!""1‘(_“"1,!_'-97111!) q’ngmKs S

Grim= Pt,m ™ Pri,m Pix g
For an infinitesimal deformation, in the linear theory, these tensors are of the form

1
(4.32) fa= ”2_ (Pt (01_1:) ,  Sr=Ug 1 Pl dytm=Prt,m

The material deformétion‘tensors (4.22) and the spatial deformation tensors

‘(4.31)ia1‘e related by the. following expressions

Frr=fu xz* xits a=Fxr 1 X
(4.33) Sxer. = 8t X" xl;La & =Exr X Xf'l, '
Dyire=diim Xi:k fo Xps yim=Dxrrm XicK xf‘; X B;{m-

In the linear theory, we omit the non-linear terms in (4. 29), so that the constitutive

equations become
(4.34) ziizpﬁ_ _ Tuzp_a_wd_ _ hua;p_‘?l"_.
de; " ofy . Od,
In the constitutive equations (4.29) and (4.34), the specific strain energy
is a function of the form

(435) .~ w=w (fi> 8as dm) -

That is an isotropic function of its arguments and can be expanded in the polynomial
form. If we suppose that the initial siresses do not exist, in the linear theory the
specific strain energy is a quadratic polynomial of the form

1 . 1 L D
(4_36} pw= —2- Aijklﬂjﬁ‘l+3i3klﬁj 81‘['_‘?7 qi.ﬁkl &1y 5n1+”2—D‘Jk’f"" _d[jk dtmn ,

where .
A”klz;{g!j gkl_l_“(gﬂc gjl+gilgjk) .
BiJkI =3'1,'gij -gkl+ Jui (gik g.il+gfl gJ'k) ,
. =y, Y gr"'r'l-v; g% gt gt g,
o prmen—y (gt g¥ g™+ g7 g o) 4y, (g g g+ g g g™ + 728 g7+
| gt gtgm e ys (g g g +gH g ) + 768 g gy gigmet+

e (e g g+ g g+ 108 R+ 1108 L 41 887"

4.37)
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are isotropic “tensors, and A, g, Ay, fy, Vq, Vo, Vs and 9y, ¥a, o, 714 are: material

constants. o - R Co :
Making use of (4.36), (4.37) and (4.34), the linear constitutive equations take

the form | R |

(4.38) =2 figh A 2y YA v e Fva e Fvset,

@39) AR g 2 Ay erg o+ 2pny 8O,

(4.40) A=y, @4 gV +dl g9 4 ya @ g +dY g s d' g 4y d g+
| +ys (@ g7 +d7 g yedt g by, ARt Ts-(d"?ki-lrd"‘”)-}“
+yod™ by 0 dF 4py dVE,

where the deformation tensors are of the form (4.32).

The linear constitutive equations (4.38), (4.39) and (4.40) differ in the form
from the linear constitutive equations obtained by SunuBI and ERINGEN [2], because
we have introduced other measures of deformations. However, it is easy to show
that these constitutive equations are equivalent, if we establish the connection
between the co_rfesponding deformation tensors.

5. MICROPOLAR ELASTIC MATERIALS

We shall consider now a special case of the materials with microstructure in which
the macro-elements have a rigid motion. The motion of every macro-clement of
the body is then determined by the displacement of its center of gravity and by its.
rotation. The triad of directors D’_‘(,f,), which is attached to the macro-element, is
now carried into d*, by a translation and rotation. ' -

From the viewpoint of continuum theory, when the macro-element is identified .
with a material point, every material point is phenomenologically equivalent to
a rigid body. Since the motion of the directors is independent of displacements
of the points, it is clear that, after deformation, the directors 4%, are not material’
vectors. By introduction of rigid directors in the points of the body, we interprete -
a micropolar elastic continuum as an elastic Cosserat continuum.

Since the motion of directors is a rigid motion, then
(5.1 ' gudiwy d’ 5y= G DT, DY gy,
wherefrom, using (2.15),

(5.2) g X' X{L=GKL3 G ik X1 =8 -

This is the condition that x*¢ is an orthogonal tensor. However, it must be

5.3 , =]/-—,‘ ,
(5.3) | U_C.K.l A

to represent the rotation.
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*'The' motioh-of rmcropolar continna 1s determmed by the equatnons
G4 B e M Lo U M
The first equation determines the displacements of points of the body, ie. the
translations of directors. The second determines independent rotations of the
directors; since x*g is an orthogonal tensor.

The condition of orthogonality of the tensor x"K can be writien in the form

55 : X=X (X Xul) B

Since x*x is an orthogonal tensor, i.e. durmg the motion the components ¥
have to satisfy six equations (5.2) (the condition (5.3) is included in (5.2)), we deduce
that y*z have only three mutually independent coordinates.

By differentiation with respect to the time, from (5.2), we get

15

56 : G*" i X =—G** Jax F1r.»
wherefrom, using (5 5) and (2.27), '
(57) o bk!"'Xka 1= = dux X k= —bu.

We see that bk, isa skew-symmetnc tensor, so that it has three mutua]ly mdepend-
ent coordinates. Accordmg to this, from (2.34) we see that only skew-symmetric
pari of the inettial spin makes contribution to the rate of the kinetic energy. For
this reason, we can take, without loss of generality, that the inertial spin is skew- .
symmetric, i.e. 'Y= —I/* In the same way, we se¢ that only skew-symmetric parts
of the fifst sutface and body moments make contribution to the time rate of working
of the suiface and body forces. Consequently, without loss:of  generality, we can
take that HY= — [I#t and [¥= — 1", i.e. that H" represents the surface couple, and
1Y the body couple. From this it follows that h** = — i/"*=m*¥, so that (3.15) becomes
HY=m* p, where m™* is the couple stress tensor which has nine mutually independ-
ent coordinates.

Smce buisa skew-symmetrlc tensor, then taklng into account @ 27), we have

68 (dwd J)(m—o
and, consequently,
(5.9) (5d; 0y 42, )1 =0

The variations dd;,, are not mutually independent, but have to satisfy six equations
(5.9), so that only three of them are mutually independent. According to this, we
can write

(5.10) 5di(a}=5¢ljdj(a)s 0d; a), =001y, 6 4] (a)+59'7ud o), ks

where dgp ;= —écpﬁ are three mdependent variations.
‘Making tise of (5.10), the equatlon (3 17) becomes’

(5 11) fp(‘vi 536;']-1-‘!15(911) dq_;—l— fp(swd‘f)— fp(f'ax,+1’-r6¢”) d‘()"“ L

[V 03+ £ 8%, g+, 0014 1 Sy, ) dio,
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and it is valid -for' all. variations Jx;, -dx; ;, d¢;; and Jg,; .. However, we. suppose
that dw=0 for a rigid motion, so that the above equation becomes -

612) [ pGtow +r“a<ou)dv— f PSibxiH 1 Sgy) dot

+ f (t” 5%, +t“¢5x, ,+m"",k 3¢;; +m""5¢>u k)dv

1k

This equation for virtual translatxons is equivalent to Cauchy’s first law of motion, .
and for rigid virtoal dlsplacements —to Cauchy s second law.

For vn‘tual translatlons we have 7
(5.13) 5x,—-coqst, 9x;, ;=0, b¢9,=0, d¢;=0,
and the equation (5. 1?.) | gives
(5.14) L p=tY g

This is Cauchy’s first law of motion, i.e. a necessary and sofficient condition for
the balance of momentum, which represents three classma,l differential equations
of motlon

If we assume -that Cauchy’s ﬁi‘st law is valid, the equaﬁon (5.12) becomes
(5.15) f pF‘jﬁgoinv f [0 Sppcy+ 11606, + ™ By + i 0y i) o,
and, fer vu'tual rigid dlsplacements it is equlvalent to Cauchy’s second law of motion.
For virtual rigid displacements, we have
{5.16) 7 ox;, 5=0, O@,;=0dxy y=const, Iy =0,
and the equation (5.15) gives '
(G V) : HAymt 4 p (1Y —TH)=0.

This is Cauchy’s second law of motion, i.e. a necessary and sufficient condition for
the balance of the moment of momentum, which rcpresents three differential -
equations of motion. -

Substituting (5.14} and (5.17) into (5.11), we obtain

¢.18) [ powdo= [ (¥ dx, ;111 50, 41t Sip,; Y do,

whence it follows ‘
(5 19) ’ pﬁw t” 5x; j—-t[i"] 5@ +m jké{ﬂt k
This is the expression for the variation of the specific strain energy, whlch is form-

invariant with respect to the superposed rigid motion.

According to (5. 19) we obtain the expression of local conservation of eriergy
in the form _

(5.20) T ity = b by
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Cotaparing this expression with (3.33), we seé that (5.20) follows dlrectly ﬁ‘om (3 33}
if we take into:account that b;; is a skew-symmetric téhsorl =~ ¢ = 0 ¢

From (5.19), as well as (5.20), we. see that £, /11 and .m!* can be separately .
determined through the constitutive equatlons 'If we assuine, as well as in the case
of mlcroelastlc mateflals that the specific strain energy is a function of the form

521y w=w(x%g, d¥q Ay x)
then; using (5.10), we obtain
£ BW ‘j + ow mdﬂ -+ l[-ida‘] : g, '
(5.22) dw=g E;E—Kx;xéxt,j 37"” (@ 3d.(¢);1cg Py k] 001
-l | ow !-{t a
+3d(a) ! ()xxfs(”mk».
Comparing this expression with (5.19), ‘we obtain the constitutive equations.
: . . , . S 4 .
t"—pg %K,
K
(523 =y o g'lidi,; b _ gt
' t =—p o P @) Ko
TPadl, 8O od' - ¢ "7
miE=p w g [‘d“(a) x'.‘K.
ad* K T

However, the first two equations must be compatible, i.e.” o

(5.24) (” W +g" i &'+ 3w—d. ) =0
. 4 ax:K x;K g ad'l(a) Ao g adl e K [j]i'—.'

This represents the condition ‘of objectivity of the specific strain energy (5.21) and

of the constitutive equations (5.23). If the equation (5.24) is satisfied, then the equation

(5.23), is superfluous, because it is included in (5.23), as its skew-symmetric. part. -
If we assume that the specific strain energy is a function of..the form.

(5.25) w=w (xfx, X kxa X,
then the constitutive equations (5.23) become
ow
t“—pg”"a—i“xjx,
(5.26)
- mt=p “éx T UX“L s

and the condition of objectivity ._(_5.24)_,

.27 (uﬂ"m P 9w aw ) o
. g ax:K JC-K"{“S'_ 9% XK+8' Py x,—_" ={,
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The spec;ﬁc strain energy (5.25) is a function of 21 independent variables x* K>
x and x*y, g. Since (5.27) represents the system of three linear partial dlﬁ'erentlal
equatlons then it admits 21—3=18 independent integrals. There are many
possibilities for the choice of the independent integrals of (5.27). We shall take the
following . 7 o
528 C EKL Xxkx Lo Krwr=Xxx x’.‘L;M, :

which, using (5. 5), we can write in the form

(5.29) Zx;.: Xrx x:‘L > Kerasr=Jix J{J;CL; M= — XL Z’fx; M-

1t follows from (5.2),, by differentiation with respect to X™, that the tensor Ky
is skew-symmetric.in the indices K and L. Hence, it has nine mutually independent.
components.

According to (5.29), a generai solution of the system (5.27) is
(5.30) : S L w=Ewl, KKLM)

Substltutmg now (5 30) into (5.26), and using (5.29), we obtain the constltutxve
equations .

(5.31)

which are form-invariant with respect to the superposed rigid motion.
I, instead of Xy, we introduce the following measure of deformation

(5.32) © gxp=2gp—CGxr= Yrx Xip— Grr.

the constitutive equations (5.31) become-

1} w i
tH=p X.EXL>
5.33) P
. ow

mm—Pﬁ"_X X Lx M

These are the non-linear constitutive equations for anisotropic micropolar elastic:
materials. We can obtam these equations directly from the constitutive equatlons
(4.13) for micro-elastic materials, if we take into account that Z*z is an orthogonal
tensor; then, according to (5.2),, the tensor Fy, =0, while &g, and Dy, in (4.13)
become &gy, and Kgppr i (5.33). Hence, the constitutive equation (4.13); vanishes.. :

Making use of (4.15), from (5.2); we get
(5.34) C @t oL+ Pux o¥=0,
wherefrom we see that in the linear theory

(5:35) Prit ox=0. .



200 STl MY PLAVSIC AND J. JARIC .

Also, from (5.5), using (4.14) and (4.17), we obtain

‘(5-36) - P = Pk -
Hence .
(5.37) PrL= — Prk gi"“" - §0m3},3¥o‘ Pra=— %K-gx‘: - @Lng'gf-

The deformation tensors gy, and Ky, according to (5. 32) and (5. 29)2, and using
{4.15), (4.18); and (5.34), may be expressed in the form

(5.38) Egr=Ug, 1+ Prxt Pux ul,‘L =ug, 1~ Cxr+(Uar, L= Prer) ?jtfx s
xEM = Pk, M+ Psk (”'?L, M=~ @k, M~ P5L ?’?K, M
In the linear theory, for an infinitesimal deformation, these tensors are

ExL=tix, L+ Prx =g, .— Pxr»
(5.39) RL=Ug, L+ Pre=Ug, L ‘?”KL.

Kirm= @i, m™=— P, m

For isotropic materials, we can introduce the following spatial tensors

_ K
Tu=Xx X ;1>

{5.40) «

Kim=G" Yizsm X12.= f‘,G L Kiksm Xet,»
50 that : S
(5.41) w=w (0, Kictm) -

"The tensor f, is skew-symmetric with respect to & and 1, i.e. K= —Kpm It follows
from (5.2), by differentiation with respect to X™. Hence, xa has mne mutually
independent components.

Substituting (5.41) into (5.26) and using (5.40), we get the constitutive equations
for isotropic materials

1j aw ol ﬂ Iy )
C t =—p aakj g, —=p axklj Kii >
(5.42)
b= ow
aK”k

From (5.27), using (5.40) and (5.5), we obtain the condition of objectivity in the form

ow + w i) 0
i K3 =0.
O " Brw;

If, instead of o;;, we introduce the following spatial measure“'.of deformation

dw
! ) !
(5.43) ( T + Fan Y ote+2

{5.44) ‘ e =8r1 = 1= 8rt— Kuk Xj;tl 4

the constitutive equations (5.42) become :
o, ¥ w L, !
ti=p —p B .—p Kyt

dey; . Oy, Ky

(5.45) v m

. ow
muk=p g
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and the condition of objectivity -(5.43),

5.46 (3w _i+aw i'z_aw i.+3w i) 0
.46) Pog B T O M Py M

From (5.2),, using. (4.14) and (5.37),, we obtain

(547) | " S Pt W_m—?mr:(”'."l-:()s !

and we see that, in the lihcar theory,
{(5.48) i ‘ P+ ou=0. :

The deformation tensors, s, and iy, making use of (5.40), (5.44), (4.15), (4.18),
{5.37), and (5.47), may be expressed in the form

By =t 1+ Qu— P U 1= U 1 — Py — W, 1= o) 97>

(5.49) )
xklm,f Prt, T Pri (Drl, = " P, it + P -

In the linear theory, these tensors will be

Epp =y, 1+ Qo= 1 — Pr1»

(5.50)

Biim = Prt,m™ — Pk, me

The constitutive equations (5.42) and (5.45) are the non-linear constitutive
equations for isotropic micropolar elastic materials. We note that these equations
«can be obtained directly from the constitutive equations (4.26) and (4.29) for micro-
elastic isotropic materials, if we take into account the influence of the condition of
orthogonality (5.5) of the tensor y¢ upon the deformation tensors. Upon this
condition, the temsor w,, becomes g1, fi;=0, and ;, becomes wy,,.

In the linear theory, disregarding the non-linear terms in (5.45), the constitutive
equations read

w Cdw

mi¥e=p ——

{3. = .
(5 51) p asij H 3Kijk

where the deformation tensors are of the form (5.50). These equations, also, can be
obtained directly from (4.34), taking into account the influence of the condition

of orthogonality of the tensor y*x upon the deformation tensors.

According to the skew-symmetry of the tensors x,;, and m!* with respect to the
first two indices, we can reduce them to the second-order tensors

1 P 1 Kl
(5.52) Krj="i'3im’€,,js M=y Ea M, -

‘The constitutive equations (5.51) then heque

(5.53) ' | 'z”=p—€w- m'=p aw‘ ‘
. o 38”, - angj,
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where

& 54) By = th, 3= Oy =Y1, j— 8w O s
| Kti‘:?&aka erf,.i=?’t,j,

and

(5.55) w=w (&, K1)

If there are no initial stresses, the specific strain energy in the linear theory is
a quadratic polynomial of the form

1 . 1
(5.56) pw=y A e, 8 +‘2‘ B g5 16

where
A!.ikl_v g”gk‘—l—v gikgﬂ+;p3gﬂgjk

(5.57 o
B gi.;gk!_l_,r g gl gl g

are isotropic tensors, and vy, vz, vs, 74,7, and 73 are material constants.

Using (5.56) and (5.57), from (5.53) we finally obtain the linear constitutive:
equations ‘
(5.58) t =y, g gV v, eV vy e,

‘ i =, 10,89 4+ 75100 + T3 00,
where e;=e;=u',=divu and x;=¢';=div ¢ are the first invariants of the tensors.
8,:_1‘ and Kij ‘

If we write
(5.59) 7 8=y, o Py CpFry Py =eyt B (*~9",
where
. i 1
(5.60) rop = g =, D 8u“3‘(”i,j+”j, s

the constitutive equations (3.58) may be expressed in the equivalent form

- tY= Aoy g+ 2ue ke — 09,
( 5. 61) 1 kIJ He:j itk
My =71 9,181;t 29,5 T T3 0Pp4>
where 4 and g are classical Lame’s constants, and ¢* is the vectorial representation
of the angle of rotation of material points.

6. DIPOLAR ELASTIC MATERIALS

In the micromorphic and micropolar theoties, directors are not material vectors..
We shall now consider a generalized Cosserat continuum in which the directors.
are material vectors. Then, the deformation is completely determined by the de-
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formation gradients, since the deformation of directors-is not independent of
displacements of the material points. Hence, the equation
{6.1) x=x8(X*, 1)

is sufficient for description of motion.. : _
The deformatzon of dlrectors is determmed by the deformatxon gradlents,

(6 2) d (,x)—x KD ()
It follows from (6.2), that
6.3) A= Xk Dl ="1d ),
wherefrom ‘ ' ' '
{6.4) ' T, [=&Ié (=) d (f)z .
Using (6.3), it follows from (2.32) the expression  for the kinetic energy
(6.5 2T= [ p@ outi™ oo, ) do,
where . _ ,
‘(6.6) ilm=1aﬁdt(“) dm(ﬁ)=IKLx§K x?L.

The time rate of the kinetic energy is

®6.7) 7= f P+ o, j)dw,
where | .
6.8) ) Ti=itef,  (vh=0"1)

is inertial spin.
Accordlng to (6.3), we obtam

(6.9) 3y iy =0y, ; A7y,
and (3.17) gives
(6.10) f p (& 0x,+ TV 8xy, ) do+ f powdo= f PO OX,+19 6%, ) do+

+fWHMﬁW%M*N%ﬂM”%M@

for all vatiations dx;, dx; ; and éx, e However, for virtual I‘Ig]d chsplaoements
thxs equatlon becomes

{6.11) fp(v‘éx + T gx, ) do = fp(f 8x,+ 1 x;, ,)d'u+

T+ f [£* , oo, +(¢”+h’”‘ 2 dx;, s+ h ‘”‘5x .ﬂc3 dv,

since dw=0.
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From (6.11) for virtual translations, we get
(6.12) Y e AT

This is Cauchy’s first law of motion.
If we assume that (6.12) is valid, the equation (6.11) takes the form

(6.13) f pI Sxy, do= j pl”éx“dw+ f {(t“+h“" % +k‘-‘kax,,,k] do

and it is equwalent to Cauchy s second law of mo’aon fof v1rtual rigzd djsplaoements,
i.e.

(6.14) N t[u] + },;[u"} kHp (Iwﬁ - I‘[”]) = 0.
Substituting (6.12) and (6.14) into (6.10), we -obtiin
(6.15) : Jpowdo= [ (e 3x;, 3+ h¥ 6xy ) oy~

where, according to {6.14),

(6.16) 1:”-——?“+h”",k+p(l“—F”)=rJ‘_.
It follows from (6.15) that :

©1n pow=1H8xg, B Ex; .

This is the expression for the variation of the specific strain energy, which is form-
invariant with respect to the superposed rigid. motion.

The time rate of the specific strain energy is
(6.18) pl';'=fijdij+hi{jk)‘ﬂ[,jk, (dl-jz‘v(;__ j))?

wherefrom, as well as from (6.17), we conclude that 7/ and 4’ can be determined
through the constitutive equations. Consequently, the stress tensor #* is not
determined through the constitutive equations, but we determine it from the system
of equations (6.16). However, with regard to the fact that through the constitutive
equations we cannot determine all components of the tensor A%, but ouly its part
A% from (6.16) it follows that we cannot determine all components of the tensor 1.
Consequently, the undetermined part A**! may be regarded as an arbitrary function,
with a corresponding contribution A'U* , in the stress #. It is evident, however,
that A'l*1 makes no contribution to the equations of motion (6.12), since A'LF =0,
Although A'U#1 is undetermined, it plays an important role in determining correct
boundary conditions, as it was shown by A E. GreeN and R. 8. RIVLIN [11] and
J. L. BLeusTEIN and A, E, Green [14]. Co

In order to obtain the constitutive equations we assume that the specﬂic stram
energy is a function of the form

(6'19) - W = W Ed.l(a): d.l(a:); K):
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wherefrom we get
' ow . : aw
(6.20) Sw= u#T;-ad,fa)—rg“a—d;(—;—;ad,(,,;x,‘
JSa) RO HS o
or, using (6.9), R o
e o bw w o
(6.21) 5w=g ad[ d'(,,)'l' 3d! d fON in J+g ""'éd!—"d_(a) 45)5,',11;.

From this equation and (6.17), we obtain the constitutive equation's,

it 1] ) ow J id 3
T=pg ad* d'.(ﬂt)+ od d.fﬂ)-k »
(6.22) B A UG Y

h‘(jk} —.pg" aw ——— d Tays -
Ol

which, according. to (6.2), may be. expressed in the form-

aw
(6.23) :

xipxhy.

JEUR) — pg" ow
A 3 T
;KL

However, to the end that Cauchy’s second law of motion be satisfied, i.e. that the
stress tensor 7' be symmetric, it must be

(6.24) (g" AL ) 0.
) 3x§x i 3x§xt. HKE (i

This is the objectivity condition of the specific strain energy and of the constitutive
equations.

The specific strain energy is a function of 27 independent variables x¥e and xFy;.
Then, the system of three partial differential equations (6.24) admits 27-3=24
independent integrals. We shall take the following

Crr=gux"gx,,
(6.25) KL=8nX; kXL

Egrar=Ggn X l,-vk x:-cLM =Fixis s
so that the system (6.24) has a general soluxtion
{6.26) w=w(Cgp, Exra) -

Substituting now (6.26) into (6. 23) and using (6.25), we obtain the non-linear
constitutive equations .
aw

dCyr

™=2p xiexiy,

(6.27)

ow
B =p JEE g" XJ;K: x}fL JC':M»
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which are form-invariant with respect to the superposed rigid motién: Thes¢ equations
can be obtained from the constltutlve equations: (4.11) for rmcroelastlc materials,
if, instead of y*g, we write the deformatlon gradlents x* :x» since then the tensor
Xy, becomes Ggy, while the tensors Fer and Dy become Cer, and EKLM .

If we 1ntr0duce the stram tensor

628) 2EKL_-CKL—GKL,=

[

the constitutive e'qUationé {6.27) become

i ow .
J'_... —_— ’
P aEKL x Kx L:

16.29)

ow -
ht (JK) =p aE HXKI xJLx M
“These equations, also, can be obtained from the constitutive cquations (4.13) for
micro-clastic materials, since in this case sKLMO
The deformation tensors Exr and Ezyaus, usmg (6. 28) (6.25) and (4.18), may be
expressed in the form

2Fpr =uy, +Ur, g TUM k¥ L5 5

(6.30

- k
Egpp=ty, ri — g, p ¥

In the linear theory, they are of the form
1 | ‘
{6.31) EKL=~2—(uK,L+uL,K),- . Exene=v, o -

- For isotropic materials, we shall introduce the following spatial deformation
tensors
'(632) cklm.GKLX?kX?l,

— r L M r-ovRk o _,
Chtm =L X L X1 X s X kX 1= Cmy -

‘The constitutive equations (6.23) then become

y ) ow Bw i I ow .
= 2 G P Gy T Gy
{(6.33) |
JAICS ,
pé‘em

and the condition.of objectivity

w . dw ow B
~2— =2t =0,
" lui

{6.34
( ac.ik * . 361-;,,, AR aekmj m

If we introduce the spatlal stram tensor

€35 SO 29::1“'3&1—0;;“ o
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the constitutive equations will be : SRR N
K o (.-.aw_ 2 aw £y ow ; ) aw i)
= - e e —2——ne
{6.36) aeu_ dese " Geqm " Oegmy ™
' B = p dw
deyy’

and .the condition of .objectivity - . e T
ow ow ow :
-2

£ J ..
e+ e py—2 e ) =0.
aeﬂm " aekm_r " [u]

The deformation tensors eu and Exms usmg (6.35), (6 32) and (4 18), may be
expressed e the form : !

6.37) o

(6 38) ' 23#1:"1: 1"+ui k""um,ku " s

, eklm _uk lm + uk K u lm

In the lmear theory, these tensors are

1 7 .
(6.39) Ok ='“(”k 1+“z k)= eklm=uk In+

In the Imear theory, dlsregardmg non-hnear terms in (6 36) we obtam the_‘
constitutive equations -

(6.40) T T E L ”=p aw hi(k.’):p' ow 3 B
des; dein BRI

These equations, as well as the spatial deformation tensors, may be obtained'from
the corresponding expressions for micro-elastic materials. -

In the equations (6.40) and (6.36), the specific strain energy is a function of the
tensors e, and e,,. If we suppose that there are no initial stresses, in “the lincar
theory it is a quadratic polynomial of the form .

1T . 1 . _
{6.41) pw=— At g, ekl_i._?Bijkhnn CLit €
where T e - ' N
(. 42) 7 Aum lg” gkx_i_ﬂ(gmgﬂ_;_gugjk) ‘

S

(6 43) Buklnm — 'P g.rk mn + Ya (glj mkgn! +g!k gﬂu gn! +glJ gnk gmi +g!k gnj gm i) -
+ Y3 (g!lg.nn glm +gilgjn gkm) . 7y (gin g[m gjk;+g{:;: gln :gjk +g’?zgf‘?'g?"" ST

+gkfgijgmn) + 95 (gijgfm g[]",.J‘T gj!! glin gki +gl'.i gkmgln _I_gjm gin gk_i) -~

are isotropic tensors, and A, u, 74, ¥, ..., s mmaterial constants.

Substituting now (6.41) into (6.40), and using (6 42y and (6 43), we ﬁnally obta,m ?
the linear constitutive equations : . : v

(6.44) e R e o fij=/1€1gij+2pe”, . ST e L e

Rozprawy Inzynierskie—5
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645 & W =h, ghel +hy (e 1)+ by ey
+hy Qgheli gt gt M ) hs (g el gtel),

where : : B

ylﬂhls 2?2"—'—}12, 2Y3=h3, .

(6.40)
' Ya=ha, 2ps=hs. .

In the linear theory of dipolar elastic materials, the total fumber of materiat
constants is 7.

7. POLAR ELASTIC MATERIALS

Tpote.

A polar elastic material, or so-called elastic material of grade two, ‘may be
considered as an elastic Cosserat.continuum with constraint rotations. In this case,
the rotations of the triads of directors are not independent of displacements of the -
material points of a body. Therefore, the motion of a body is completely determined
by equations . o

(7.0 x=x* (X%, 1)
and rotations of the triads of directors are constrained by the relations .
(7.2) | di @ d® =2y, n=wyy .-

Since the motion of directors is a rigid motion, it is clear that the directors d¥u,
are not materigl vectors.
From. (7.2), we get

(7.3) di =54 -
Consequently, we obtain
74 8d, oy =%z, ;3 @ay -
Using (7.4) in equation (3.17), we have
(1.5 [ p@ x4 T oy, ) do+ [ powdo= [ o 63,419 8xy, ) do+
v v v

+ f [fi". i 6x; -+ tu 5x(;, ) + (t{ il + m!jk, k) 5x[;’ A + mik Jx[g' 1 k]df) -
v : .

For virtual translations, this equation gives

(7.6) po' =t +pf's

and, next for virtual rigid displacements,

(1.7 i g p (Y —TH)=0.

Equations (7.6) and (7.7) are Cauchy’s first end second laws of motion.
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Substituting now (7.6) and (7.7) into (7.5), we obtain the expression for variation
of the specific strain energy,

(1.8) ‘ pow=1"8x, 5y +m* xg,

which '#s form-invariant with respect to the superposed rigid motion.
If we suppose w to be a function of the form

(7.9) W=W(x:x: x:KL)a
we get

= ] 1
{1.10) _ ow FEn dxix+ Er 0% k. -

According to
i i
0x, g =% X" g
5x: KL= 5x,lmn XV X+ ax,!m X%kis
we have

aw
_ il
(7.11)  dw=g (3x§x

; aw
x‘K+6x

! %
x';"KL) 0x;, ;+g" Xl g XL 0% .

i 13
KL 3x;xL

Comparing (7.11) with (7.8), we obtain the constitutive equations

3

ow ow
0= pgtt ( X gt x{n) s
(7 12) Bx; K aX; KL

i (Jk) if a f ]
m =p, X g x,
4 335fo (KX Ly

and the conditions of objectivity

(7.13)

aw )
i J ok
g xigxt =0,
( ax:KL KT (1)

Since w is a function of 27 independent variables x%, and x¥y,, the system of 13
partial differential equations (7.13) admits 27—13=14 independent integrals.

APPENDIX

Equation (3.33) may be expressed in the equivalent form

4y pw=1t"(u, ;—by)+7" Bun+h*by;
where

2 by= 3:(::) d9= ik x5,

(3) 7){,1=J.Ci;KX};(j-

The tensors vy, ;—b,;, by, and by, are objective tensors.
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From (2), we get
1 1 '
bip= > Glux X5+ ik )= ) (ka X XI_“_!' X’,(J + XL X" D=

1 ' 1 —
= (x Koot dia 250 25 0= ak A it

or
@ b = Y X2
where -
5} S ?KL='Xka’.CL'L

In the similar way, we obtain
©) s, J"_b_fj=-£‘KL XKtXLJ .
Q)] . bf_r, K =15KLM X{(i )C{'j Xﬂ;{k s
where
®) o | T At
® ' 0 Drim=meXum

Substituting now (4), (6) and. (7) into (1), we get
(10) pw=t" x5 XY, ZKL+“2_ o 5 " Pt XLJ XY Drrns
wherefrom we deduce that - -
an w=w(Prrs Lxi» Dxrm)- ‘ ' S

It is clear that, as a Tunction of the material. {ensors ?’KL, Xy and Dgry, the
specific strain energy is an objective function. Therefore, the tensors ¥y, Zxy, and,
Dypay tepresent a minimal integrity basis for the spemﬁc strain energy.

From (11), upon differentiating w1th Iespect to the time, we get

Gyt _ . ow 4 ow -, _+_ 3w D
(1) o= Yt e Ve gy e

Comparing (12) with (10), we obtain the constitutive equations (4.11), which are
form-invariant with respect to the superposed rigid motion.
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STRESZCZENIE

ZASADA PRACY WIRTUALNEJ A ROWNANIA KONSTYTUTYWNE
W UOGOLNIONYCH TEORIACH SPREZYSTOSCIL

W pracy rozpatruje sig¢ model materiatu sprezystego z mikrostrukturg jako uogélniony ofrodek
Cosseratdw. Sformutowanie i zastosowanie zasady prac wirtualnych pozwala nzyska¢ roéwnania
rachu i nieliniowe réwnania konstytutywne, kidre linearyzuja sig w przypadku materialéw izotro-
powych. Przeanalizowano warunki { metody otrzymania teorii mikropolarne;j, dlpolarne] i polarnej
Jjako przypadkow szezegbinych,

Peaome

TMPHAHNKUI BUPTYAJIBHO#M PABOTHI W OIIPEAEIISIOMAE YPABHEHMSI
B OBOBHIEHHBIX TEQPUSAX VIIPYI'OCTH

B pafote paccMaTpuBaeTcs MOLEIH YIPYIOro MATEPHEAIA ¢ MEKPOCTPYKTY PO, xax obobmen-
HO| cpenpt Koccepa., GOpMYNHpOBKa M IPEMEHCHHE IPUHNENL BHPTYAIBELIX padoT IOIBONSeT
NCHYYHTE: YPABHEHWA ABHKCHAA ¥ HCIEHCHABIC ONPEICIMIOIINE YPABHEHNS, XKOTOPLE NuHeapHsy-
0TCH B ciydae HIOTPOIMHEIX CPETl.

TIpoananA3uPOBANLT YCHOBHS B METONEE TIOJyISHUs MEKDOIONAPHON, HroApHol 7 nomspHol
Teopuil, KaK YACTHEIX CIIydacs.





